1932

Abstract

Uncovering the fundamental processes that shape genomic variation in natural populations is a primary objective of population genetics. These processes include demographic effects such as past changes in effective population size or gene flow between structured populations. Furthermore, genomic variation is affected by selection on nonneutral genetic variants, for example, through the adaptation of beneficial alleles or balancing selection that maintains genetic variation. In this article, we discuss the characterization of these processes using population genetic models, and we review methods developed on the basis of these models to unravel the underlying processes from modern population genomic data sets. We briefly discuss the conditions in which these approaches can be used to infer demography or identify specific nonneutral genetic variants and cases in which caution is warranted. Moreover, we summarize the challenges of jointly inferring demography and selective processes that affect neutral variation genome-wide.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102651
2024-11-25
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102651.html?itemId=/content/journals/10.1146/annurev-genet-111523-102651&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Al-Asadi H, Petkova D, Stephens M, Novembre J. 2019.. Estimating recent migration and population-size surfaces. . PLOS Genet. 15:(1):e1007908
    [Crossref] [Google Scholar]
  2. 2.
    Alexander DH, Novembre J, Lange K. 2009.. Fast model-based estimation of ancestry in unrelated individuals. . Genome Res. 19:(9):165564
    [Crossref] [Google Scholar]
  3. 3.
    Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP, et al. 2022.. Efficient ancestry and mutation simulation with msprime 1.0. . Genetics 220:(3):iyab229
    [Crossref] [Google Scholar]
  4. 4.
    Beerli P, Mashayekhi S, Sadeghi M, Khodaei M, Shaw K. 2019.. Population genetic inference with MIGRATE. . Curr. Protoc. Bioinform. 68:(1):e87
    [Crossref] [Google Scholar]
  5. 5.
    Bhaskar A, Wang YXR, Song YS. 2015.. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data. . Genome Res. 25:(2):26879
    [Crossref] [Google Scholar]
  6. 6.
    Bhatia G, Patterson N, Pasaniuc B, Zaitlen N, Genovese G, et al. 2011.. Genome-wide comparison of African-ancestry populations from care and other cohorts reveals signals of natural selection. . Am. J. Hum. Genet. 89:(3):36881
    [Crossref] [Google Scholar]
  7. 7.
    Bitarello BD, De Filippo C, Teixeira JC, Schmidt JM, Kleinert P, et al. 2018.. Signatures of long-term balancing selection in human genomes. . Genome Biol. Evol. 10:(3):93955
    [Crossref] [Google Scholar]
  8. 8.
    Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F. 2016.. Inferring population size history from large samples of genome-wide molecular data—an approximate Bayesian computation approach. . PLOS Genet. 12:(3):e1005877
    [Crossref] [Google Scholar]
  9. 9.
    Bonhomme M, Chevalet C, Servin B, Boitard S, Abdallah J, et al. 2010.. Detecting selection in population trees: the Lewontin and Krakauer test extended. . Genetics 186:(1):24162
    [Crossref] [Google Scholar]
  10. 10.
    Browning SR, Browning BL. 2015.. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. . Am. J. Hum. Genet. 97:(3):40418
    [Crossref] [Google Scholar]
  11. 11.
    Browning SR, Browning BL, Daviglus ML, Durazo-Arvizu RA, Schneiderman N, et al. 2018.. Ancestry-specific recent effective population size in the Americas. . PLOS Genet. 14:(5):e1007385
    [Crossref] [Google Scholar]
  12. 12.
    Caye K, Deist TM, Martins H, Michel O, François O. 2016.. TESS3: fast inference of spatial population structure and genome scans for selection. . Mol. Ecol. Resour. 16:(2):54048
    [Crossref] [Google Scholar]
  13. 13.
    Charlesworth D. 2006.. Balancing selection and its effects on sequences in nearby genome regions. . PLOS Genet. 2:(4):e64
    [Crossref] [Google Scholar]
  14. 14.
    Charlesworth B. 2012.. The effects of deleterious mutations on evolution at linked sites. . Genetics 190:(1):522
    [Crossref] [Google Scholar]
  15. 15.
    Chen H, Patterson N, Reich D. 2010.. Population differentiation as a test for selective sweeps. . Genome Res. 20:(3):393402
    [Crossref] [Google Scholar]
  16. 16.
