1932

Abstract

Plant genomes interact when genetically distinct individuals join, or are joined, together. Individuals can fuse in three contexts: artificial grafts, natural grafts, and host–parasite interactions. Artificial grafts have been studied for decades and are important platforms for studying the movement of RNA, DNA, and protein. Yet several mysteries about artificial grafts remain, including the factors that contribute to graft incompatibility, the prevalence of genetic and epigenetic modifications caused by exchanges between graft partners, and the long-term effects of these modifications on phenotype. Host–parasite interactions also lead to the exchange of materials, and RNA exchange actively contributes to an ongoing arms race between parasite virulence and host resistance. Little is known about natural grafts except that they can be frequent and may provide opportunities for evolutionary innovation through genome exchange. In this review, we survey our current understanding about these three mechanisms of contact, the genomic interactions that result, and the potential evolutionary implications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043545
2019-12-03
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-112618-043545.html?itemId=/content/journals/10.1146/annurev-genet-112618-043545&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alakonya A, Kumar R, Koenig D, Kimura S, Townsley B et al. 2012. Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism. Plant Cell 24:3153–66
    [Google Scholar]
  2. 2. 
    Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N et al. 2011. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. PNAS 108:16128–32
    [Google Scholar]
  3. 3. 
    Bae CH, Abe T, Nagata N, Fukunishi N, Matsuyama T et al. 2000. Characterization of a periclinal chimera variegated tobacco (Nicotiana tabacum L.). Plant Sci 151:93–101
    [Google Scholar]
  4. 4. 
    Bai S, Kasai A, Yamada K, Li T, Harada T 2011. A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. J. Exp. Bot. 62:4561–70
    [Google Scholar]
  5. 5. 
    Banerjee AK, Chatterjee M, Yu Y, Suh S-G, Miller WA, Hannapel DJ 2006. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18:3443–57
    [Google Scholar]
  6. 6. 
    Banta JA, Richards CL. 2018. Quantitative epigenetics and evolution. Heredity 121:210–24
    [Google Scholar]
  7. 7. 
    Beddie AD. 1942. Natural root grafts in New Zealand trees. Trans. Proc. R. Soc. N. Z. 71:199–203
    [Google Scholar]
  8. 8. 
    Bock R. 2017. Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu. Rev. Genet. 51:1–22
    [Google Scholar]
  9. 9. 
    Bradley S, Garner RJ. 2017. The Grafter's Handbook: Revised & Updated Edition London: Octopus Publishing Group Ltd324 pp.
  10. 10. 
    Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ 2007. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. PNAS 104:14741–46
    [Google Scholar]
  11. 11. 
    Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J 2008. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–49
    [Google Scholar]
  12. 12. 
    Cao L, Yu N, Li J, Qi Z, Wang D, Chen L 2016. Heritability and reversibility of DNA methylation induced by in vitro grafting between Brassica juncea and B. oleracea. Sci. . Rep 6:27233
    [Google Scholar]
  13. 13. 
    Copes DL. 1973. Inheritance of graft compatibility in Douglas fir. Bot. Gaz. 134:49–52
    [Google Scholar]
  14. 14. 
    Copes DL. 1974. Genetics of graft rejection in Douglas fir. Can. J. For. Res. 4:186–92
    [Google Scholar]
  15. 15. 
    Corbesier L, Vincent C, Jang S, Fornara F, Fan Q et al. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–33
    [Google Scholar]
  16. 16. 
    Darwin CR. 1868. The Variation of Animals and Plants under Domestication London: John Murray
  17. 17. 
    David-Schwartz R, Runo S, Townsley B, Machuka J, Sinha N 2008. Long-distance transport of mRNA via parenchyma cells and phloem across the host–parasite junction in Cuscuta. New Phytol 179:1133–41
    [Google Scholar]
  18. 18. 
    Davis CC, Xi Z. 2015. Horizontal gene transfer in parasitic plants. Curr. Opin. Plant Biol. 26:14–19
    [Google Scholar]
  19. 19. 
    Dieters MJ, Haines RJ. 1991. The influence of rootstock family and scion genotype on graft incompatibility in Araucaria cunninghamii Ait. ex D. Don. Silvae Genet 40:141–46
    [Google Scholar]
  20. 20. 
