1932

Abstract

In somatic nuclei of female therian mammals, the two X chromosomes display very different chromatin states: One X is typically euchromatic and transcriptionally active, and the other is mostly silent and forms a cytologically detectable heterochromatic structure termed the Barr body. These differences, which arise during female development as a result of X-chromosome inactivation (XCI), have been the focus of research for many decades. Initial approaches to define the structure of the inactive X chromosome (Xi) and its relationship to gene expression mainly involved microscopy-based approaches. More recently, with the advent of genomic techniques such as chromosome conformation capture, molecular details of the structure and expression of the Xi have been revealed. Here, we review our current knowledge of the 3D organization of the mammalian X-chromosome chromatin and discuss its relationship with gene activity in light of the initiation, spreading, and maintenance of XCI, as well as escape from gene silencing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120116-024611
2018-11-23
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120116-024611.html?itemId=/content/journals/10.1146/annurev-genet-120116-024611&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Almeida M, Pintacuda G, Masui O, Koseki Y, Gdula M et al. 2017. PCGF3/5–PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356:63421081–84
    [Google Scholar]
  2. 2.  Anguera MC, Ma W, Clift D, Namekawa S, Kelleher RJ, Lee JT 2011. Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLOS Genet 7:9e1002248
    [Google Scholar]
  3. 3.  Atchison ML 2014. Function of YY1 in long-distance DNA interactions. Front. Immunol. 5:45
    [Google Scholar]
  4. 4.  Augui S, Filion GJ, Huart S, Nora E, Guggiari M et al. 2007. Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318:58561632–36
    [Google Scholar]
  5. 5.  Augui S, Nora EP, Heard E 2011. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat. Rev. Genet. 12:6429–42
    [Google Scholar]
  6. 6.  Bacher CP, Guggiari M, Brors B, Augui S, Clerc P et al. 2006. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat. Cell Biol. 8:3293–99
    [Google Scholar]
  7. 7.  Bailey JA, Carrel L, Chakravarti A, Eichler EE 2000. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. PNAS 97:126634–39
    [Google Scholar]
  8. 8.  Barakat TS, Gunhanlar N, Pardo CG, Achame EM, Ghazvini M et al. 2011. RNF12 activates Xist and is essential for X chromosome inactivation. PLOS Genet 7:1e1002001
    [Google Scholar]
  9. 9.  Barakat TS, Loos F, van Staveren S, Myronova E, Ghazvini M et al. 2014. The trans-activator RNF12 and cis-acting elements effectuate X chromosome inactivation independent of X-pairing. Mol. Cell 53:6965–78
    [Google Scholar]
  10. 10.  Barr ML, Bertram EG 1949. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:4148676–77
    [Google Scholar]
  11. 11.  Barr ML, Carr DH 1962. Correlations between sex chromatin and sex chromosomes. Acta Cytol 6:34–45
    [Google Scholar]
  12. 12.  Belmont AS, Bignone F, Ts'o POP 1986. The relative intranuclear positions of Barr bodies in XXX non-transformed human fibroblasts. Exp. Cell Res. 165:1165–79
    [Google Scholar]
  13. 13.  Berletch JB, Yang F, Xu J, Carrel L, Disteche CM 2011. Genes that escape from X inactivation. Hum. Genet. 130:2237–45
    [Google Scholar]
  14. 14.  Bischoff A, Albers J, Kharboush I, Stelzer E, Cremer T, Cremer C 1993. Differences of size and shape of active and inactive X-chromosome domains in human amniotic fluid cell nuclei. Microsc. Res. Tech. 25:168–77
    [Google Scholar]
  15. 15.  Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF et al. 2004. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 14:4708–14
    [Google Scholar]
  16. 16.  Blewitt ME, Gendrel AV, Pang Z, Sparrow DB, Whitelaw N et al. 2008. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat. Genet. 40:5663–69
    [Google Scholar]
  17. 17.  Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC, Allis CD 2002. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat. Genet. 30:173–76
    [Google Scholar]
  18. 18.  Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL et al. 2017. Multiscale 3D genome rewiring during mouse neural development. Cell 171:3557–572.e24
    [Google Scholar]
  19. 19.  Borden J, Manuelidis L 1988. Movement of the X chromosome in epilepsy. Science 242:48861687–91
    [Google Scholar]
  20. 20.  Borensztein M, Okamoto I, Syx L, Guilbaud G, Picard C et al. 2017. Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass. Nat. Commun. 8:11297
    [Google Scholar]
  21. 21.  Borensztein M, Syx L, Ancelin K, Diabangouaya P, Picard C et al. 2017. Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat. Struct. Mol. Biol. 24:3226–33
    [Google Scholar]
  22. 22.  Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D et al. 1991. Characterization of a murine gene expressed from the inactive X chromosome. Nature 351:6324325–29
    [Google Scholar]
  23. 23.  Bourgeois CA, Laquerriere F, Hemon D, Hubert J, Bouteille M 1985. New data on the in-situ position of the inactive X chromosome in the interphase nucleus of human fibroblasts. Hum. Genet. 69:2122–29