    Cheng JY, Mailund T. 2015.. Ancestral population genomics using coalescence hidden Markov models and heuristic optimisation algorithms. . Comput. Biol. Chem. 57::8092
    [Crossref] [Google Scholar]
  17. 17.
    Cheng JY, Mailund T. 2020.. Ancestral population genomics with Jocx, a coalescent hidden Markov model. . In Statistical Population Genomics, ed. JY Dutheil , pp. 16789. Berlin:: Springer
    [Google Scholar]
  18. 18.
    Cheng X, DeGiorgio M. 2019.. Detection of shared balancing selection in the absence of trans-species polymorphism. . Mol. Biol. Evol. 36:(1):17799
    [Crossref] [Google Scholar]
  19. 19.
    Cheng X, DeGiorgio M. 2020.. Flexible mixture model approaches that accommodate footprint size variability for robust detection of balancing selection. . Mol. Biol. Evol. 37:(11):326791
    [Crossref] [Google Scholar]
  20. 20.
    Coop G, Witonsky D, Di Rienzo A, Pritchard JK. 2010.. Using environmental correlations to identify loci underlying local adaptation. . Genetics 185:(4):141123
    [Crossref] [Google Scholar]
  21. 21.
    DeGiorgio M, Huber CD, Hubisz MJ, Hellmann I, Nielsen R. 2016.. SweepFinder2: increased sensitivity, robustness and flexibility. . Bioinformatics 32:(12):189597
    [Crossref] [Google Scholar]
  22. 22.
    DeGiorgio M, Lohmueller KE, Nielsen R. 2014.. A model-based approach for identifying signatures of ancient balancing selection in genetic data. . PLOS Genet. 10:(8):e1004561
    [Crossref] [Google Scholar]
  23. 23.
    Diaz-Papkovich A, Anderson-Trocmé L, Ben-Eghan C, Gravel S. 2019.. UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts. . PLOS Genet. 15:(11):e1008432
    [Crossref] [Google Scholar]
  24. 24.
    Dilber E, Terhorst J. 2022.. Robust detection of natural selection using a probabilistic model of tree imbalance. . Genetics 220:(3):iyac009
    [Crossref] [Google Scholar]
  25. 25.
    Elyashiv E, Sattath S, Hu TT, Strutsovsky A, McVicker G, et al. 2016.. A genomic map of the effects of linked selection in Drosophila. . PLOS Genet. 12:(8):e1006130
    [Crossref] [Google Scholar]
  26. 26.
    Engelhardt BE, Stephens M. 2010.. Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis. . PLOS Genet. 6:(9):e1001117
    [Crossref] [Google Scholar]
  27. 27.
    Ewens WJ. 2010.. Mathematical Population Genetics, Vol. 1: Theoretical Introduction. Berlin:: Springer. , 2nd ed..
    [Google Scholar]
  28. 28.
    Excoffier L, Marchi N, Marques DA, Matthey-Doret R, Gouy A, Sousa VC. 2021.. fastsimcoal2: demographic inference under complex evolutionary scenarios. . Bioinformatics 37:(24):488285
    [Crossref] [Google Scholar]
  29. 29.
    Eyre-Walker A. 2010.. Genetic architecture of a complex trait and its implications for fitness and genome-wide association studies. . PNAS 107::175256
    [Crossref] [Google Scholar]
  30. 30.
    Eyre-Walker A, Keightley PD. 2007.. The distribution of fitness effects of new mutations. . Nat. Rev. Genet. 8:(8):61018
    [Crossref] [Google Scholar]
  31. 31.
    Fagundes NJR, Ray N, Beaumont M, Neuenschwander S, Salzano FM, et al. 2007.. Statistical evaluation of alternative models of human evolution. . PNAS 104:(45):1761419
    [Crossref] [Google Scholar]
  32. 32.
    Fay JC, Wu CI. 2000.. Hitchhiking under positive Darwinian selection. . Genetics 155:(3):140513
    [Crossref] [Google Scholar]
  33. 33.
    Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. 2014.. On detecting incomplete soft or hard selective sweeps using haplotype structure. . Mol. Biol. Evol. 31:(5):127591
    [Crossref] [Google Scholar]
  34. 34.