    Filippis I, Lopez-Cobollo R, Abbott J, Butcher S, Bishop GJ 2013. Using a periclinal chimera to unravel layer-specific gene expression in plants. Plant J 75:1039–49
    [Google Scholar]
  21. 21. 
    Flaishman MA, Loginovsky K, Golobowich S, Lev-Yadun S 2008. Arabidopsis thaliana as a model system for graft union development in homografts and heterografts. J. Plant Growth Regul. 27:231
    [Google Scholar]
  22. 22. 
    Frank MH, Chitwood DH. 2016. Plant chimeras: the good, the bad, and the “Bizzaria.”. Dev. Biol. 419:41–53
    [Google Scholar]
  23. 23. 
    Fraser EC, Lieffers VJ, Landhäusser SM 2006. Carbohydrate transfer through root grafts to support shaded trees. Tree Physiol 26:1019–23
    [Google Scholar]
  24. 24. 
    Fuentes I, Stegemann S, Golczyk H, Karcher D, Bock R 2014. Horizontal genome transfer as an asexual path to the formation of new species. Nature 511:232–35
    [Google Scholar]
  25. 25. 
    Gainza F, Opazo I, Muñoz C 2015. Graft incompatibility in plants: metabolic changes during formation and establishment of the rootstock/scion union with emphasis on Prunus species. Chil. J. Agric. Res. 75:28–34
    [Google Scholar]
  26. 26. 
    Gakpetor PM, Mohammed H, Moreti D, Nassar NMA 2017. Periclinal chimera technique: new plant breeding approach. Genet. Mol. Res. 16:3gmr16039790
    [Google Scholar]
  27. 27. 
    Gascó A, Nardini A, Raimondo F, Gortan E, Motisi A et al. 2007. Hydraulic kinetics of the graft union in different Olea europaea L. scion/rootstock combinations. Environ. Exp. Bot. 60:245–50
    [Google Scholar]
  28. 28. 
    Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA et al. 2019. Merging genotypes: graft union formation and scion–rootstock interactions. J. Exp. Bot. 70:747–55
    [Google Scholar]
  29. 29. 
    Gohlke J, Mosher RA. 2015. Exploiting mobile RNA silencing for crop improvement. Am. J. Bot. 102:1399–400
    [Google Scholar]
  30. 30. 
    Goldschmidt EE. 2014. Plant grafting: new mechanisms, evolutionary implications. Front. Plant Sci. 5:727
    [Google Scholar]
  31. 31. 
    Graham BF, Bormann FH. 1966. Natural root grafts. Bot. Rev. 32:255–92
    [Google Scholar]
  32. 32. 
    Gur A, Blum A. 1973. The role of cyanogenic glycosides in incompatibility between peach scions and almond rootstocks. Hortic. Res. 13:1–10
    [Google Scholar]
  33. 33. 
    Gur A, Samish RM, Lifshitz E 1968. The role of the cyanogenic glycoside of the quince in the incompatibility between pear cultivars and quince rootstocks. Hortic. Res. 8:113–34
    [Google Scholar]
  34. 34. 
    Gurdon C, Svab Z, Feng Y, Kumar D, Maliga P 2016. Cell-to-cell movement of mitochondria in plants. PNAS 113:3395–400
    [Google Scholar]
  35. 35. 
    Hadas R. 1992. Transmission of a citrus viroid to avocado by heterologous grafting. Plant Dis 76:357
    [Google Scholar]
  36. 36. 
    Haines RJ, Dieters MJ. 1990. The progression and distribution of graft incompatibility in Araucaria cunninghamii Ait. ex D. Don. Silvae Genet 39:62–66
    [Google Scholar]
  37. 37. 
    Ham B-K, Lucas WJ. 2017. Phloem-mobile RNAs as systemic signaling agents. Annu. Rev. Plant Biol. 68:173–95
    [Google Scholar]
  38. 38. 
    Herrero J. 1951. Studies of compatible and incompatible graft combinations with special reference to hardy fruit trees. J. Hortic. Sci. 26:186–237
    [Google Scholar]
  39. 39. 
    Hirata Y, Ogata S, Kurita S, Nozawa GT, Zhou J, Wu S 2003. Molecular mechanism of graft transformation in Capsicum annuum. Acta Hortic 625:125–30
    [Google Scholar]
  40. 40. 
