Horizontal gene transfer plays a major role in microbial evolution, allowing microbes to acquire new genes and phenotypes. Integrative and conjugative elements (ICEs, a.k.a. conjugative transposons) are modular mobile genetic elements integrated into a host genome and are passively propagated during chromosomal replication and cell division. Induction of ICE gene expression leads to excision, production of the conserved conjugation machinery (a type IV secretion system), and the potential to transfer DNA to appropriate recipients. ICEs typically contain cargo genes that are not usually related to the ICE life cycle and that confer phenotypes to host cells. We summarize the life cycle and discovery of ICEs, some of the regulatory mechanisms, and how the types of cargo have influenced our view of ICEs. We discuss how ICEs can acquire new cargo genes and describe challenges to the field and various perspectives on ICE biology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agundez L, Gonzalez-Prieto C, Machon C, Llosa M. 1.  2012. Site-specific integration of foreign DNA into minimal bacterial and human target sequences mediated by a conjugative relaxase. PLOS ONE 7:e31047 [Google Scholar]
  2. Alvarez-Martinez CE, Christie PJ. 2.  2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73:775–808 [Google Scholar]
  3. Arutyunov D, Frost LS. 3.  2013. F conjugation: back to the beginning. Plasmid 70:18–32 [Google Scholar]
  4. Auchtung JM, Lee CA, Garrison KL, Grossman AD. 4.  2007. Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis. Mol. Microbiol. 64:1515–28 [Google Scholar]
  5. Auchtung JM, Lee CA, Monson RE, Lehman AP, Grossman AD. 5.  2005. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. PNAS 102:12554–59 [Google Scholar]
  6. Ayoubi P, Kilic AO, Vijayakumar MN. 6.  1991. Tn5253, the Pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J. Bacteriol. 173:1617–22 [Google Scholar]
  7. Babic A, Berkmen MB, Lee CA, Grossman AD. 7.  2011. Efficient gene transfer in bacterial cell chains. mBio 2:00027–11 [Google Scholar]
  8. Beaber JW, Burrus V, Hochhut B, Waldor MK. 8.  2002. Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell Mol. Life Sci. 59:2065–70 [Google Scholar]
  9. Beaber JW, Hochhut B, Waldor MK. 9.  2002. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J. Bacteriol. 184:4259–69 [Google Scholar]
  10. Beaber JW, Hochhut B, Waldor MK. 10.  2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74 [Google Scholar]
  11. Bedzyk LA, Shoemaker NB, Young KE, Salyers AA. 11.  1992. Insertion and excision of Bacteroides conjugative chromosomal elements. J. Bacteriol. 174:166–72 [Google Scholar]
  12. Bellanger X, Morel C, Decaris B, Guedon G. 12.  2007. Derepression of excision of integrative and potentially conjugative elements from Streptococcus thermophilus by DNA damage response: implication of a cI-related repressor. J. Bacteriol. 189:1478–81 [Google Scholar]
  13. Bellanger X, Morel C, Gonot F, Puymege A, Decaris B, Guedon G. 13.  2011. Site-specific accretion of an integrative conjugative element together with a related genomic island leads to cis mobilization and gene capture. Mol. Microbiol. 81:912–25 [Google Scholar]
  14. Bellanger X, Payot S, Leblond-Bourget N, Guedon G. 14.  2014. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol. Rev. 38:720–60 [Google Scholar]
  15. Bhatty M, Laverde Gomez JA, Christie PJ. 15.  2013. The expanding bacterial type IV secretion lexicon. Res. Microbiol. 164:620–39 [Google Scholar]
  16. Bi D, Xu Z, Harrison EM, Tai C, Wei Y. 16.  et al. 2012. ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res. 40:D621–26 [Google Scholar]