    Field Y, Boyle EA, Telis N, Gao Z, Gaulton KJ, et al. 2016.. Detection of human adaptation during the past 2000 years. . Science 354:(6313):76064
    [Crossref] [Google Scholar]
  35. 35.
    Flagel L, Brandvain Y, Schrider DR. 2019.. The unreasonable effectiveness of convolutional neural networks in population genetic inference. . Mol. Biol. Evol. 36:(2):22038
    [Crossref] [Google Scholar]
  36. 36.
    Foll M, Gaggiotti O. 2008.. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. . Genetics 180:(2):97793
    [Crossref] [Google Scholar]
  37. 37.
    Fu YX, Li WH. 1993.. Statistical tests of neutrality of mutations. . Genetics 133:(3):693709
    [Crossref] [Google Scholar]
  38. 38.
    Galimberti M, Leuenberger C, Wolf B, Szilágyi SM, Foll M, Wegmann D. 2020.. Detecting selection from linked sites using an F-model. . Genetics 216:(4):120515
    [Crossref] [Google Scholar]
  39. 39.
    Gao Z, Przeworski M, Sella G. 2015.. Footprints of ancient-balanced polymorphisms in genetic variation data from closely related species. . Evolution 69:(2):43146
    [Crossref] [Google Scholar]
  40. 40.
    Garud NR, Messer PW, Buzbas EO, Petrov DA. 2015.. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. . PLOS Genet. 11:(2):e1005004
    [Crossref] [Google Scholar]
  41. 41.
    Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. 2017.. The dynamics of molecular evolution over 60,000 generations. . Nature 551:(7678):4550
    [Crossref] [Google Scholar]
  42. 42.
    Gower G, Ragsdale AP, Bisschop G, Gutenkunst RN, Hartfield M, et al. 2022.. Demes: a standard format for demographic models. . Genetics 222:(3):iyac131
    [Crossref] [Google Scholar]
  43. 43.
    Gravel S. 2012.. Population genetics models of local ancestry. . Genetics 191:(2):60719
    [Crossref] [Google Scholar]
  44. 44.
    Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, et al. 2011.. Demographic history and rare allele sharing among human populations. . PNAS 108:(29):1198388
    [Crossref] [Google Scholar]
  45. 45.
    Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A. 2011.. Bayesian inference of ancient human demography from individual genome sequences. . Nat. Genet. 43:(10):103134
    [Crossref] [Google Scholar]
  46. 46.
    Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009.. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. . PLOS Genet. 5:(10):e1000695
    [Crossref] [Google Scholar]
  47. 47.
    Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, et al. 2015.. Massive migration from the steppe was a source for Indo-European languages in Europe. . Nature 522:(7555):20711
    [Crossref] [Google Scholar]
  48. 48.
    Haller BC, Messer PW. 2022.. SLiM 4: multispecies eco-evolutionary modeling. . Am. Nat. 201:(5):E12739
    [Crossref] [Google Scholar]
  49. 49.
    Harney É, Patterson N, Reich D, Wakeley J. 2021.. Assessing the performance of qpAdm: a statistical tool for studying population admixture. . Genetics 217:(4):iyaa045
    [Crossref] [Google Scholar]
  50. 50.
    Harris AM, DeGiorgio M. 2020.. A likelihood approach for uncovering selective sweep signatures from haplotype data. . Mol. Biol. Evol. 37:(10):302346
    [Crossref] [Google Scholar]
  51. 51.
    Harris AM, DeGiorgio M. 2020.. Identifying and classifying shared selective sweeps from multilocus data. . Genetics 215:(1):14371
    [Crossref] [Google Scholar]
  52. 52.
    Hein J, Schierup MH, Wiuf C. 2005.. Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  53. 53.
    Hejase HA, Mo Z, Campagna L, Siepel A. 2022.. A deep-learning approach for inference of selective sweeps from the ancestral recombination graph. . Mol. Biol. Evol. 39:(1):msab332
    [Crossref] [Google Scholar]
  54. 54.
    Hellenthal G, Busby GBJ, Band G, Wilson JF, Capelli C, et al. 2014.. A genetic atlas of human admixture history. . Science 343:(6172):74751
    [Crossref] [Google Scholar]
  55. 55.
    Hermisson J, Pennings PS. 2005.. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. . Genetics 169:(4):233552
    [Crossref] [Google Scholar]
  56. 56.
    Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, et al. 2011.. Classic selective sweeps were rare in recent human evolution. . Science 331:(6019):92024
    [Crossref] [Google Scholar]
  57. 57.
    Huang YF, Gulko B, Siepel A. 2017.. Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data. . Nat. Genet. 49:(4):61824
    [Crossref] [Google Scholar]
  58. 58.
    Hudson RR. 2002.. Generating samples under a Wright-Fisher neutral model of genetic variation. . Bioinformatics 18:(2):33738
    [Crossref] [Google Scholar]
  59. 59.
    Hunter-Zinck H, Clark AG. 2015.. Aberrant time to most recent common ancestor as a signature of natural selection. . Mol. Biol. Evol. 32:(10):278497
    [Crossref] [Google Scholar]
  60. 60.
    Johri P, Aquadro CF, Beaumont M, Charlesworth B, Excoffier L, et al. 2022.. Recommendations for improving statistical inference in population genomics. . PLOS Biol. 20:(5):e3001669
    [Crossref] [Google Scholar]
  61. 61.
    Johri P, Pfeifer SP, Jensen JD. 2023.. Developing an evolutionary baseline model for humans: jointly inferring purifying selection with population history. . Mol. Biol. Evol. 40:(5):msad100
    [Crossref] [Google Scholar]
  62. 62.
    Johri P, Riall K, Becher H, Excoffier L, Charlesworth B, Jensen JD. 2021.. The impact of purifying and background selection on the inference of population history: problems and prospects. . Mol. Biol. Evol. 38:(7):29863003
    [Crossref] [Google Scholar]
  63. 63.
    Jouganous J, Long W, Ragsdale AP, Gravel S. 2017.. Inferring the joint demographic history of multiple populations: beyond the diffusion approximation. . Genetics 206:(3):154967
    [Crossref] [Google Scholar]
  64. 64.
    Kamm J, Terhorst J, Durbin R, Song YS. 2020.. Efficiently inferring the demographic history of many populations with allele count data. . J. Am. Stat. Assoc. 115:(531):147287
    [Crossref] [Google Scholar]
  65. 65.
    Kaplan NL, Darden T, Hudson RR. 1988.. The coalescent process in models with selection. . Genetics 120:(3):81929
    [Crossref] [Google Scholar]
  66. 66.
    Kaplan NL, Hudson RR, Langley CH. 1989.. The ``hitchhiking effect'' revisited. . Genetics 123:(4):88799
    [Crossref] [Google Scholar]
  67. 67.
    Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G. 2019.. Inferring whole-genome histories in large population datasets. . Nat. Genet. 51:(9):133038
    [Crossref] [Google Scholar]
  68. 68.
    Kern AD, Schrider DR. 2018.. diploS/HIC: an updated approach to classifying selective sweeps. . G3 8:(6):195970
    [Crossref] [Google Scholar]
  69. 69.
    Kim BY, Huber CD, Lohmueller KE. 2017.. Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. . Genetics 206:(1):34561
    [Crossref] [Google Scholar]
  70. 70.
    Kim Y, Nielsen R. 2004.. Linkage disequilibrium as a signature of selective sweeps. . Genetics 167:(3):151324
    [Crossref] [Google Scholar]
  71. 71.
    Kimura M. 1964.. Diffusion models in population genetics. . J. Appl. Probab. 1:(2):177232
    [Crossref] [Google Scholar]
  72. 72.
    Kingman JFC. 1982.. The coalescent. . Stoch. Process. Appl. 13:(3):23548
    [Crossref] [Google Scholar]
  73. 73.
    Kreiner JM, Latorre SM, Burbano HA, Stinchcombe JR, Otto SP, et al. 2022.. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. . Science 378:(6624):107985
    [Crossref] [Google Scholar]
  74. 74.
    Kuhlwilm M, Han S, Sousa VC, Excoffier L, Marques-Bonet T. 2019.. Ancient admixture from an extinct ape lineage into bonobos. . Nat. Ecol. Evol. 3:(6):95765
    [Crossref] [Google Scholar]
  75. 75.
    Lachance J, Tishkoff SA. 2013.. Population genomics of human adaptation. . Annu. Rev. Ecol. Evol. Syst. 44::12343
    [Crossref] [Google Scholar]
  76. 76.