    Hsieh L-C, Lin S-I, Shih AC-C, Chen J-W, Lin W-Y et al. 2009. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–32
    [Google Scholar]
  41. 41. 
    Huen AK, Rodriguez-Medina C, Ho AYY, Atkins CA, Smith PMC 2017. Long-distance movement of phosphate starvation-responsive microRNAs in Arabidopsis. Plant Biol 19:643–49
    [Google Scholar]
  42. 42. 
    Jelínková H, Tremblay F, Desrochers A 2009. Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae). Am. J. Bot. 96:1500–5
    [Google Scholar]
  43. 43. 
    Jones FA, Erickson DL, Bernal MA, Bermingham E, Kress WJ et al. 2011. The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling. PLOS ONE 6:e24506
    [Google Scholar]
  44. 44. 
    Kado T, Innan H. 2018. Horizontal gene transfer in five parasite plant species in Orobanchaceae. Genome Biol. Evol. 10:3196–210
    [Google Scholar]
  45. 45. 
    Kaiser B, Vogg G, Furst UB, Albert M 2015. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant plant hosts. Front. Plant Sci. 6:45
    [Google Scholar]
  46. 46. 
    Keeley JE. 1988. Population variation in root grafting and a hypothesis. Oikos 52:364–66
    [Google Scholar]
  47. 47. 
    Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9:605–18
    [Google Scholar]
  48. 48. 
    Kehr J, Buhtz A. 2008. Long distance transport and movement of RNA through the phloem. J. Exp. Bot. 59:85–92
    [Google Scholar]
  49. 49. 
    Kehr J, Kragler F. 2018. Long distance RNA movement. New Phytol 218:29–40
    [Google Scholar]
  50. 50. 
    Kester DE. 1970. Graft incompatibility of almond seedling populations to Marianna 2624 plum rootstock. HortScience 5:349
    [Google Scholar]
  51. 51. 
    Kim G, LeBlanc ML, Wafula EK, dePamphilis CW, Westwood JH 2014. Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345:808–11
    [Google Scholar]
  52. 52. 
    Klein T, Siegwolf RTW, Körner C 2016. Belowground carbon trade among tall trees in a temperate forest. Science 352:342–44
    [Google Scholar]
  53. 53. 
    Klekowski EJ, Lowenfeld R, Klekowski EH 1996. Mangrove genetics. 4. Postzygotic mutations fixed as periclinal chimeras. Int. J. Plant Sci. 157:398–405
    [Google Scholar]
  54. 54. 
    La Rue CD. 1934. Root grafting in trees. Am. J. Bot. 21:121–26
    [Google Scholar]
  55. 55. 
    Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204–20
    [Google Scholar]
  56. 56. 
    LeBlanc M, Kim G, Patel B, Stromberg V, Westwood J 2013. Quantification of tomato and Arabidopsis mobile RNAs trafficking into the parasitic plant Cuscuta pentagona. New Phytol 200:1225–33
    [Google Scholar]
  57. 57. 
    Lee J-Y, Cui W. 2009. Non-cell autonomous RNA trafficking and long-distance signaling. J. Plant Biol. 52:10–18
    [Google Scholar]
  58. 58. 
    Lev-Yadun S. 2011. Why should trees have natural root grafts?. Tree Physiol 31:575–78
    [Google Scholar]
  59. 59. 
    Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A et al. 2016. Mobile small RNAs regulate genome-wide DNA methylation. PNAS 113:E801–10
    [Google Scholar]
  60. 60. 
    Li J, Wang Y, Zhang L, Liu B, Cao L et al. 2013. Heritable variation and small RNAs in the progeny of chimeras of Brassica juncea and Brassica oleracea. J. Exp. Bot 64:4851–62
    [Google Scholar]
  61. 61. 
    Li W, Fang C, Krishnan S, Chen J, Yu H et al. 2017. Elevated auxin and reduced cytokinin contents in rootstocks improve their performance and grafting success. Plant Biotechnol. J. 15:1556–65
    [Google Scholar]
  62. 62. 
    Lin S-I, Chiang S-F, Lin W-Y, Chen J-W, Tseng C-Y et al. 2008. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–46
    [Google Scholar]
  63. 63. 
    Liu Y. 2006. Historical and modern genetics of plant graft hybridization. Adv. Genet. 56:101–29
    [Google Scholar]
  64. 64. 
