1932

Abstract

Autism represents a large spectrum of diverse individuals with varying underlying genetic architectures and needs. For some individuals, a single de novo or ultrarare genetic variant has a large effect on the intensity of specific dimensions of the phenotype, while, for others, a combination of thousands of variants commonly found in the general population are involved. The variants with large impact are found in up to 30% of autistic individuals presenting with intellectual disability, significant speech delay, motor delay, and/or seizures. The common variants are shared with those found in individuals with attention-deficit/hyperactivity disorder, major depressive disorders, greater educational attainment, and higher cognitive performance, suggesting overlapping genetic architectures. The genetic variants modulate the function of chromatin remodeling and synaptic proteins that influence the connectivity of neuronal circuits and, in interaction with the environment of each individual, the subsequent cognitive and personal trajectory of the child. Overall, this genetic heterogeneity mirrors the phenotypic diversity of autistic individuals and provides a helpful bridge between biomedical and neurodiversity perspectives. We propose that participative and multidisciplinary research should use this information to understand better the assessment, treatments, and accommodations that individuals with autism and families need.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102614
2024-11-25
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102614.html?itemId=/content/journals/10.1146/annurev-genet-111523-102614&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aishworiya R, Valica T, Hagerman R, Restrepo B. 2022.. An update on psychopharmacological treatment of autism spectrum disorder. . Neurotherapeutics 19:(1):24862
    [Crossref] [Google Scholar]
  2. 2.
    Amit G, Bilu Y, Sudry T, Avgil Tsadok M, Zimmerman DR, et al. 2024.. Early prediction of autistic spectrum disorder using developmental surveillance data. . JAMA Netw. Open 7:(1):e2351052
    [Crossref] [Google Scholar]
  3. 3.
    An J-Y, Lin K, Zhu L, Werling DM, Dong S, et al. 2018.. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. . Science 362:(6420):eaat6576
    [Crossref] [Google Scholar]
  4. 4.
    Antaki D, Guevara J, Maihofer AX, Klein M, Gujral M, et al. 2022.. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. . Nat. Genet. 54:(9):128492
    [Crossref] [Google Scholar]
  5. 5.
    Arnett AB, Beighley JS, Kurtz-Nelson EC, Hoekzema K, Wang T, et al. 2020.. Developmental predictors of cognitive and adaptive outcomes in genetic subtypes of autism spectrum disorder. . Autism Res. 13:(10):165969
    [Crossref] [Google Scholar]
  6. 6.
    Arnett AB, Wang T, Eichler EE, Bernier RA. 2021.. Reflections on the genetics-first approach to advancements in molecular genetic and neurobiological research on neurodevelopmental disorders. . J. Neurodev. Disord. 13:(1):24
    [Crossref] [Google Scholar]
  7. 7.
    Autism Genome Proj. Consort. 2007.. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. . Nat. Genet. 39:(3):31928
    [Crossref] [Google Scholar]
  8. 8.
    Bai D, Yip BHK, Windham GC, Sourander A, Francis R, et al. 2019.. Association of genetic and environmental factors with autism in a 5-country cohort. . JAMA Psychiatry 76:(10):103543
    [Crossref] [Google Scholar]
  9. 9.
    Baribeau D, Vorstman J, Anagnostou E. 2022.. Novel treatments in autism spectrum disorder. . Curr. Opin. Psychiatry 35:(2):10110
    [Crossref] [Google Scholar]
  10. 10.
    Baron-Cohen S. 2017.. Editorial perspective: neurodiversity—a revolutionary concept for autism and psychiatry. . J. Child Psychol. Psychiatry 58:(6):74447
    [Crossref] [Google Scholar]
  11. 11.
    Baron-Cohen S, Bowen DC, Holt RJ, Allison C, Auyeung B, et al. 2015.. The “Reading the Mind in the Eyes” Test: complete absence of typical sex difference in ∼400 men and women with autism. . PLOS ONE 10:(8):e0136521
    [Crossref] [Google Scholar]
  12. 12.
    Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. 2001.. The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. . J. Autism Dev. Disord. 31:(1):517
    [Crossref] [Google Scholar]
  13. 13.
    Bedford SA, Lai M-C, Lombardo MV, Chakrabarti B, Ruigrok A, et al. 2023.. Brain-charting autism and attention deficit hyperactivity disorder reveals distinct and overlapping neurobiology. . medRxiv 2023.12.06.23299587. https://www.medrxiv.org/content/10.1101/2023.12.06.23299587v1
  14. 14.
    Beggiato A, Peyre H, Maruani A, Scheid I, Rastam M, et al. 2017.. Gender differences in autism spectrum disorders: divergence among specific core symptoms. . Autism Res. 10:(4):68089
    [Crossref] [Google Scholar]
  15. 15.
    Belmonte MK. 2022.. Motor symptoms in the ASD diagnostic criteria: a conservative perspective. . Autism Res. 15:(9):158284
    [Crossref] [Google Scholar]
  16. 16.
    Berto S, Treacher AH, Caglayan E, Luo D, Haney JR, et al. 2022.. Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. . Nat. Commun. 13:(1):3328
    [Crossref] [Google Scholar]
  17. 17.
    Bervoets J, Hens K. 2020.. Going beyond the catch-22 of autism diagnosis and research. The moral implications of (not) asking “What is autism?. Front. Psychol. 11::529193
    [Crossref] [Google Scholar]
  18. 18.
    Black MH, Remnélius KL, Alehagen L, Bourgeron T, Bölte S. 2023.. From symptomatology to functioning—applying the ICF to autism measures to facilitate neurodiversity-affirmative data harmonization. . J. Autism Dev. Disord. https://doi.org/10.1007/s10803-023-06204-2
    [Google Scholar]
  19. 19.