    Lange JD, Pool JE. 2016.. A haplotype method detects diverse scenarios of local adaptation from genomic sequence variation. . Mol. Ecol. 25:(13):3081100
    [Crossref] [Google Scholar]
  77. 77.
    Lauterbur ME, Cavassim MIA, Gladstein AL, Gower G, Pope NS, et al. 2023.. Expanding the stdpopsim species catalog, and lessons learned for realistic genome simulations. . eLife 12::e84874
    [Crossref] [Google Scholar]
  78. 78.
    Lawson DJ, Hellenthal G, Myers S, Falush D. 2012.. Inference of population structure using dense haplotype data. . PLOS Genet. 8:(1):e1002453
    [Crossref] [Google Scholar]
  79. 79.
    Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, et al. 2014.. Ancient human genomes suggest three ancestral populations for present-day Europeans. . Nature 513:(7518):40913
    [Crossref] [Google Scholar]
  80. 80.
    Lee S, Zou F, Wright FA. 2010.. Convergence and prediction of principal component scores in high-dimensional settings. . Ann. Stat. 38:(6):360529
    [Crossref] [Google Scholar]
  81. 81.
    Li H. 2011.. A new test for detecting recent positive selection that is free from the confounding impacts of demography. . Mol. Biol. Evol. 28:(1):36575
    [Crossref] [Google Scholar]
  82. 82.
    Li H, Durbin R. 2011.. Inference of human population history from individual whole-genome sequences. . Nature 475:(7357):49396
    [Crossref] [Google Scholar]
  83. 83.
    Li W, Cerise JE, Yang Y, Han H. 2017.. Application of t-SNE to human genetic data. . J. Bioinform. Comput. Biol. 15:(4):1750017
    [Crossref] [Google Scholar]
  84. 84.
    Liu X, Fu YX. 2020.. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. . Genome Biol. 21:(1):280
    [Crossref] [Google Scholar]
  85. 85.
    Loh PR, Lipson M, Patterson N, Moorjani P, Pickrell JK, et al. 2013.. Inferring admixture histories of human populations using linkage disequilibrium. . Genetics 193:(4):123354
    [Crossref] [Google Scholar]
  86. 86.
    Luu K, Bazin E, Blum MG. 2017.. pcadapt: an R package to perform genome scans for selection based on principal component analysis. . Mol. Ecol. Resour. 17:(1):6777
    [Crossref] [Google Scholar]
  87. 87.
    Maier R, Flegontov P, Flegontova O, Işıldak U, Changmai P, et al. 2023.. On the limits of fitting complex models of population history to F-statistics. . eLife 12::e85492
    [Crossref] [Google Scholar]
  88. 88.
    Marchi N, Schlichta F, Excoffier L. 2021.. Demographic inference. . Curr. Biol. 31:(6):R27679
    [Crossref] [Google Scholar]
  89. 89.
    Marciniak S, Perry GH. 2017.. Harnessing ancient genomes to study the history of human adaptation. . Nat. Rev. Genet. 18:(11):65974
    [Crossref] [Google Scholar]
  90. 90.
    Marcus J, Ha W, Barber RF, Novembre J, Perry GH, et al. 2021.. Fast and flexible estimation of effective migration surfaces. . eLife 10::e61927
    [Crossref] [Google Scholar]
  91. 91.
    McVean G. 2009.. A genealogical interpretation of principal components analysis. . PLOS Genet. 5:(10):e1000686
    [Crossref] [Google Scholar]
  92. 92.
    McVicker G, Gordon D, Davis C, Green P. 2009.. Widespread genomic signatures of natural selection in hominid evolution. . PLOS Genet. 5:(5):1000471
    [Crossref] [Google Scholar]
  93. 93.
    Moorjani P, Hellenthal G. 2023.. Methods for assessing population relationships and history using genomic data. . Annu. Rev. Genom. Hum. Genet. 24::30532
    [Crossref] [Google Scholar]
  94. 94.
    Moorjani P, Patterson N, Hirschhorn JN, Keinan A, Hao L, et al. 2011.. The history of African gene flow into Southern Europeans, Levantines, and Jews. . PLOS Genet. 7:(4):e1001373
    [Crossref] [Google Scholar]
  95. 95.