    Loehle C, Jones RH. 1990. Adaptive significance of root grafting in trees. Funct. Ecol. 4:268–71
    [Google Scholar]
  65. 65. 
    Lu K-J, Huang N-C, Liu Y-S, Lu C-A, Yu T-S 2012. Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation. RNA Biol 9:653–62
    [Google Scholar]
  66. 66. 
    Lu Y, Stegemann S, Agrawal S, Karcher D, Ruf S, Bock R 2017. Horizontal transfer of a synthetic metabolic pathway between plant species. Curr. Biol. 27:3034–41.e3
    [Google Scholar]
  67. 67. 
    Matsuoka K, Sugawara E, Aoki R, Takuma K, Terao-Morita M et al. 2016. Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis hypocotyls. Plant Cell Physiol 57:2620–31
    [Google Scholar]
  68. 68. 
    Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S et al. 2018. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. PNAS 115:E2447–56
    [Google Scholar]
  69. 69. 
    Melnyk CW, Meyerowitz EM. 2015. Plant grafting. Curr. Biol. 25:R183–88
    [Google Scholar]
  70. 70. 
    Melnyk CW, Schuster C, Leyser O, Meyerowitz EM 2015. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr. Biol 25:1306–18
    [Google Scholar]
  71. 71. 
    Mermigka G, Verret F, Kalantidis K 2016. RNA silencing movement in plants. J. Integr. Plant Biol. 58:328–42
    [Google Scholar]
  72. 72. 
    Miller AJ, Gross BL. 2011. From forest to field: perennial fruit crop domestication. Am. J. Bot. 98:1389–414
    [Google Scholar]
  73. 73. 
    Millner ME. 1932. Natural grafting in Hedera helix. New Phytol 31:2–25
    [Google Scholar]
  74. 74. 
    Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–75
    [Google Scholar]
  75. 75. 
    Moore R. 1981. Graft compatibility and incompatibility in higher plants. Dev. Comp. Immunol. 5:377–89
    [Google Scholar]
  76. 76. 
    Morris RJ. 2018. On the selectivity, specificity and signalling potential of the long-distance movement of messenger RNA. Curr. Opin. Plant Biol. 43:1–7
    [Google Scholar]
  77. 77. 
    Mosse B. 1962. Graft-incompatibility in fruit trees Tech. Commun. No. 28, Commonw. Bur. Hortic. Plant. Crops East Malling, UK:
  78. 78. 
    Mudge K, Janick J, Scofield S, Goldschmidt EE 2009. A history of grafting. Hortic. Rev. 35:437–93
    [Google Scholar]
  79. 79. 
    Muzik TJ. 1958. Role of parenchyma cells in graft union in vanilla orchid. Science 127:82
    [Google Scholar]
  80. 80. 
    Nanda AK, Melnyk CW. 2018. The role of plant hormones during grafting. J. Plant Res. 131:49–58
    [Google Scholar]
  81. 81. 
    Neves DM, Almeida LADH, Santana-Vieira DDS, Freschi L, Ferreira CF et al. 2017. Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Sci. Rep. 7:13684
    [Google Scholar]
  82. 82. 
    Notaguchi M. 2015. Identification of phloem-mobile mRNA. J. Plant Res. 128:27–35
    [Google Scholar]
  83. 83. 
    Notaguchi M, Higashiyama T, Suzuki T 2015. Identification of mRNAs that move over long distances using an RNA-Seq analysis of Arabidopsis/Nicotiana benthamiana heterografts. Plant Cell Physiol 56:311–21
    [Google Scholar]
  84. 84. 
    Notaguchi M, Okamoto S. 2015. Dynamics of long-distance signaling via plant vascular tissues. Front. Plant Sci. 6:161
    [Google Scholar]
  85. 85. 
    Ohta Y. 1970. A variant found in the progeny from grafting in Capsicum annuum. Natl. Inst. Genet. Jpn. A. Rep 20:34–35
    [Google Scholar]
  86. 86. 
    Ohta Y. 1991. Graft-transformation, the mechanism for graft-induced genetic changes in higher plants. Euphytica 55:91–99
    [Google Scholar]
  87. 87. 