    Bölte S, Lawson WB, Marschik PB, Girdler S. 2021.. Reconciling the seemingly irreconcilable: The WHO's ICF system integrates biological and psychosocial environmental determinants of autism and ADHD: The International Classification of Functioning (ICF) allows to model opposed biomedical and neurodiverse views of autism and ADHD within one framework. . Bioessays 43:(9):e2000254
    [Crossref] [Google Scholar]
  20. 20.
    Booker KW, Starling L. 2011.. Test Review: Social Responsiveness Scale by J. N. Constantino and C. P. Gruber. . Assessm. Eff. Interv. 36:(3):19294
    [Google Scholar]
  21. 21.
    Bourgeron T. 2015.. From the genetic architecture to synaptic plasticity in autism spectrum disorder. . Nat. Rev. Neurosci. 16:(9):55163
    [Crossref] [Google Scholar]
  22. 22.
    Brandler WM, Antaki D, Gujral M, Kleiber ML, Whitney J, et al. 2018.. Paternally inherited cis-regulatory structural variants are associated with autism. . Science 360:(6386):32731
    [Crossref] [Google Scholar]
  23. 23.
    Brunsdon VEA, Happé F. 2014.. Exploring the “fractionation” of autism at the cognitive level. . Autism 18:(1):1730
    [Crossref] [Google Scholar]
  24. 24.
    Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, et al. 2015.. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. . Nat. Genet. 47:(3):29195
    [Crossref] [Google Scholar]
  25. 25.
    Casanova MF, Frye RE, Gillberg C, Casanova EL. 2020.. Editorial: comorbidity and autism spectrum disorder. . Front. Psychiatry 11::617395
    [Crossref] [Google Scholar]
  26. 26.
    Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, et al. 2018.. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. . Nat. Genet. 50:(9):132734
    [Crossref] [Google Scholar]
  27. 27.
    Chawner SJRA, Doherty JL, Anney RJL, Antshel KM, Bearden CE, et al. 2021.. A genetics-first approach to dissecting the heterogeneity of autism: phenotypic comparison of autism risk copy number variants. . Am. J. Psychiatry 178:(1):7786
    [Crossref] [Google Scholar]
  28. 28.
    Chawner SJRA, Owen MJ. 2022.. Autism: a model of neurodevelopmental diversity informed by genomics. . Front. Psychiatry 13::981691
    [Crossref] [Google Scholar]
  29. 29.
    Chiapperino L, Hens K. 2023.. How to talk about autism: reconciling genomics and neurodiversity. . Nat. Med. 29:(7):16078
    [Crossref] [Google Scholar]
  30. 30.
    Coleman M, Gillberg C. 2012.. The Autisms. New York:: Oxford Univ. Press
    [Google Scholar]
  31. 31.
    Collins RL, Glessner JT, Porcu E, Lepamets M, Brandon R, et al. 2022.. A cross-disorder dosage sensitivity map of the human genome. . Cell 185:(16):304155.e25
    [Crossref] [Google Scholar]
  32. 32.
    Constantino JN. 2011.. The quantitative nature of autistic social impairment. . Pediatr. Res. 69:(5 Part 2):55R62R
    [Crossref] [Google Scholar]
  33. 33.
    Constantino JN, Kennon-McGill S, Weichselbaum C, Marrus N, Haider A, et al. 2017.. Infant viewing of social scenes is under genetic control and is atypical in autism. . Nature 547:(7663):34044
    [Crossref] [Google Scholar]
  34. 34.
    Cook J, Hull L, Crane L, Mandy W. 2021.. Camouflaging in autism: a systematic review. . Clin. Psychol. Rev. 89::102080
    [Crossref] [Google Scholar]
  35. 35.
    de Klein N, Tsai EA, Vochteloo M, Baird D, Huang Y, et al. 2023.. Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases. . Nat. Genet. 55:(3):37788
    [Crossref] [Google Scholar]
  36. 36.
    De Leersnyder H, De Blois MC, Claustrat B, Romana S, Albrecht U, et al. 2001.. Inversion of the circadian rhythm of melatonin in the Smith-Magenis syndrome. . J. Pediatr. 139:(1):11116
    [Crossref] [Google Scholar]
  37. 37.
    Delorme R, Ey E, Toro R, Leboyer M, Gillberg C, Bourgeron T. 2013.. Progress toward treatments for synaptic defects in autism. . Nat. Med. 19:(6):68594
    [Crossref] [Google Scholar]
  38. 38.
    Denier N, Steinberg G, van Elst LT, Bracht T. 2022.. The role of head circumference and cerebral volumes to phenotype male adults with autism spectrum disorder. . Brain Behav. 12:(3):e2460
    [Crossref] [Google Scholar]
  39. 39.
    D'Gama AM, Walsh CA. 2018.. Somatic mosaicism and neurodevelopmental disease. . Nat. Neurosci. 21:(11):150414
    [Crossref] [Google Scholar]
  40. 40.
    Didden R, Sigafoos J. 2001.. A review of the nature and treatment of sleep disorders in individuals with developmental disabilities. . Res. Dev. Disabil. 22:(4):25572
    [Crossref] [Google Scholar]
  41. 41.
    Dong S, Zhao N, Spragins E, Kagda MS, Li M, et al. 2023.. Annotating and prioritizing human non-coding variants with RegulomeDB v.2. . Nat. Genet. 55:(5):72426
    [Crossref] [Google Scholar]
  42. 42.