    Mughal MR, Koch H, Huang J, Chiaromonte F, DeGiorgio M. 2020.. Learning the properties of adaptive regions with functional data analysis. . PLOS Genet. 16:(8):e1008896
    [Crossref] [Google Scholar]
  96. 96.
    Murphy DA, Elyashiv E, Amster G, Sella G, Nordborg M, Weigel D. 2022.. Broad-scale variation in human genetic diversity levels is predicted by purifying selection on coding and non-coding elements. . eLife 12::e76065
    [Crossref] [Google Scholar]
  97. 97.
    Navarro A, Barton NH. 2002.. The effects of multilocus balancing selection on neutral variability. . Genetics 161:(2):84963
    [Crossref] [Google Scholar]
  98. 98.
    Nielsen R. 2005.. Molecular signatures of natural selection. . Annu. Rev. Genet. 39::197218
    [Crossref] [Google Scholar]
  99. 99.
    Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, et al. 2008.. Genes mirror geography within Europe. . Nature 456:(7218):98101
    [Crossref] [Google Scholar]
  100. 100.
    Orlando L, Allaby RG, Skoglund P, Sarkissian CD, Stockhammer PW, et al. 2021.. Ancient DNA analysis. . Nat. Methods Rev. Primers 1::14
    [Crossref] [Google Scholar]
  101. 101.
    Ortega-Del Vecchyo D, Lohmueller KE, Novembre J. 2022.. Haplotype-based inference of the distribution of fitness effects. . Genetics 220:(4):iyac002
    [Crossref] [Google Scholar]
  102. 102.
    Palamara PF, Pe'er I. 2013.. Inference of historical migration rates via haplotype sharing. . Bioinformatics 29:(13):i18088
    [Crossref] [Google Scholar]
  103. 103.
    Palamara PF, Terhorst J, Song YS, Price AL. 2018.. High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability. . Nat. Genet. 50:(9):131117
    [Crossref] [Google Scholar]
  104. 104.
    Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, et al. 2012.. Ancient admixture in human history. . Genetics 192:(3):106593
    [Crossref] [Google Scholar]
  105. 105.
    Pavlidis P, Jensen JD, Stephan W. 2010.. Searching for footprints of positive selection in whole-genome SNP data from nonequilibrium populations. . Genetics 185:(3):90722
    [Crossref] [Google Scholar]
  106. 106.
    Pavlidis P, Živković D, Stamatakis A, Alachiotis N. 2013.. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. . Mol. Biol. Evol. 30:(9):222434
    [Crossref] [Google Scholar]
  107. 107.
    Peter BM. 2016.. Admixture, population structure, and F-statistics. . Genetics 202:(4):1485501
    [Crossref] [Google Scholar]
  108. 108.
    Peter BM, Huerta-Sanchez E, Nielsen R. 2012.. Distinguishing between selective sweeps from standing variation and from a de novo mutation. . PLOS Genet. 8:(10):e1003011
    [Crossref] [Google Scholar]
  109. 109.
    Petkova D, Novembre J, Stephens M. 2016.. Visualizing spatial population structure with estimated effective migration surfaces. . Nat. Genet. 48:(1):94100
    [Crossref] [Google Scholar]
  110. 110.
    Pickrell JK, Pritchard JK. 2012.. Inference of population splits and mixtures from genome-wide allele frequency data. . PLOS Genet. 8:(11):e1002967
    [Crossref] [Google Scholar]
  111. 111.
    Racimo F. 2016.. Testing for ancient selection using cross-population allele frequency differentiation. . Genetics 202:(2):73350
    [Crossref] [Google Scholar]
  112. 112.
    Ragsdale AP, Gravel S. 2019.. Models of archaic admixture and recent history from two-locus statistics. . PLOS Genet. 15:(6):e1008204
    [Crossref] [Google Scholar]
  113. 113.
    Ragsdale AP, Gutenkunst RN. 2017.. Inferring demographic history using two-locus statistics. . Genetics 206:(2):103748
    [Crossref] [Google Scholar]
  114. 114.
    Ralph P, Coop G. 2013.. The geography of recent genetic ancestry across Europe. . PLOS Biol. 11:(5):e1001555
    [Crossref] [Google Scholar]
  115. 115.