  17. Boltner D, MacMahon C, Pembroke JT, Strike P, Osborn AM. 17.  2002. R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J. Bacteriol. 184:5158–69 [Google Scholar]
  18. Bordeleau E, Ghinet MG, Burrus V. 18.  2012. Diversity of integrating conjugative elements in Actinobacteria: coexistence of two mechanistically different DNA-translocation systems. Mob. Genet. Elem. 2:119–24 [Google Scholar]
  19. Bose B, Auchtung JM, Lee CA, Grossman AD. 19.  2008. A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol. Microbiol. 70:570–82 [Google Scholar]
  20. Bouvier M, Demarre G, Mazel D. 20.  2005. Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J. 24:4356–67 [Google Scholar]
  21. Brassinga AKC, Hiltz MF, Sisson GR, Morash MG, Hill N. 21.  et al. 2003. A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J. Bacteriol. 185:4630–37 [Google Scholar]
  22. Bringel F, Van Alstine GL, Scott JR. 22.  1992. Conjugative transposition of Tn916: the transposon int gene is required only in the donor. J. Bacteriol. 174:4036–41 [Google Scholar]
  23. Brochet M, Couve E, Glaser P, Guedon G, Payot S. 23.  2008. Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J. Bacteriol. 190:6913–17 [Google Scholar]
  24. Brochet M, Da Cunha V, Couve E, Rusniok C, Trieu-Cuot P, Glaser P. 24.  2009. Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol. Microbiol. 71:948–59 [Google Scholar]
  25. Burrus V, Pavlovic G, Decaris B, Guedon G. 25.  2002. The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 48:77–97 [Google Scholar]
  26. Burrus V, Waldor MK. 26.  2003. Control of SXT integration and excision. J. Bacteriol. 185:5045–54 [Google Scholar]
  27. Burrus V, Waldor MK. 27.  2004. Formation of SXT tandem arrays and SXT-R391 hybrids. J. Bacteriol. 186:2636–45 [Google Scholar]
  28. Butala M, Zgur-Bertok D, Busby SJW. 28.  2009. The bacterial LexA transcriptional repressor. Cell. Mol. Life Sci. 66:82–93 [Google Scholar]
  29. Cabezon E, Ripoll-Rozada J, Pena A, de la Cruz F, Arechaga I. 29.  2014. Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev. 39:81–95 [Google Scholar]
  30. Campbell A. 30.  2007. Phage integration and chromosome structure. A personal history. Annu. Rev. Genet. 41:1–11 [Google Scholar]
  31. Carraro N, Libante V, Morel C, Decaris B, Charron-Bourgoin F. 31.  et al. 2011. Differential regulation of two closely related integrative and conjugative elements from Streptococcus thermophilus. BMC Microbiol. 11:238 [Google Scholar]
  32. Carraro N, Poulin D, Burrus V. 32.  2015. Replication and active partition of integrative and conjugative elements (ICEs) of the SXT/R391 family: the line between ICEs and conjugative plasmids is getting thinner. PLoS Genet 11:e1005298 [Google Scholar]
  33. Carter MQ, Chen J, Lory S. 33.  2010. The Pseudomonas aeruginosa pathogenicity island PAPI-1 is transferred via a novel type IV pilus. J. Bacteriol. 192:3249–58 [Google Scholar]
  34. Cascales E, Christie PJ. 34.  2004. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–73 [Google Scholar]
  35. Celli J, Trieu-Cuot P. 35.  1998. Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Microbiol. 28:103–17 [Google Scholar]
  36. Cesar CE, Machon C, de la Cruz F, Llosa M. 36.  2006. A new domain of conjugative relaxase TrwC responsible for efficient oriT-specific recombination on minimal target sequences. Mol. Microbiol. 62:984–96 [Google Scholar]
  37. Chandler M, de la Cruz F, Dyda F, Hickman AB, Moncalian G, Ton-Hoang B. 37.  2013. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat. Rev. Microbiol. 11:525–38 [Google Scholar]