    Douard E, Zeribi A, Schramm C, Tamer P, Loum MA, et al. 2021.. Effect sizes of deletions and duplications on autism risk across the genome. . Am. J. Psychiatry 178:(1):8798
    [Crossref] [Google Scholar]
  43. 43.
    Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, et al. 2007.. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. . Nat. Genet. 39:(1):2527
    [Crossref] [Google Scholar]
  44. 44.
    Durkut M, Blok E, Suleri A, White T. 2022.. The longitudinal bidirectional relationship between autistic traits and brain morphology from childhood to adolescence: a population-based cohort study. . Mol. Autism 13:(1):31
    [Crossref] [Google Scholar]
  45. 45.
    Ecker C, Ginestet C, Feng Y, Johnston P, Lombardo MV, et al. 2013.. Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms. . JAMA Psychiatry 70:(1):5970
    [Crossref] [Google Scholar]
  46. 46.
    Ecker C, Pretzsch CM, Bletsch A, Mann C, Schaefer T, et al. 2022.. Interindividual differences in cortical thickness and their genomic underpinnings in autism spectrum disorder. . Am. J. Psychiatry 179:(3):24254
    [Crossref] [Google Scholar]
  47. 47.
    Fletcher-Watson S. 2022.. Transdiagnostic research and the neurodiversity paradigm: commentary on the transdiagnostic revolution in neurodevelopmental disorders by Astle et al. . J. Child Psychol. Psychiatry 63:(4):41820
    [Crossref] [Google Scholar]
  48. 48.
    Forzano F, Antonova O, Clarke A, de Wert G, Hentze S, et al. 2022.. The use of polygenic risk scores in pre-implantation genetic testing: an unproven, unethical practice. . Eur. J. Hum. Genet. 30:(5):49395
    [Crossref] [Google Scholar]
  49. 49.
    Fountain C, Winter AS, Bearman PS. 2012.. Six developmental trajectories characterize children with autism. . Pediatrics 129:(5):e111220
    [Crossref] [Google Scholar]
  50. 50.
    França LGS, Ciarrusta J, Gale-Grant O, Fenn-Moltu S, Fitzgibbon S, et al. 2024.. Neonatal brain dynamic functional connectivity in term and preterm infants and its association with early childhood neurodevelopment. . Nat. Commun. 15:(1):16
    [Crossref] [Google Scholar]
  51. 51.
    Freitag CM, Persico AM, Vorstman JAS. 2022.. Developing gene-based personalised interventions in autism spectrum disorders. . Genes 13:(6):1004
    [Crossref] [Google Scholar]
  52. 52.
    Frewer V, Gilchrist CP, Collins SE, Williams K, Seal ML, et al. 2021.. A systematic review of brain MRI findings in monogenic disorders strongly associated with autism spectrum disorder. . J. Child Psychol. Psychiatry 62:(11):133952
    [Crossref] [Google Scholar]
  53. 53.
    Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, et al. 2022.. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. . Nat. Genet. 54:(9):132031
    [Crossref] [Google Scholar]
  54. 54.
    Garcés P, Baumeister S, Mason L, Chatham CH, Holiga S, et al. 2022.. Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis. . Mol. Autism 13:(1):22
    [Crossref] [Google Scholar]
  55. 55.
    Garrido D, Petrova D, Watson LR, Garcia-Retamero R, Carballo G. 2017.. Language and motor skills in siblings of children with autism spectrum disorder: a meta-analytic review. . Autism Res. 10:(11):173750
    [Crossref] [Google Scholar]
  56. 56.
    Gentles SJ, Ng-Cordell EC, Hunsche MC, McVey AJ, Bednar ED, et al. 2024.. Trajectory research in children with an autism diagnosis: a scoping review. . Autism 28:(3):54064
    [Crossref] [Google Scholar]
  57. 57.
    Gidziela A, Ahmadzadeh YI, Michelini G, Allegrini AG, Agnew-Blais J, et al. 2023.. A meta-analysis of genetic effects associated with neurodevelopmental disorders and co-occurring conditions. . Nat. Hum. Behav. 7:(4):64256
    [Crossref] [Google Scholar]
  58. 58.
    Gillberg C. 2010.. The ESSENCE in child psychiatry: Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations. . Res. Dev. Disabil. 31:(6):154351
    [Crossref] [Google Scholar]
  59. 59.
    Gosling CJ, Cartigny A, Mellier BC, Solanes A, Radua J, Delorme R. 2022.. Efficacy of psychosocial interventions for Autism spectrum disorder: an umbrella review. . Mol. Psychiatry 27:(9):364756
    [Crossref] [Google Scholar]
  60. 60.
    Green J. 2022.. Autism as emergent and transactional. . Front. Psychiatry 13::988755
    [Crossref] [Google Scholar]
  61. 61.
    Green J. 2023.. Debate: neurodiversity, autism and healthcare. . Child Adolesc. Ment. Health 28:(3):43842
    [Crossref] [Google Scholar]
  62. 62.
    Greenberg DM, Warrier V, Abu-Akel A, Allison C, Gajos KZ, et al. 2023.. Sex and age differences in “theory of mind” across 57 countries using the English version of the “Reading the Mind in the Eyes” Test. . PNAS 120:(1):e2022385119
    [Crossref] [Google Scholar]
  63. 63.
    Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, et al. 2019.. Identification of common genetic risk variants for autism spectrum disorder. . Nat. Genet. 51:(3):43144
    [Crossref] [Google Scholar]
  64. 64.
    Han K, Holder JL, Schaaf CP, Lu H, Chen H, et al. 2013.. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. . Nature 503:(7474):7277
    [Crossref] [Google Scholar]
  65. 65.