    [Google Scholar]
  24. 24.  Brockdorff N 2013. Noncoding RNA and Polycomb recruitment. RNA 19:4429–42
    [Google Scholar]
  25. 25.  Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S et al. 1991. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351:6324329–31
    [Google Scholar]
  26. 26.  Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:630438–44
    [Google Scholar]
  27. 27.  Brown CJ, Willard HF 1994. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368:6467154–56
    [Google Scholar]
  28. 28.  Brown SW 1966. Heterochromatin. Science 151:3709417–25
    [Google Scholar]
  29. 29.  Buzin CH, Mann JR, Singer-Sam J 1994. Quantitative RT-PCR assays show Xist RNA levels are low in mouse female adult tissue, embryos and embryoid bodies. Development 120:123529–36
    [Google Scholar]
  30. 30.  Calabrese JM, Sun W, Song L, Mugford JW, Williams L et al. 2012. Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151:5951–63
    [Google Scholar]
  31. 31.  Carrel L, Brown CJ 2017. When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos. Trans. R. Soc. B 372:173320160355
    [Google Scholar]
  32. 32.  Carrel L, Willard HF 2005. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:7031400–4
    [Google Scholar]
  33. 33.  Chadwick BP 2008. DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts. Genome Res 18:81259–69
    [Google Scholar]
  34. 34.  Chaligné R, Heard E 2014. X-chromosome inactivation in development and cancer. FEBS Lett 588:152514–22
    [Google Scholar]
  35. 35.  Chaligné R, Popova T, Mendoza-Parra M-A, Saleem M-AM, Gentien D et al. 2015. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res 25:4488–503
    [Google Scholar]
  36. 36.  Chaumeil J, Augui S, Chow JC, Heard E 2008. Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol. Biol. 463:297–308
    [Google Scholar]
  37. 37.  Chaumeil J, Le Baccon P, Wutz A, Heard E 2006. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:162223–37
    [Google Scholar]
  38. 38.  Chaumeil J, Okamoto I, Guggiari M, Heard E 2002. Integrated kinetics of X chromosome inactivation in differentiating embryonic stem cells. Cytogenet. Genome Res. 99:1–475–84
    [Google Scholar]
  39. 39.  Chen C, Shi W, Balaton BP, Matthews AM, Li Y et al. 2016. YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses. Sci. Rep. 6:137324
    [Google Scholar]
  40. 40.  Chen C-K, Blanco M, Jackson C, Aznauryan E, Ollikainen N et al. 2016. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354:6311468–72
    [Google Scholar]
  41. 41.  Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N et al. 2010. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141:6956–69
    [Google Scholar]
  42. 42.  Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M et al. 2015. Systematic discovery of Xist RNA binding proteins. Cell 161:2404–16
    [Google Scholar]
  43. 43.  Chureau C, Chantalat S, Romito A, Galvani A, Duret L et al. 2011. Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum. Mol. Genet. 20:4705–18
    [Google Scholar]
  44. 44.  Chureau C, Prissette M, Bourdet A, Barbe V, Cattolico L et al. 2002. Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 12:6894–908
    [Google Scholar]
  45. 45.  Ciavatta D, Kalantry S, Magnuson T, Smithies O 2006. A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. PNAS 103:269958–63
    [Google Scholar]
  46. 46.  Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB 2006. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. PNAS 103:207688–93
    [Google Scholar]
  47. 47.  Clemson CM, McNeil JA, Willard HF, Lawrence JB 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132:3259–75
    [Google Scholar]
  48. 48.  Comings DE 1968. The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am. J. Hum. Genet. 20:5440–60
    [Google Scholar]
  49. 49.  Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T et al. 2016. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat. Commun. 7:13661
    [Google Scholar]
  50. 50.  Costanzi C, Stein P, Worrad DM, Schultz RM, Pehrson JR 2000. Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos. Development 127:112283–89
    [Google Scholar]
  51. 51.  Cotton AM, Price EM, Jones MJ, Balaton BP, Kobor MS, Brown CJ 2015. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum. Mol. Genet. 24:61528–39
    [Google Scholar]
  52. 52.  Cox KH, Bonthuis PJ, Rissman EF 2014. Mouse model systems to study sex chromosome genes and behavior: relevance to humans. Front. Neuroendocrinol. 35:4405–19
    [Google Scholar]
  53. 53.  Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R 1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat. Genet. 22:4323–24
    [Google Scholar]
  54. 54.  Cunningham DB, Segretain D, Arnaud D, Rogner UC, Avner P 1998. The mouse Tsx gene is expressed in Sertoli cells of the adult testis and transiently in premeiotic germ cells during puberty. Dev. Biol. 204:2345–60
    [Google Scholar]
  55. 55.  da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C et al. 2014. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 53:2301–16
    [Google Scholar]