    Olmstead MA, Lang NS, Ewers FW, Owens SA 2006. Xylem vessel anatomy of sweet cherries grafted onto dwarfing and nondwarfing rootstocks. J. Am. Soc. Hortic. Sci. 131:577–85
    [Google Scholar]
  88. 88. 
    Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S 2007. Characterization of phloem-sap transcription profile in melon plants. J. Exp. Bot. 58:3645–56
    [Google Scholar]
  89. 89. 
    Pagliarani C, Vitali M, Ferrero M, Vitulo N, Incarbone M et al. 2017. The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. Plant Physiol 173:2180–95
    [Google Scholar]
  90. 90. 
    Pant BD, Buhtz A, Kehr J, Scheible W-R 2008. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–38
    [Google Scholar]
  91. 91. 
    Pederick LA, Brown AG. 1976. Seed production in Radiata pine seed orchards in Australia. Aust. For. 39:164–79
    [Google Scholar]
  92. 92. 
    Petit RJ, Hampe A. 2006. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 37:187–214
    [Google Scholar]
  93. 93. 
    Pitaksaringkarn W, Ishiguro S, Asahina M, Satoh S 2014. ARF6 and ARF8 contribute to tissue reunion in incised Arabidopsis inflorescence stems. Plant Biotechnol 31:49–53
    [Google Scholar]
  94. 94. 
    Plomion C, Aury J-M, Amselem J, Leroy T, Murat F et al. 2018. Oak genome reveals facets of long lifespan. Nat. Plants 4:440–52
    [Google Scholar]
  95. 95. 
    Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ 1999. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–19
    [Google Scholar]
  96. 96. 
    Sachs T. 1968. The role of the root in the induction of xylem differentiation in peas. Ann. Bot. 32:391–99
    [Google Scholar]
  97. 97. 
    Sachs T. 1981. The control of the patterned differentiation of vascular tissues. Adv. Bot. Res. 9:151–262
    [Google Scholar]
  98. 98. 
    Salesses G, Al Kaï N 1985. Simply inherited grafting incompatibility in peach. Acta Hortic 173:57–62
    [Google Scholar]
  99. 99. 
    Santamour FS Jr 1988. Graft compatibility in woody plants: an expanded perspective. J. Environ. Hortic. 6:27–32
    [Google Scholar]
  100. 100. 
    Schöning U, Kollmann R. 1997. Phloem translocation in regenerating in vitro-heterografts of different compatibility. J. Exp. Bot. 48:289–95
    [Google Scholar]
  101. 101. 
    Shahid S, Kim G, Johnson NR, Wafula E, Wang F et al. 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553:82–85
    [Google Scholar]
  102. 102. 
    Shimomura T, Fujihara K. 1978. Prevention of auxin-induced vascular differentiation in wound callus by surface-to-surface adhesion between calluses of stock and scion in cactus grafts. Plant Cell Physiol 19:877–86
    [Google Scholar]
  103. 103. 
    Sidorov V, Armstrong C, Ream T, Ye X, Saltarikos A 2018. “Cell grafting”: a new approach for transferring cytoplasmic or nuclear genome between plants. Plant Cell Rep 37:1077–89
    [Google Scholar]
  104. 104. 
    Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R 1997. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–82
    [Google Scholar]
  105. 105. 
    Spiegelman Z, Golan G, Wolf S 2013. Don't kill the messenger: long-distance trafficking of mRNA molecules. Plant Sci 213:1–8
    [Google Scholar]
  106. 106. 
    Stegemann S, Bock R. 2009. Exchange of genetic material between cells in plant tissue grafts. Science 324:649–51
    [Google Scholar]
  107. 107. 
    Stegemann S, Keuthe M, Greiner S, Bock R 2012. Horizontal transfer of chloroplast genomes between plant species. PNAS 109:2434–38
    [Google Scholar]
  108. 108. 
    Stone EL. 1974. The communal root system of red pine: growth of girdled trees. For. Sci. 20:294–305
    [Google Scholar]
  109. 109. 
    Taller J, Hirata Y, Yagishita N, Kita M, Ogata S 1998. Graft-induced genetic changes and the inheritance of several characteristics in pepper (Capsicum annuum L.). Theor. Appl. Genet. 97:705–13
    [Google Scholar]
  110. 110. 
    Tamiru M, Hardcastle TJ, Lewsey MG 2018. Regulation of genome-wide DNA methylation by mobile small RNAs. New Phytol 217:540–46
    [Google Scholar]
  111. 111. 