    Happé F, Frith U. 2020.. Annual research review: looking back to look forward—changes in the concept of autism and implications for future research. . J. Child Psychol. Psychiatry 61:(3):21832
    [Crossref] [Google Scholar]
  66. 66.
    Heraty S, Lautarescu A, Belton D, Boyle A, Cirrincione P, et al. 2023.. Bridge-building between communities: imagining the future of biomedical autism research. . Cell 186:(18):374752
    [Crossref] [Google Scholar]
  67. 67.
    Hickman AR, Selee B, Pauly R, Husain B, Hang Y, Feltus FA. 2023.. Discovery of eQTL alleles associated with autism spectrum disorder: a case-control study. . J. Autism Dev. Disord. 53:(9):3595612
    [Crossref] [Google Scholar]
  68. 68.
    Huang Y, Arnold SR, Foley K-R, Trollor JN. 2020.. Diagnosis of autism in adulthood: a scoping review. . Autism 24:(6):131127
    [Crossref] [Google Scholar]
  69. 69.
    Husson T, Lecoquierre F, Cassinari K, Charbonnier C, Quenez O, et al. 2020.. Rare genetic susceptibility variants assessment in autism spectrum disorder: detection rate and practical use. . Transl. Psychiatry 10:(1):77
    [Crossref] [Google Scholar]
  70. 70.
    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, et al. 2010.. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. . Am. J. Psychiatry 167:(7):74851
    [Crossref] [Google Scholar]
  71. 71.
    Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, et al. 2003.. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. . Nat. Genet. 34:(1):2729
    [Crossref] [Google Scholar]
  72. 72.
    Jensen M, Smolen C, Girirajan S. 2020.. Gene discoveries in autism are biased towards comorbidity with intellectual disability. . J. Med. Genet. 57:(9):64752
    [Crossref] [Google Scholar]
  73. 73.
    Johnson MH, Charman T, Pickles A, Jones EJH. 2021.. Annual research review: Anterior Modifiers in the Emergence of Neurodevelopmental Disorders (AMEND)—a systems neuroscience approach to common developmental disorders. . J. Child Psychol. Psychiatry 62:(5):61030
    [Crossref] [Google Scholar]
  74. 74.
    Jones W, Klaiman C, Richardson S, Aoki C, Smith C, et al. 2023.. Eye-tracking-based measurement of social visual engagement compared with expert clinical diagnosis of autism. . JAMA 330:(9):85465
    [Crossref] [Google Scholar]
  75. 75.
    Kang E, Keifer CM, Levy EJ, Foss-Feig JH, McPartland JC, Lerner MD. 2018.. Atypicality of the N170 event-related potential in autism spectrum disorder: a meta-analysis. . Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3:(8):65766
    [Google Scholar]
  76. 76.
    Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, et al. 2020.. Evidence for 28 genetic disorders discovered by combining healthcare and research data. . Nature 586:(7831):75762
    [Crossref] [Google Scholar]
  77. 77.
    Khachadourian V, Mahjani B, Sandin S, Kolevzon A, Buxbaum JD, et al. 2023.. Comorbidities in autism spectrum disorder and their etiologies. . Transl. Psychiatry 13:(1):71
    [Crossref] [Google Scholar]
  78. 78.
    Kim H, Kim JH, Kim J, Kim JY, Cortese S, et al. 2023.. Subjective and objective sleep alterations in medication-naïve children and adolescents with autism spectrum disorder: a systematic review and meta-analysis. . Epidemiol. Psychiatr. Sci. 32::e48
    [Crossref] [Google Scholar]
  79. 79.
    Klitzman R, Bezborodko E, Chung WK, Appelbaum PS. 2024.. Parents’ views of benefits and limitations of receiving genetic diagnoses for their offspring. . Child Care Health Dev. 50:(1):e13212
    [Crossref] [Google Scholar]
  80. 80.
    Koi P. 2021.. Genetics on the neurodiversity spectrum: Genetic, phenotypic and endophenotypic continua in autism and ADHD. . Stud. Hist. Philos. Sci. 89::5262
    [Crossref] [Google Scholar]
  81. 81.
    Lappé M, Lau L, Dudovitz RN, Nelson BB, Karp EA, Kuo AA. 2018.. The diagnostic odyssey of autism spectrum disorder. . Pediatrics 141:(Suppl. 4):S27279
    [Crossref] [Google Scholar]
  82. 82.
    Lázaro-Muñoz G, Sabatello M, Huckins L, Peay H, Degenhardt F, et al. 2019.. International Society of Psychiatric Genetics Ethics Committee: issues facing us. . Am. J. Med. Genet. B Neuropsychiatr. Genet. 180:(8):54354
    [Crossref] [Google Scholar]
  83. 83.
    Leblond CS, Cliquet F, Carton C, Huguet G, Mathieu A, et al. 2019.. Both rare and common genetic variants contribute to autism in the Faroe Islands. . npj Genom. Med. 4::1
    [Crossref] [Google Scholar]
  84. 84.
    Lee JK, Andrews DS, Ozonoff S, Solomon M, Rogers S, et al. 2021.. Longitudinal evaluation of cerebral growth across childhood in boys and girls with autism spectrum disorder. . Biol. Psychiatry 90:(5):28694
    [Crossref] [Google Scholar]
  85. 85.
    Lefebvre A, Tillmann J, Cliquet F, Amsellem F, Maruani A, et al. 2023.. Tackling hypo and hyper sensory processing heterogeneity in autism: from clinical stratification to genetic pathways. . Autism Res. 16:(2):36478
    [Crossref] [Google Scholar]
  86. 86.