  38. Cheng Q, Paszkiet BJ, Shoemaker NB, Gardner JF, Salyers AA. 38.  2000. Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J. Bacteriol. 182:4035–43 [Google Scholar]
  39. Christie PJ, Whitaker N, Gonzalez-Rivera C. 39.  2014. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843:1578–91 [Google Scholar]
  40. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ. 40.  2000. The importance of repairing stalled replication forks. Nature 404:37–41 [Google Scholar]
  41. Curcio MJ, Derbyshire KM. 41.  2003. The outs and ins of transposition: from Mu to Kangaroo. Nat. Rev. Mol. Cell Biol. 4:865–77 [Google Scholar]
  42. Daccord A, Ceccarelli D, Burrus V. 42.  2010. Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol. Microbiol. 78:576–88 [Google Scholar]
  43. Daccord A, Ceccarelli D, Rodrigue S, Burrus V. 43.  2013. Comparative analysis of mobilizable genomic islands. J. Bacteriol. 195:606–14 [Google Scholar]
  44. Daccord A, Mursell M, Poulin-Laprade D, Burrus V. 44.  2012. Dynamics of the SetCD-regulated integration and excision of genomic islands mobilized by integrating conjugative elements of the SXT/R391 family. J. Bacteriol. 194:5794–802 [Google Scholar]
  45. d'Ari R. 45.  1985. The SOS system. Biochimie 67:343–47 [Google Scholar]
  46. Dimopoulou ID, Jordens JZ, Legakis NJ, Crook DW. 46.  1997. A molecular analysis of Greek and UK Haemophilus influenzae conjugative resistance plasmids. J. Antimicrob. Chemother. 39:303–7 [Google Scholar]
  47. Dimopoulou ID, Russell JE, Mohd-Zain Z, Herbert R, Crook DW. 47.  2002. Site-specific recombination with the chromosomal tRNALeu gene by the large conjugative Haemophilus resistance plasmid. Antimicrob. Agents Chemother. 46:1602–3 [Google Scholar]
  48. Dordet Frisoni E, Marenda MS, Sagne E, Nouvel LX, Guerillot R. 48.  et al. 2013. ICEA of Mycoplasma agalactiae: a new family of self-transmissible integrative elements that confers conjugative properties to the recipient strain. Mol. Microbiol. 89:1226–39 [Google Scholar]
  49. Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A, Courvalin P. 49.  1991. Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob. Agents Chemother. 35:185–87 [Google Scholar]
  50. Draper O, Cesar CE, Machon C, de la Cruz F, Llosa M. 50.  2005. Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells. PNAS 102:16385–90 [Google Scholar]
  51. Dunny GM, Brown BL, Clewell DB. 51.  1978. Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. PNAS 75:3479–83 [Google Scholar]
  52. Flynn KJ, Swanson MS. 52.  2014. Integrative conjugative element ICE-ßox confers oxidative stress resistance to Legionella pneumophila in vitro and in macrophages. mBio 5:e01091–14 [Google Scholar]
  53. Franke AE, Clewell DB. 53.  1981. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J. Bacteriol. 145:494–502 [Google Scholar]
  54. Fronzes R, Christie PJ, Waksman G. 54.  2009. The structural biology of type IV secretion systems. Nat. Rev. Microbiol. 7:703–14 [Google Scholar]
  55. Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G. 55.  2009. Structure of a type IV secretion system core complex. Science 323:266–68 [Google Scholar]
  56. Gaillard M, Pernet N, Vogne C, Hagenbuchle O, van der Meer JR. 56.  2008. Host and invader impact of transfer of the clc genomic island into Pseudomonas aeruginosa PAO1. PNAS 105:7058–63 [Google Scholar]
  57. Garcillan-Barcia MP, Francia MV, de la Cruz F. 57.  2009. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol. Rev. 33:657–87 [Google Scholar]
  58. Garriss G, Waldor MK, Burrus V. 58.  2009. Mobile antibiotic resistance encoding elements promote their own diversity. PLOS Genet. 5:e1000775 [Google Scholar]