    Rasmussen MD, Hubisz MJ, Gronau I, Siepel A. 2014.. Genome-wide inference of ancestral recombination graphs. . PLOS Genet. 10:(5):e1004342
    [Crossref] [Google Scholar]
  116. 116.
    Reynolds J, Weir BS, Cockerham CC. 1983.. Estimation of the coancestry coefficient: basis for a short-term genetic distance. . Genetics 105:(3):76779
    [Crossref] [Google Scholar]
  117. 117.
    Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, et al. 2002.. Detecting recent positive selection in the human genome from haplotype structure. . Nature 419:(6909):83237
    [Crossref] [Google Scholar]
  118. 118.
    Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, et al. 2007.. Genome-wide detection and characterization of positive selection in human populations. . Nature 449:(7164):91318
    [Crossref] [Google Scholar]
  119. 119.
    Sanjak JS, Sidorenko J, Robinson MR, Thornton KR, Visscher PM. 2018.. Evidence of directional and stabilizing selection in contemporary humans. . PNAS 115:(1):15156
    [Crossref] [Google Scholar]
  120. 120.
    Sawyer SA, Hartl DL. 1992.. Population genetics of polymorphism and divergence. . Genetics 132::116176
    [Crossref] [Google Scholar]
  121. 121.
    Schiffels S, Durbin R. 2014.. Inferring human population size and separation history from multiple genome sequences. . Nat. Genet. 46:(8):91925
    [Crossref] [Google Scholar]
  122. 122.
    Schlötterer C, Kofler R, Versace E, Tobler R, Franssen SU. 2015.. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. . Heredity 114:(5):43140
    [Crossref] [Google Scholar]
  123. 123.
    Sella G, Petrov DA, Przeworski M, Andolfatto P. 2009.. Pervasive natural selection in the Drosophila genome?. PLOS Genet. 5:(6):e1000495
    [Crossref] [Google Scholar]
  124. 124.
    Sethuraman A, Hey J. 2016.. IMa2p—parallel MCMC and inference of ancient demography under the isolation with migration (IM) model. . Mol. Ecol. Resour. 16:(1):20615
    [Crossref] [Google Scholar]
  125. 125.
    Shapiro B, Hofreiter M. 2014.. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. . Science 343:(6169):1236573
    [Crossref] [Google Scholar]
  126. 126.
    Sheehan S, Harris K, Song YS. 2013.. Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach. . Genetics 194:(3):64762
    [Crossref] [Google Scholar]
  127. 127.
    Sheehan S, Song YS. 2016.. Deep learning for population genetic inference. . PLOS Comput. Biol. 12:(3):e1004845
    [Crossref] [Google Scholar]
  128. 128.
    Siewert KM, Voight BF. 2020.. BetaScan2: standardized statistics to detect balancing selection utilizing substitution data. . Genome Biol. Evol. 12:(2):387377
    [Crossref] [Google Scholar]
  129. 129.
    Simons YB, Bullaughey K, Hudson RR, Sella G. 2018.. A population genetic interpretation of GWAS findings for human quantitative traits. . PLOS Biol. 16:(3):e2002985
    [Crossref] [Google Scholar]
  130. 130.
    Smith CCR, Flaxman SM. 2020.. Leveraging whole genome sequencing data for demographic inference with approximate Bayesian computation. . Mol. Ecol. Resour. 20:(1):12539
    [Crossref] [Google Scholar]
  131. 131.
    Smith JM, Haigh J. 1974.. The hitch-hiking effect of a favourable gene. . Genet. Res. 23:(1):2335
    [Crossref] [Google Scholar]
  132. 132.
    Sousa da Mota B, Rubinacci S, Cruz Dávalos DI, Amorim CEG, Sikora M, et al. 2023.. Imputation of ancient human genomes. . Nat. Commun. 14::3660
    [Crossref] [Google Scholar]
  133. 133.
    Speidel L, Forest M, Shi S, Myers SR. 2019.. A method for genome-wide genealogy estimation for thousands of samples. . Nat. Genet. 51:(9):132129
    [Crossref] [Google Scholar]
  134. 134.
    Spence JP, Steinrücken M, Terhorst J, Song YS. 2018.. Inference of population history using coalescent HMMs: review and outlook. . Curr. Opin. Genet. Dev. 53::7076
    [Crossref] [Google Scholar]
  135. 135.