    Li D, Choque Olsson N, Becker M, Arora A, Jiao H, et al. 2022.. Rare variants in the outcome of social skills group training for autism. . Autism Res. 15:(3):43446
    [Crossref] [Google Scholar]
  87. 87.
    Li M, Wang Y, Tachibana M, Rahman S, Kagitani-Shimono K. 2022.. Atypical structural connectivity of language networks in autism spectrum disorder: a meta-analysis of diffusion tensor imaging studies. . Autism Res. 15:(9):1585602
    [Crossref] [Google Scholar]
  88. 88.
    Li Q, Weiland RF, Konvalinka I, Mansvelder HD, Andersen TS, et al. 2022.. Intellectually able adults with autism spectrum disorder show typical resting-state EEG activity. . Sci. Rep. 12:(1):19016
    [Crossref] [Google Scholar]
  89. 89.
    Lowther C, Valkanas E, Giordano JL, Wang HZ, Currall BB, et al. 2023.. Systematic evaluation of genome sequencing for the diagnostic assessment of autism spectrum disorder and fetal structural anomalies. . Am. J. Hum. Genet. 110:(9):145469
    [Crossref] [Google Scholar]
  90. 90.
    Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M, et al. 2020.. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016. . MMWR Surveill. Summ. 69:(4):112
    [Crossref] [Google Scholar]
  91. 91.
    Mason L, Moessnang C, Chatham C, Ham L, Tillmann J, et al. 2022.. Stratifying the autistic phenotype using electrophysiological indices of social perception. . Sci. Transl. Med. 14:(658):eabf8987
    [Crossref] [Google Scholar]
  92. 92.
    Mattheisen M, Grove J, Als TD, Martin J, Voloudakis G, et al. 2022.. Identification of shared and differentiating genetic architecture for autism spectrum disorder, attention-deficit hyperactivity disorder and case subgroups. . Nat. Genet. 54:(10):147078
    [Crossref] [Google Scholar]
  93. 93.
    Meijer J, Vieira BH, Elleaume C, Baranczuk-Turska Z, Langer N, Floris DL. 2023.. Towards understanding autism heterogeneity: identifying clinical subgroups and neuroanatomical deviations. . medRxiv 2023.10.21.23297299. https://doi.org/10.1101/2023.10.21.23297299
  94. 94.
    Melke J, Goubran Botros H, Chaste P, Betancur C, Nygren G, et al. 2008.. Abnormal melatonin synthesis in autism spectrum disorders. . Mol. Psychiatry 13:(1):9098
    [Crossref] [Google Scholar]
  95. 95.
    Mensen VT, Wierenga LM, van Dijk S, Rijks Y, Oranje B, et al. 2017.. Development of cortical thickness and surface area in autism spectrum disorder. . Neuroimage Clin. 13::21522
    [Crossref] [Google Scholar]
  96. 96.
    Miller DT, Lee K, Abul-Husn NS, Amendola LM, Brothers K, et al. 2023.. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). . Genet. Med. 25:(8):100866
    [Crossref] [Google Scholar]
  97. 97.
    Moffitt BA, Sarasua SM, Ward L, Ivankovic D, Valentine K, et al. 2022.. Sleep and Phelan-McDermid Syndrome: lessons from the International Registry and the scientific literature. . Mol. Genet. Genom. Med. 10:(10):e2035
    [Crossref] [Google Scholar]
  98. 98.
    Moreau CA, Harvey A, Kumar K, Huguet G, Urchs SGW, et al. 2023.. Genetic heterogeneity shapes brain connectivity in psychiatry. . Biol. Psychiatry 93:(1):4558
    [Crossref] [Google Scholar]
  99. 99.
    Moreno-De-Luca D, Martin CL. 2021.. All for one and one for all: heterogeneity of genetic etiologies in neurodevelopmental psychiatric disorders. . Curr. Opin. Genet. Dev. 68::7178
    [Crossref] [Google Scholar]
  100. 100.
    Mottron L. 2021.. A radical change in our autism research strategy is needed: back to prototypes. . Autism Res. 14:(10):221320
    [Crossref] [Google Scholar]
  101. 101.
    Murray D, Milton D, Green J, Bervoets J. 2023.. The human spectrum: a phenomenological enquiry within neurodiversity. . Psychopathology 56:(3):22030
    [Crossref] [Google Scholar]
  102. 102.
    Myers SM, Challman TD, Bernier R, Bourgeron T, Chung WK, et al. 2020.. Insufficient evidence for “autism-specific” genes. . Am. J. Hum. Genet. 106:(5):58795
    [Crossref] [Google Scholar]
  103. 103.
    Nguyen CQ, Kariyawasam D, Alba-Concepcion K, Grattan S, Hetherington K, et al. 2022.. “ Advocacy groups are the connectors”: experiences and contributions of rare disease patient organization leaders in advanced neurotherapeutics. . Health Expect. 25:(6):317591
    [Crossref] [Google Scholar]
  104. 104.
    Niarchou M, Chawner SJRA, Doherty JL, Maillard AM, Jacquemont S, et al. 2019.. Psychiatric disorders in children with 16p11.2 deletion and duplication. . Transl. Psychiatry 9:(1):8
    [Crossref] [Google Scholar]
  105. 105.
    Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, et al. 2020.. The impact of sex on gene expression across human tissues. . Science 369:(6509):eaba3066
    [Crossref] [Google Scholar]
  106. 106.