  59. Gawron-Burke C, Clewell DB. 59.  1982. A transposon in Streptococcus faecalis with fertility properties. Nature 300:281–84 [Google Scholar]
  60. Gawron-Burke C, Clewell DB. 60.  1984. Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from Gram-positive bacteria. J. Bacteriol. 159:214–21 [Google Scholar]
  61. Gibbons HS, Broomall SM, McNew LA, Daligault H, Chapman C. 61.  et al. 2011. Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant. PLOS ONE 6:e17836 [Google Scholar]
  62. Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 62.  2013. Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 70:289–302 [Google Scholar]
  63. Grindley NDF, Whiteson KL, Rice PA. 63.  2006. Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75:567–605 [Google Scholar]
  64. Guasch A, Lucas M, Moncalian G, Cabezas M, Perez-Luque R. 64.  et al. 2003. Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC. Nat. Struct. Biol. 10:1002–10 [Google Scholar]
  65. Guerillot R, Da Cunha V, Sauvage E, Bouchier C, Glaser P. 65.  2013. Modular evolution of TnGBSs, a new family of integrative and conjugative elements associating insertion sequence transposition, plasmid replication, and conjugation for their spreading. J. Bacteriol. 195:1979–90 [Google Scholar]
  66. Guerillot R, Siguier P, Gourbeyre E, Chandler M, Glaser P. 66.  2014. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol. Evol. 6:260–72 [Google Scholar]
  67. Guglielmini J, Quintais L, Garcillan-Barcia MP, de la Cruz F, Rocha EP. 67.  2011. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLOS Genet. 7:e1002222 [Google Scholar]
  68. He J, Baldini RL, Deziel E, Saucier M, Zhang Q. 68.  et al. 2004. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. PNAS 101:2530–35 [Google Scholar]
  69. Hickman AB, Chandler M, Dyda F. 69.  2010. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit. Rev. Biochem. Mol. Biol. 45:50–69 [Google Scholar]
  70. Hirano N, Muroi T, Takahashi H, Haruki M. 70.  2011. Site-specific recombinases as tools for heterologous gene integration. Appl. Microbiol. Biotechnol. 92:227–39 [Google Scholar]
  71. Hochhut B, Beaber JW, Woodgate R, Waldor MK. 71.  2001. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J. Bacteriol. 183:1124–32 [Google Scholar]
  72. Hochhut B, Jahreis K, Lengeler JW, Schmid K. 72.  1997. CTnscr94, a conjugative transposon found in enterobacteria. J. Bacteriol. 179:2097–102 [Google Scholar]
  73. Hochhut B, Lotfi Y, Mazel D, Faruque SM, Woodgate R, Waldor MK. 73.  2001. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob. Agents Chemother. 45:2991–3000 [Google Scholar]
  74. Hochhut B, Marrero J, Waldor MK. 74.  2000. Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J. Bacteriol. 182:2043–47 [Google Scholar]
  75. Holland J, Towner KJ, Williams P. 75.  1992. Tn916 insertion mutagenesis in Escherichia coli and Haemophilus influenzae type b following conjugative transfer. J. Gen. Microbiol. 138:509–15 [Google Scholar]
  76. Honda Y, Sakai H, Komano T, Bagdasarian M. 76.  1989. RepB′ is required in trans for the two single-strand DNA initiation signals in oriV of plasmid RSF1010. Gene 80:155–59 [Google Scholar]
  77. Iannelli F, Santoro F, Oggioni MR, Pozzi G. 77.  2014. Nucleotide sequence analysis of integrative conjugative element Tn5253 of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 58:1235–39 [Google Scholar]
  78. Ilyina TV, Koonin EV. 78.  1992. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res. 20:3279–85 [Google Scholar]
  79. Johnson CM, Grossman AD. 79.  2014. Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis. Mol. Microbiol. 93:1284–301 [Google Scholar]