    Tarroux E, DesRochers A. 2010. Frequency of root grafting in naturally and artificially regenerated stands of Pinus banksiana: influence of site characteristics. Can. J. For. Res. 40:861–71
    [Google Scholar]
  112. 112. 
    Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W et al. 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants1:15025. Erratum. 2016. Nat. Plants 2:16195
    [Google Scholar]
  113. 113. 
    Tsutsui H, Notaguchi M. 2017. The use of grafting to study systemic signaling in plants. Plant Cell Physiol 58:1291–301
    [Google Scholar]
  114. 114. 
    Turnbull CGN, Lopez-Cobollo RM. 2013. Heavy traffic in the fast lane: long-distance signalling by macromolecules. New Phytol 198:33–51
    [Google Scholar]
  115. 115. 
    Uthup TK, Karumamkandathil R, Ravindran M, Saha T 2018. Heterografting induced DNA methylation polymorphisms in Hevea brasiliensis. Planta 248:579–89
    [Google Scholar]
  116. 116. 
    Wang J, Jiang L, Wu R 2017. Plant grafting: how genetic exchange promotes vascular reconnection. New Phytol 214:56–65
    [Google Scholar]
  117. 117. 
    Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP et al. 2016. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci 21:418–37
    [Google Scholar]
  118. 118. 
    Westwood JH, Kim G. 2017. RNA mobility in parasitic plant–host interactions. RNA Biol 14:450–55
    [Google Scholar]
  119. 119. 
    Xoconostle-Cázares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J et al. 1999. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98
    [Google Scholar]
  120. 120. 
    Yagishita N, Hirata Y. 1986. Genetic nature of bushy plant type in the variant strain induced by grafting in Capsicum annuum L. Euphytica 35:17–23
    [Google Scholar]
  121. 121. 
    Yagishita N, Hirata Y, Mizukami H, Ohashi H, Yamashita K 1990. Genetic nature of low capsaicin content in the variant strains induced by grafting in Capsicum annuum L. Euphytica 46:249–52
    [Google Scholar]
  122. 122. 
    Yang Y, Mao L, Jittayasothorn Y, Kang Y, Jiao C et al. 2015. Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biol 15:251
    [Google Scholar]
  123. 123. 
    Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE et al. 2016. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. PNAS 113:E7010–19
    [Google Scholar]
  124. 124. 
    Yin H, Yan B, Sun J, Jia P, Zhang Z et al. 2012. Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation. J. Exp. Bot. 63:4219–32
    [Google Scholar]
  125. 125. 
    Yoshida S, Cui S, Ichihashi Y, Shirasu K 2016. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67:643–67
    [Google Scholar]
  126. 126. 
    Yu N, Cao L, Yuan L, Zhi X, Chen Y et al. 2018. Maintenance of grafting-induced epigenetic variations in the asexual progeny of Brassica oleracea and B. juncea chimera. Plant J 96:22–38
    [Google Scholar]
  127. 127. 
    Zarrouk O, Gogorcena Y, Moreno MA, Pinochet J 2006. Graft compatibility between peach cultivars and Prunus rootstocks. HortScience 41:1389–94
    [Google Scholar]
  128. 128. 
    Zhang M, Deng X, Qin C, Chen C, Zhang H et al. 2007. Characterization of a new natural periclinal navel–Satsuma chimera of citrus: ‘Zaohong’ navel orange. J. Am. Soc. Hortic. Sci. 132:374–80
    [Google Scholar]
  129. 129. 
    Zhang WN, Duan XW, Ma C, Harada T, Li TZ 2013. Transport of mRNA molecules coding NAC domain protein in grafted pear and transgenic tobacco. Biol. Plant 57:224–30
    [Google Scholar]
  130. 130. 
    Zhang X, Lai T, Zhang P, Zhang X, Yuan C et al. 2019. Mini review: revisiting mobile RNA silencing in plants. Plant Sci 278:113–17
    [Google Scholar]
  131. 131. 
    Zhang Z, Zheng Y, Ham B-K, Chen J, Yoshida A et al. 2016. Vascular-mediated signalling involved in early phosphate stress response in plants. Nat. Plants 2:16033
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043545
Loading
/content/journals/10.1146/annurev-genet-112618-043545
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error