    O'Reilly C, Huberty S, van Noordt S, Desjardins J, Wright N, et al. 2023.. EEG functional connectivity in infants at elevated familial likelihood for autism spectrum disorder. . Mol. Autism 14:(1):37
    [Crossref] [Google Scholar]
  107. 107.
    O'Reilly C, Lewis JD, Elsabbagh M. 2017.. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. . PLOS ONE 12:(5):e0175870
    [Crossref] [Google Scholar]
  108. 108.
    Osborne LR, Mervis CB. 2007.. Rearrangements of the Williams-Beuren syndrome locus: molecular basis and implications for speech and language development. . Expert Rev. Mol. Med. 9:(15):116
    [Crossref] [Google Scholar]
  109. 109.
    Pagan C, Delorme R, Callebert J, Goubran-Botros H, Amsellem F, et al. 2014.. The serotonin-N-acetylserotonin–melatonin pathway as a biomarker for autism spectrum disorders. . Transl. Psychiatry 4:(11):e479
    [Crossref] [Google Scholar]
  110. 110.
    Page T. 2000.. Metabolic approaches to the treatment of autism spectrum disorders. . J. Autism Dev. Disord. 30:(5):46369
    [Crossref] [Google Scholar]
  111. 111.
    Pan P-Y, Bölte S, Kaur P, Jamil S, Jonsson U. 2021.. Neurological disorders in autism: A systematic review and meta-analysis. . Autism 25:(3):81230
    [Crossref] [Google Scholar]
  112. 112.
    Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, et al. 2013.. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. . Cell 155:(5):100821
    [Crossref] [Google Scholar]
  113. 113.
    Pellicano E, den Houting J. 2022.. Annual research review: shifting from “normal science” to neurodiversity in autism science. . J. Child Psychol. Psychiatry 63:(4):38196
    [Crossref] [Google Scholar]
  114. 114.
    Pickles A, Anderson DK, Lord C. 2014.. Heterogeneity and plasticity in the development of language: a 17-year follow-up of children referred early for possible autism. . J. Child Psychol. Psychiatry 55:(12):135462
    [Crossref] [Google Scholar]
  115. 115.
    Portugal AM, Viktorsson C, Taylor MJ, Mason L, Tammimies K, et al. 2024.. Infants’ looking preferences for social versus non-social objects reflect genetic variation. . Nat. Hum. Behav. 8:(1):11524
    [Crossref] [Google Scholar]
  116. 116.
    Pretzsch CM, Schäfer T, Lombardo MV, Warrier V, Mann C, et al. 2022.. Neurobiological correlates of change in adaptive behavior in autism. . Am. J. Psychiatry 179:(5):33649
    [Crossref] [Google Scholar]
  117. 117.
    Rasero J, Jimenez-Marin A, Diez I, Toro R, Hasan MT, Cortes JM. 2023.. The neurogenetics of functional connectivity alterations in autism: insights from subtyping in 657 individuals. . Biol. Psychiatry 94:(10):80413
    [Crossref] [Google Scholar]
  118. 118.
    Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, et al. 2011.. Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). . Arch. Gen. Psychiatry 68:(11):111321
    [Crossref] [Google Scholar]
  119. 119.
    Rolland T, Cliquet F, Anney RJL, Moreau C, Traut N, et al. 2023.. Phenotypic effects of genetic variants associated with autism. . Nat. Med. 29:(7):167180
    [Crossref] [Google Scholar]
  120. 120.
    Romero-Garcia R, Warrier V, Bullmore ET, Baron-Cohen S, Bethlehem RAI. 2019.. Synaptic and transcriptionally downregulated genes are associated with cortical thickness differences in autism. . Mol. Psychiatry 24:(7):105364
    [Crossref] [Google Scholar]
  121. 121.
    Rossignol DA, Frye RE. 2012.. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. . Mol. Psychiatry 17:(3):290314
    [Crossref] [Google Scholar]
  122. 122.
    Sacco R, Gabriele S, Persico AM. 2015.. Head circumference and brain size in autism spectrum disorder: a systematic review and meta-analysis. . Psychiatry Res. 234:(2):23951
    [Crossref] [Google Scholar]
  123. 123.
    Sanderson K. 2021.. High-profile autism genetics project paused amid backlash. . Nature 598:(7879):1718
    [Crossref] [Google Scholar]
  124. 124.
    Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, et al. 2020.. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. . Cell 180:(3):56884.e23
    [Crossref] [Google Scholar]
  125. 125.
    Schaaf CP, Betancur C, Yuen RKC, Parr JR, Skuse DH, et al. 2020.. A framework for an evidence-based gene list relevant to autism spectrum disorder. . Nat. Rev. Genet. 21:(6):36776
    [Crossref] [Google Scholar]
  126. 126.
    Schlag F, Allegrini AG, Buitelaar J, Verhoef E, van Donkelaar M, et al. 2022.. Polygenic risk for mental disorder reveals distinct association profiles across social behaviour in the general population. . Mol. Psychiatry 27:(3):158898
    [Crossref] [Google Scholar]
  127. 127.
    Shalev I, Warrier V, Greenberg DM, Smith P, Allison C, et al. 2022.. Reexamining empathy in autism: empathic disequilibrium as a novel predictor of autism diagnosis and autistic traits. . Autism Res. 15:(10):191728
    [Crossref] [Google Scholar]
  128. 128.
    Shillington A, Lamy M, Dominick KC, Sorter M, Erickson CA, Hopkin R. 2022.. A collaborative psychiatric-genetics inpatient care delivery model improves access to clinical genetic evaluation, testing, and diagnosis for patients with neurodevelopmental disorders. . Front. Genet. 13::901458
    [Crossref] [Google Scholar]
  129. 129.