  80. Juhas M, Power PM, Harding RM, Ferguson DJP, Dimopoulou ID. 80.  et al. 2007. Sequence and functional analyses of Haemophilus spp. genomic islands. Genome Biol. 8:R237 [Google Scholar]
  81. Kado CI. 81.  2014. Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front. Microbiol. 5:340 [Google Scholar]
  82. Kamensek S, Podlesek Z, Gillor O, Zgur-Bertok D. 82.  2010. Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogeneous expression. BMC Microbiol. 10:283 [Google Scholar]
  83. Khan SA. 83.  2005. Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 53:126–36 [Google Scholar]
  84. Krüger N-J, Stingl K. 84.  2011. Two steps away from novelty: principles of bacterial DNA uptake. Mol. Microbiol. 80:860–67 [Google Scholar]
  85. Lambert PF, Waring DA, Wells RD, Reznikoff WS. 85.  1986. DNA requirements at the bacteriophage G4 origin of complementary-strand DNA synthesis. J. Virol. 58:450–58 [Google Scholar]
  86. Lang S, Kirchberger PC, Gruber CJ, Redzej A, Raffl S. 86.  et al. 2011. An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol. Microbiol. 82:1071–85 [Google Scholar]
  87. Lederberg J, Tatum EL. 87.  1946. Gene recombination in Escherichia coli. Nature 158:558 [Google Scholar]
  88. Lee CA, Auchtung JM, Monson RE, Grossman AD. 88.  2007. Identification and characterization of int (integrase), xis (excisionase) and chromosomal attachment sites of the integrative and conjugative element ICEBs1 of Bacillus subtilis. Mol. Microbiol. 66:1356–69 [Google Scholar]
  89. Lee CA, Babic A, Grossman AD. 89.  2010. Autonomous plasmid-like replication of a conjugative transposon. Mol. Microbiol. 75:268–79 [Google Scholar]
  90. Lee CA, Grossman AD. 90.  2007. Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of Bacillus subtilis. J. Bacteriol. 189:7254–61 [Google Scholar]
  91. Lee CA, Thomas J, Grossman AD. 91.  2012. The Bacillus subtilis conjugative transposon ICEBs1 mobilizes plasmids lacking dedicated mobilization functions. J. Bacteriol. 194:3165–72 [Google Scholar]
  92. Liu Y, Harrison PM, Kunin V, Gerstein M. 92.  2004. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol. 5:R64 [Google Scholar]
  93. Lorenzo-Diaz F, Espinosa M. 93.  2009. Lagging-strand DNA replication origins are required for conjugal transfer of the promiscuous plasmid pMV158. J. Bacteriol. 191:720–27 [Google Scholar]
  94. Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S. 94.  et al. 2014. Structure of a type IV secretion system. Nature 508:550–53 [Google Scholar]
  95. Magot M. 95.  1983. Transfer of antibiotic resistances from Clostridium innocuum to Clostridium perfringens in the absence of detectable plasmid DNA. FEMS Microbiol. Lett. 18:149–51 [Google Scholar]
  96. Manganelli R, Romano L, Ricci S, Zazzi M, Pozzi G. 96.  1995. Dosage of Tn916 circular intermediates in Enterococcus faecalis. Plasmid 34:48–57 [Google Scholar]
  97. Marenda M, Barbe V, Gourgues G, Mangenot S, Sagne E, Citti C. 97.  2006. A new integrative conjugative element occurs in Mycoplasma agalactiae as chromosomal and free circular forms. J. Bacteriol. 188:4137–41 [Google Scholar]
  98. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM. 98.  et al. 2008. Dynamics of Pseudomonas aeruginosa genome evolution. PNAS 105:3100–5 [Google Scholar]
  99. Mays TD, Smith CJ, Welch RA, Delfini C, Macrina FL. 99.  1982. Novel antibiotic resistance transfer in Bacteroides. Antimicrob. Agents Chemother. 21:110–18 [Google Scholar]
  100. McLeod SM, Burrus V, Waldor MK. 100.  2006. Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer. J. Bacteriol. 188:5704–11 [Google Scholar]