    Steinrücken M, Kamm J, Spence JP, Song YS. 2019.. Inference of complex population histories using whole-genome sequences from multiple populations. . PNAS 116:(34):1711520
    [Crossref] [Google Scholar]
  136. 136.
    Stern AJ, Wilton PR, Nielsen R. 2019.. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data. . PLOS Genet. 15:(9):e1008384
    [Crossref] [Google Scholar]
  137. 137.
    Sugden LA, Atkinson EG, Fischer AP, Rong S, Henn BM, Ramachandran S. 2018.. Localization of adaptive variants in human genomes using averaged one-dependence estimation. . Nat. Commun. 9::703
    [Crossref] [Google Scholar]
  138. 138.
    Sul JH, Martin LS, Eskin E. 2018.. Population structure in genetic studies: confounding factors and mixed models. . PLOS Genet. 14:(12):e1007309
    [Crossref] [Google Scholar]
  139. 139.
    Tajima F. 1989.. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. . Genetics 123:(3):58595
    [Crossref] [Google Scholar]
  140. 140.
    Terhorst J, Kamm JA, Song YS. 2017.. Robust and scalable inference of population history from hundreds of unphased whole genomes. . Nat. Genet. 49:(2):3039
    [Crossref] [Google Scholar]
  141. 141.
    Torada L, Lorenzon L, Beddis A, Isildak U, Pattini L, et al. 2019.. ImaGene: a convolutional neural network to quantify natural selection from genomic data. . BMC Bioinform. 20:(9):337
    [Crossref] [Google Scholar]
  142. 142.
    Vitti JJ, Grossman SR, Sabeti PC. 2013.. Detecting natural selection in genomic data. . Annu. Rev. Genet. 47::97120
    [Crossref] [Google Scholar]
  143. 143.
    Voight BF, Kudaravalli S, Wen X, Pritchard JK. 2006.. A map of recent positive selection in the human genome. . PLOS Biol. 4:(3):e72
    [Crossref] [Google Scholar]
  144. 144.
    Vy HMT, Kim Y. 2015.. A composite-likelihood method for detecting incomplete selective sweep from population genomic data. . Genetics 200:(2):63349
    [Crossref] [Google Scholar]
  145. 145.
    Wakeley J. 2008.. Coalescent Theory: An Introduction. London:: Freeman
    [Google Scholar]
  146. 146.
    Wang K, Mathieson I, O'Connell J, Schiffels S. 2020.. Tracking human population structure through time from whole genome sequences. . PLOS Genet. 16:(3):e1008552
    [Crossref] [Google Scholar]
  147. 147.
    Wang Z, Wang J, Kourakos M, Hoang N, Lee HH, et al. 2021.. Automatic inference of demographic parameters using generative adversarial networks. . Mol. Ecol. Resour. 21:(8):2689705
    [Crossref] [Google Scholar]
  148. 148.
    Willi Y, Kristensen TN, Sgrò CM, Weeks AR, Ørsted M, Hoffmann AA. 2022.. Conservation genetics as a management tool: the five best-supported paradigms to assist the management of threatened species. . PNAS 119:(1):e2105076119
    [Crossref] [Google Scholar]
  149. 149.
    Wohns AW, Wong Y, Jeffery B, Akbari A, Mallick S, et al. 2022.. A unified genealogy of modern and ancient genomes. . Science 375:(6583):eabi8264
    [Crossref] [Google Scholar]
  150. 150.
    Wright S. 1943.. Isolation by distance. . Genetics 28:(2):11438
    [Crossref] [Google Scholar]
  151. 151.
    Yang Z. 2007.. PAML 4: phylogenetic analysis by maximum likelihood. . Mol. Biol. Evol. 24:(8):158691
    [Crossref] [Google Scholar]
  152. 152.
    Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, et al. 2010.. Sequencing of 50 human exomes reveals adaptation to high altitude. . Science 329:(5987):7578
    [Crossref] [Google Scholar]
  153. 153.
    Zeng J, De Vlaming R, Wu Y, Robinson MR, Lloyd-Jones LR, et al. 2018.. Signatures of negative selection in the genetic architecture of human complex traits. . Nat. Genet. 50:(5):74653
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102651
Loading
/content/journals/10.1146/annurev-genet-111523-102651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error