    Sonuga-Barke EJS, Chandler S, Lukito S, Kakoulidou M, Moore G, et al. 2024.. Participatory translational science of neurodivergence: model for attention-deficit/hyperactivity disorder and autism research. . Br. J. Psychiatry 224:(4):12731
    [Crossref] [Google Scholar]
  130. 130.
    Sonuga-Barke EJS, Thapar A. 2021.. The neurodiversity concept: Is it helpful for clinicians and scientists?. Lancet Psychiatry 8:(7):55961
    [Crossref] [Google Scholar]
  131. 131.
    Specchio N, Pietrafusa N, Trivisano M, Moavero R, De Palma L, et al. 2020.. Autism and epilepsy in patients with tuberous sclerosis complex. . Front. Neurol. 11::639
    [Crossref] [Google Scholar]
  132. 132.
    Stefanski A, Calle-López Y, Leu C, Pérez-Palma E, Pestana-Knight E, Lal D. 2020.. Clinical sequencing yield in epilepsy, autism spectrum disorder, and intellectual disability: a systematic review and meta-analysis. . Epilepsia 62:(1):14351
    [Crossref] [Google Scholar]
  133. 133.
    Straub L, Bateman BT, Hernandez-Diaz S, York C, Lester B, et al. 2022.. Neurodevelopmental disorders among publicly or privately insured children in the United States. . JAMA Psychiatry 79:(3):23242
    [Crossref] [Google Scholar]
  134. 134.
    Titgemeyer SC, Schaaf CP. 2022.. Facebook support groups for pediatric rare diseases: cross-sectional study to investigate opportunities, limitations, and privacy concerns. . JMIR Pediatr. Parent. 5:(1):e31411
    [Crossref] [Google Scholar]
  135. 135.
    Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, et al. 2010.. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. . Trends Genet. 26:(8):36372
    [Crossref] [Google Scholar]
  136. 136.
    Traut N, Heuer K, Lemaître G, Beggiato A, Germanaud D, et al. 2022.. Insights from an autism imaging biomarker challenge: promises and threats to biomarker discovery. . Neuroimage 255::119171
    [Crossref] [Google Scholar]
  137. 137.
    Trost B, Thiruvahindrapuram B, Chan AJS, Engchuan W, Higginbotham EJ, et al. 2022.. Genomic architecture of autism from comprehensive whole-genome sequence annotation. . Cell 185:(23):440927.e18
    [Crossref] [Google Scholar]
  138. 138.
    Turner TN, Eichler EE. 2019.. The role of de novo noncoding regulatory mutations in neurodevelopmental disorders. . Trends Neurosci. 42:(2):11527
    [Crossref] [Google Scholar]
  139. 139.
    Turnock A, Langley K, Jones CRG. 2022.. Understanding stigma in autism: a narrative review and theoretical model. . Autism Adulthood 4:(1):7691
    [Crossref] [Google Scholar]
  140. 140.
    van Ravenswaaij-Arts CMA, van Balkom IDC, Jesse S, Bonaglia MC. 2023.. Editorial: towards a European consensus guideline for Phelan-McDermid syndrome. . Eur. J. Med. Genet. 66:(5):104736
    [Crossref] [Google Scholar]
  141. 141.
    van 't Hof M, Tisseur C, van Berckelear-Onnes I, van Nieuwenhuyzen A, Daniels AM, et al. 2021.. Age at autism spectrum disorder diagnosis: a systematic review and meta-analysis from 2012 to 2019. . Autism 25:(4):86273
    [Crossref] [Google Scholar]
  142. 142.
    Verhoef E, Grove J, Shapland CY, Demontis D, Burgess S, et al. 2021.. Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy. . Nat. Commun. 12:(1):6534
    [Crossref] [Google Scholar]
  143. 143.
    Vorstman JAS, Spooren W, Persico AM, Collier DA, Aigner S, et al. 2014.. Using genetic findings in autism for the development of new pharmaceutical compounds. . Psychopharmacology 231:(6):106378
    [Crossref] [Google Scholar]
  144. 144.
    Wang Q, Li H-Y, Li Y-D, Lv Y-T, Ma H-B, et al. 2021.. Resting-state abnormalities in functional connectivity of the default mode network in autism spectrum disorder: a meta-analysis. . Brain Imaging Behav. 15:(5):258392
    [Crossref] [Google Scholar]
  145. 145.
    Wang T, Kim CN, Bakken TE, Gillentine MA, Henning B, et al. 2022.. Integrated gene analyses of de novo variants from 46,612 trios with autism and developmental disorders. . PNAS 119:(46):e2203491119
    [Crossref] [Google Scholar]
  146. 146.
    Warrier V, Grasby KL, Uzefovsky F, Toro R, Smith P, et al. 2018.. Genome-wide meta-analysis of cognitive empathy: heritability, and correlates with sex, neuropsychiatric conditions and cognition. . Mol. Psychiatry 23:(6):14029
    [Crossref] [Google Scholar]
  147. 147.
    Warrier V, Stauffer E-M, Huang QQ, Wigdor EM, Slob EAW, et al. 2023.. Genetic insights into human cortical organization and development through genome-wide analyses of 2,347 neuroimaging phenotypes. . Nat. Genet. 55:(9):148393
    [Crossref] [Google Scholar]
  148. 148.
    Warrier V, Toro R, Chakrabarti B, iPSYCH-Broad autism group, Børglum AD, et al. 2018.. Genome-wide analyses of self-reported empathy: correlations with autism, schizophrenia, and anorexia nervosa. . Transl. Psychiatry 8:(1):35
    [Crossref] [Google Scholar]
  149. 149.