  101. Menard KL, Grossman AD. 101.  2013. Selective pressures to maintain attachment site specificity of integrative and conjugative elements. PLOS Genet. 9:e1003623 [Google Scholar]
  102. Michael GB, Kadlec K, Sweeney MT, Brzuszkiewicz E, Liesegang H. 102.  et al. 2012. ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer. J. Antimicrob. Chemother. 67:91–100 [Google Scholar]
  103. Minoia M, Gaillard M, Reinhard F, Stojanov M, Sentchilo V, van der Meer JR. 103.  2008. Stochasticity and bistability in horizontal transfer control of a genomic island in Pseudomonas. PNAS 105:20792–97 [Google Scholar]
  104. Mirouze N, Parashar V, Baker MD, Dubnau DA, Neiditch MB. 104.  2011. An atypical Phr peptide regulates the developmental switch protein RapH. J. Bacteriol. 193:6197–206 [Google Scholar]
  105. Miyazaki R, Minoia M, Pradervand N, Sulser S, Reinhard F, van der Meer JR. 105.  2012. Cellular variability of RpoS expression underlies subpopulation activation of an integrative and conjugative element. PLOS Genet. 8:E1002818 [Google Scholar]
  106. Mohd-Zain Z, Turner SL, Cerdeno-Tarraga AM, Lilley AK, Inzana TJ. 106.  et al. 2004. Transferable antibiotic resistance elements in Haemophilus influenzae share a common evolutionary origin with a diverse family of syntenic genomic islands. J. Bacteriol. 186:8114–22 [Google Scholar]
  107. Naglich JG, Andrews RE Jr. 107.  1988. Tn916-dependent conjugal transfer of pC194 and pUB110 from Bacillus subtilis into Bacillus thuringiensis subsp. israelensis. Plasmid 20:113–26 [Google Scholar]
  108. Nishi A, Tominaga K, Furukawa K. 108.  2000. A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J. Bacteriol. 182:1949–55 [Google Scholar]
  109. Nugent ME. 109.  1981. A conjugative “plasmid” lacking autonomous replication. J. Gen. Microbiol. 126:305–10 [Google Scholar]
  110. Ogawa H, Ogawa T. 110.  1990. Regulation in repressor inactivation by RecA protein. Adv. Biophys. 26:33–49 [Google Scholar]
  111. Osborn AM, Boltner D. 111.  2002. When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48:202–12 [Google Scholar]
  112. Pavlovic G, Burrus V, Gintz B, Decaris B, Guedon G. 112.  2004. Evolution of genomic islands by deletion and tandem accretion by site-specific recombination: ICESt1-related elements from Streptococcus thermophilus. Microbiology 150:759–74 [Google Scholar]
  113. Pennington JM, Rosenberg SM. 113.  2007. Spontaneous DNA breakage in single living Escherichia coli cells. Nat. Genet. 39:797–802 [Google Scholar]
  114. Piper KR, Beck von Bodman S, Farrand SK. 114.  1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–50 [Google Scholar]
  115. Rajeev L, Malanowska K, Gardner JF. 115.  2009. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol. Mol. Biol. Rev. 73:300–9 [Google Scholar]
  116. Ramsay JP, Sullivan JT, Jambari N, Ortori CA, Heeb S. 116.  et al. 2009. A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol. Microbiol. 73:1141–55 [Google Scholar]
  117. Ramsay JP, Sullivan JT, Stuart GS, Lamont IL, Ronson CW. 117.  2006. Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol. Microbiol. 62:723–34 [Google Scholar]
  118. Rashtchian A, Dubes GR, Booth SJ. 118.  1982. Tetracycline-inducible transfer of tetracycline resistance in Bacteroides fragilis in the absence of detectable plasmid DNA. J. Bacteriol. 150:141–47 [Google Scholar]
  119. Rauch PJ, De Vos WM. 119.  1992. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol. 174:1280–87 [Google Scholar]
  120. Ravatn R, Studer S, Springael D, Zehnder AJ, van der Meer JR. 120.  1998. Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J. Bacteriol. 180:4360–69 [Google Scholar]
  121. Reinhard F, Miyazaki R, Pradervand N, van der Meer JR. 121.  2013. Cell differentiation to “mating bodies” induced by an integrating and conjugative element in free-living bacteria. Curr. Biol. 23:255–59 [Google Scholar]
  122. Roberts AP, Johanesen PA, Lyras D, Mullany P, Rood JI. 122.  2001. Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147:1243–51 [Google Scholar]
  123. Roberts AP, Mullany P. 123.  2009. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 17:251–58 [Google Scholar]
  124. Roberts MC, Kenny GE. 124.  1987. Conjugal transfer of transposon Tn916 from Streptococcus faecalis to Mycoplasma hominis. J. Bacteriol. 169:3836–39 [Google Scholar]
  125. Roberts MC, Smith AL. 125.  1980. Molecular characterization of “plasmid-free” antibiotic-resistant Haemophilus influenzae. J. Bacteriol. 144:476–79 [Google Scholar]
  126. Roche D, Flechard M, Lallier N, Reperant M, Bree A. 126.  et al. 2010. ICEEc2, a new integrative and conjugative element belonging to the pKLC102/PAGI-2 family, identified in Escherichia coli strain BEN374. J. Bacteriol. 192:5026–36 [Google Scholar]
  127. Sentchilo V, Ravatn R, Werlen C, Zehnder AJB, van der Meer JR. 127.  2003. Unusual integrase gene expression on the clc genomic island in Pseudomonas sp. strain B13. J. Bacteriol. 185:4530–38 [Google Scholar]
  128. Shoemaker NB, Getty C, Guthrie EP, Salyers AA. 128.  1986. Regions in Bacteroides plasmids pBFTM10 and pB8-51 that allow Escherichia coli–Bacteroides shuttle vectors to be mobilized by IncP plasmids and by a conjugative Bacteroides tetracycline resistance element. J. Bacteriol. 166:959–65 [Google Scholar]
  129. Shoemaker NB, Smith MD, Guild WR. 129.  1980. DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in Pneumococcus. Plasmid 3:80–87 [Google Scholar]
  130. Shoemaker NB, Wang GR, Stevens AM, Salyers AA. 130.  1993. Excision, transfer, and integration of NBU1, a mobilizable site-selective insertion element. J. Bacteriol. 175:6578–87 [Google Scholar]
  131. Showsh SA, Andrews RE Jr. 131.  1992. Tetracycline enhances Tn916-mediated conjugal transfer. Plasmid 28:213–24 [Google Scholar]
  132. Siguier P, Gourbeyre E, Chandler M. 132.  2014. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38:865–91 [Google Scholar]
  133. Sitkiewicz I, Green NM, Guo N, Mereghetti L, Musser JM. 133.  2011. Lateral gene transfer of streptococcal ICE element RD2 (region of difference 2) encoding secreted proteins. BMC Microbiol. 11:65 [Google Scholar]
  134. Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EP, de la Cruz F. 134.  2010. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74:434–52 [Google Scholar]
  135. Smith CJ, Markowitz SM, Macrina FL. 135.  1981. Transferable tetracycline resistance in Clostridium difficile. Antimicrob. Agents Chemother. 19:997–1003 [Google Scholar]
  136. Stevens AM, Sanders JM, Shoemaker NB, Salyers AA. 136.  1992. Genes involved in production of plasmidlike forms by a Bacteroides conjugal chromosomal element share amino acid homology with two-component regulatory systems. J. Bacteriol. 174:2935–42 [Google Scholar]
  137. Stuy JH. 137.  1980. Chromosomally integrated conjugative plasmids are common in antibiotic-resistant Haemophilus influenzae. J. Bacteriol. 142:925–30 [Google Scholar]
  138. Su YA, He P, Clewell DB. 138.  1992. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob. Agents Chemother. 36:769–78 [Google Scholar]
  139. te Poele EM, Bolhuis H, Dijkhuizen L. 139.  2008. Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek 94:127–43 [Google Scholar]
  140. Thierauf A, Perez G, Maloy, Stanley. 140.  2009. Generalized transduction. Methods Mol. Biol. 501:267–86 [Google Scholar]