    Warrier V, Toro R, Won H, Leblond CS, Cliquet F, et al. 2019.. Social and non-social autism symptoms and trait domains are genetically dissociable. . Commun. Biol. 2::328
    [Crossref] [Google Scholar]
  150. 150.
    Warrier V, Zhang X, Reed P, Havdahl A, Moore TM, et al. 2022.. Genetic correlates of phenotypic heterogeneity in autism. . Nat. Genet. 54:(9):1293304
    [Crossref] [Google Scholar]
  151. 151.
    Watanabe T, Rees G. 2017.. Brain network dynamics in high-functioning individuals with autism. . Nat. Commun. 8::16048
    [Crossref] [Google Scholar]
  152. 152.
    Weiner DJ, Ling E, Erdin S, Tai DJC, Yadav R, et al. 2022.. Statistical and functional convergence of common and rare genetic influences on autism at chromosome 16p. . Nat. Genet. 54:(11):163039
    [Crossref] [Google Scholar]
  153. 153.
    Weiner DJ, Wigdor EM, Ripke S, Walters RK, Kosmicki JA, et al. 2017.. Polygenic transmission disequi-librium confirms that common and rare variation act additively to create risk for autism spectrum disorders. . Nat. Genet. 49:(7):97885
    [Crossref] [Google Scholar]
  154. 154.
    Wen C, Margolis M, Dai R, Zhang P, Przytycki PF, et al. 2023.. Cross-ancestry, cell-type-informed atlas of gene, isoform, and splicing regulation in the developing human brain. . medRxiv 2023.03.03.23286706. https://www.medrxiv.org/content/10.1101/2023.03.03.23286706v1
  155. 155.
    Wen Y, Herbert MR. 2017.. Connecting the dots: Overlaps between autism and cancer suggest possible common mechanisms regarding signaling pathways related to metabolic alterations. . Med. Hypotheses 103::11823
    [Crossref] [Google Scholar]
  156. 156.
    Wigdor EM, Weiner DJ, Grove J, Fu JM, Thompson WK, et al. 2022.. The female protective effect against autism spectrum disorder. . Cell Genom. 2:(6):100134
    [Crossref] [Google Scholar]
  157. 157.
    Wilfert AB, Turner TN, Murali SC, Hsieh P, Sulovari A, et al. 2021.. Recent ultra-rare inherited variants implicate new autism candidate risk genes. . Nat. Genet. 53:(8):112534
    [Crossref] [Google Scholar]
  158. 158.
    Wilson AC, Gunn S. 2023.. What parents want in an autism diagnostic report: an interview-based study of parents accessing a neurodevelopmental assessment service. . Clin. Child Psychol. Psychiatry 28:(3):93751
    [Crossref] [Google Scholar]
  159. 159.
    Wolff N, Stroth S, Kamp-Becker I, Roepke S, Roessner V. 2022.. Autism spectrum disorder and IQ—a complex interplay. . Front. Psychiatry 13::856084
    [Crossref] [Google Scholar]
  160. 160.
    Wood-Downie H, Wong B, Kovshoff H, Cortese S, Hadwin JA. 2021.. Research review: a systematic review and meta-analysis of sex/gender differences in social interaction and communication in autistic and nonautistic children and adolescents. . Child Psychol. Psychiatry 62:(8):92236
    [Crossref] [Google Scholar]
  161. 161.
    Wright J, Barns S, Goler A, Hall J, Han B, et al. 2022.. eP287: return of individual genetic results in the largest recontactable cohort of individuals with autism. . Genet. Med. 24:(3):S18182
    [Crossref] [Google Scholar]
  162. 162.
    Yu TW, Chahrour MH, Coulter ME, Jiralerspong S, Okamura-Ikeda K, et al. 2013.. Using whole-exome sequencing to identify inherited causes of autism. . Neuron 77:(2):25973
    [Crossref] [Google Scholar]
  163. 163.
    Yuge K, Nagamitsu S, Ishikawa Y, Hamada I, Takahashi H, et al. 2020.. Long-term melatonin treatment for the sleep problems and aberrant behaviors of children with neurodevelopmental disorders. . BMC Psychiatry 20:(1):445
    [Crossref] [Google Scholar]
  164. 164.
    Zablotsky B, Black LI, Maenner MJ, Schieve LA, Danielson ML, et al. 2019.. Prevalence and trends of developmental disabilities among children in the United States: 2009–2017. . Pediatrics 144:(4):e20190811
    [Crossref] [Google Scholar]
  165. 165.
    Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, et al. 2022.. Global prevalence of autism: a systematic review update. . Autism Res. 15:(5):77890
    [Crossref] [Google Scholar]
  166. 166.
    Zhou J, Park CY, Theesfeld CL, Wong AK, Yuan Y, et al. 2019.. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. . Nat. Genet. 51:(6):97380
    [Crossref] [Google Scholar]
  167. 167.
    Zhou X, Feliciano P, Shu C, Wang T, Astrovskaya I, et al. 2022.. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. . Nat. Genet. 54:(9):130519
    [Crossref] [Google Scholar]
  168. 168.
    Zilbovicius M, Meresse I, Chabane N, Brunelle F, Samson Y, Boddaert N. 2006.. Autism, the superior temporal sulcus and social perception. . Trends Neurosci. 29:(7):35966
    [Crossref] [Google Scholar]
  169. 169.
    Zoghbi HY. 2003.. Postnatal neurodevelopmental disorders: meeting at the synapse?. Science 302:(5646):82630
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102614
Loading
/content/journals/10.1146/annurev-genet-111523-102614
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error