  141. Thomas J, Lee CA, Grossman AD. 141.  2013. A conserved helicase processivity factor is needed for conjugation and replication of an integrative and conjugative element. PLOS Genet. 9:e103198 [Google Scholar]
  142. Toleman MA, Walsh TR. 142.  2011. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol. Rev. 35:912–35 [Google Scholar]
  143. Toussaint A, Merlin C. 143.  2002. Mobile elements as a combination of functional modules. Plasmid 47:26–35 [Google Scholar]
  144. Trokter M, Felisberto-Rodrigues C, Christie PJ, Waksman G. 144.  2014. Recent advances in the structural and molecular biology of type IV secretion systems. Curr. Opin. Struct. Biol. 27:16–23 [Google Scholar]
  145. Val M-E, Bouvier M, Campos J, Sherratt D, Cornet F. 145.  et al. 2005. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol. Cell 19:559–66 [Google Scholar]
  146. Valentine PJ, Shoemaker NB, Salyers AA. 146.  1988. Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J. Bacteriol. 170:1319–24 [Google Scholar]
  147. Waksman G, Orlova EV. 147.  2014. Structural organisation of the type IV secretion systems. Curr. Opin. Microbiol. 17:24–31 [Google Scholar]
  148. Wang H, Mullany P. 148.  2000. The large resolvase TndX is required and sufficient for integration and excision of derivatives of the novel conjugative transposon Tn5397. J. Bacteriol. 182:6577–83 [Google Scholar]
  149. Wang Y, Rotman ER, Shoemaker NB, Salyers AA. 149.  2005. Translational control of tetracycline resistance and conjugation in the Bacteroides conjugative transposon CTnDOT. J. Bacteriol. 187:2673–80 [Google Scholar]
  150. Wang Y, Shoemaker NB, Salyers AA. 150.  2004. Regulation of a Bacteroides operon that controls excision and transfer of the conjugative transposon CTnDOT. J. Bacteriol. 186:2548–57 [Google Scholar]
  151. Waters JL, Salyers AA. 151.  2013. Regulation of CTnDOT conjugative transfer is a complex and highly coordinated series of events. mBio 4:e00569–13 [Google Scholar]
  152. Weiser JN, Rubens CE. 152.  1987. Transposon mutagenesis of group B Streptococcus beta-hemolysin biosynthesis. Infect. Immun. 55:2314–16 [Google Scholar]
  153. Whitaker N, Chen Y, Jakubowski SJ, Sarkar MK, Li F, Christie PJ. 153.  2015. The all-alpha domains of coupling proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-encoded type IV secretion systems confer specificity to binding of cognate DNA substrates. J. Bacteriol. 197:2335–49 [Google Scholar]
  154. Wickner S, Hurwitz J. 154.  1975. Association of phiX174 DNA-dependent ATPase activity with an Escherichia coli protein, replication factor Y, required for in vitro synthesis of phiX174 DNA. PNAS 72:3342–46 [Google Scholar]
  155. Wilkins BM, Boulnois GJ, Lanka E. 155.  1981. A plasmid DNA primase active in discontinuous bacterial DNA replication. Nature 290:217–21 [Google Scholar]
  156. Wong JJ, Lu J, Glover JN. 156.  2012. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol. Microbiol. 85:602–17 [Google Scholar]
  157. Wozniak RA, Fouts DE, Spagnoletti M, Colombo MM, Ceccarelli D. 157.  et al. 2009. Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLOS Genet. 5:e1000786 [Google Scholar]
  158. Wozniak RA, Waldor MK. 158.  2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol. 8:552–63 [Google Scholar]
  159. Wozniak RAF, Waldor MK. 159.  2009. A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLOS Genet. 5:e1000439 [Google Scholar]
  160. Wright LD, Johnson CM, Grossman AD. 160.  2015. Identification of a single strand origin of replication in the integrative and conjugative element ICEBs1 of Bacillus subtilis. PLOS Genet. 11:e1005556 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error