  56. 56.  da Rocha ST, Heard E 2017. Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat. Struct. Mol. Biol. 24:3197–204
    [Google Scholar]
  57. 57.  Darrow EM, Huntley MH, Dudchenko O, Stamenova EK, Durand NC et al. 2016. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. PNAS 113:31E4504–12
    [Google Scholar]
  58. 58.  Dekker J, Heard E 2015. Structural and functional diversity of topologically associating domains. FEBS Lett 589:20, Part A2877–84
    [Google Scholar]
  59. 59.  Deng X, Ma W, Ramani V, Hill A, Yang F et al. 2015. Bipartite structure of the inactive mouse X chromosome. Genome Biol 16:1152
    [Google Scholar]
  60. 60.  Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W et al. 2013. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and Polycomb proteins in genome organization. Cell Stem Cell 13:5602–16
    [Google Scholar]
  61. 61.  Denker A, de Laat W 2016. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 30:121357–82
    [Google Scholar]
  62. 62.  Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:7398376–80
    [Google Scholar]
  63. 63.  Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA et al. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:741457–74
    [Google Scholar]
  64. 64.  Duthie SM, Nesterova TB, Formstone EJ, Keohane AM, Turner BM et al. 1999. Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum. Mol. Genet 8:2195–204
    [Google Scholar]
  65. 65.  Dyer KA, Canfield TK, Gartler SM 1989. Molecular cytological differentiation of active from inactive X domains in interphase: implications for X chromosome inactivation. Cytogenet. Cell Genet. 50:2–3116–20
    [Google Scholar]
  66. 66.  Eils R, Dietzel S, Bertin E, Schröck E, Speicher MR et al. 1996. Three-dimensional reconstruction of painted human interphase chromosomes: Active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J. Cell Biol. 135:6, Part 11427–40
    [Google Scholar]
  67. 67.  Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:61471237973
    [Google Scholar]
  68. 68.  Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S et al. 2010. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38:3452–64
    [Google Scholar]
  69. 69.  Filippova GN, Cheng MK, Moore JM, Truong J-P, Hu YJ et al. 2005. Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev. Cell 8:131–42
    [Google Scholar]
  70. 70.  Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny L 2016. Formation of chromosomal domains by loop extrusion. Cell Rep 15:92038–49
    [Google Scholar]
  71. 71.  Furlan G, Gutierrez Hernandez N, Huret C, Galupa R, van Bemmel JG et al. 2018. The Ftx noncoding locus controls X chromosome inactivation independently of its RNA products. Mol. Cell. 70:3462–72.e8
    [Google Scholar]
  72. 72.  Gartler SM, Riggs AD 1983. Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17:155–90
    [Google Scholar]
  73. 73.  Gaszner M, Felsenfeld G 2006. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat. Rev. Genet. 7:9703–13
    [Google Scholar]
  74. 74.  Gdula MR, Nesterova TB, Pintacuda G, Godwin J, Zhan Y et al. 2018. The non-canonical SMC protein SmcHD1 antagonises TAD formation on the inactive X chromosome. bioRxiv 342147. https://doi.org/10.1101/342147
    [Crossref]
  75. 75.  Gendrel A-V, Apedaile A, Coker H, Termanis A, Zvetkova I et al. 2012. Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome. Dev. Cell 23:2265–79
    [Google Scholar]
  76. 76.  Gendrel A-V, Heard E 2014. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu. Rev. Cell Dev. Biol. 30:561–80
    [Google Scholar]
  77. 77.  Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F et al. 2014. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:4950–63
    [Google Scholar]
  78. 78.  Giorgetti L, Lajoie BR, Carter AC, Attia M, Zhan Y et al. 2016. Structural organization of the inactive X chromosome in the mouse. Nature 535:7613575–79
    [Google Scholar]
  79. 79.  Goloborodko A, Marko JF, Mirny LA 2016. Chromosome compaction by active loop extrusion. Biophys. J. 110:102162–68
    [Google Scholar]
  80. 80.  Gontan C, Achame EM, Demmers J, Barakat TS, Rentmeester E et al. 2012. RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485:7398386–90
    [Google Scholar]
  81. 81.  Grant J, Mahadevaiah SK, Khil P, Sangrithi MN, Royo H et al. 2012. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487:7406254–58
    [Google Scholar]
  82. 82.  Graves JAM 2016. Evolution of vertebrate sex chromosomes and dosage compensation. Nat. Rev. Genet. 17:133–46
    [Google Scholar]
  83. 83.  Haarhuis JHI, van der Weide RH, Blomen VA, Yáñez-Cuna JO, Amendola M et al. 2017. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169:4693–707.e14
    [Google Scholar]
  84. 84.  Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Tsutui K, Nakagawa S 2010. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19:3469–76
    [Google Scholar]
  85. 85.  Heard E, Chaumeil J, Masui O, Okamoto I 2004. Mammalian X-chromosome inactivation: an epigenetics paradigm. Cold Spring Harb. Symp. Quant. Biol. 69:89–102
    [Google Scholar]
  86. 86.  Heard E, Kress C, Mongelard F, Courtier B, Rougeulle C et al. 1996. Transgenic mice carrying an Xist-containing YAC. Hum. Mol. Genet. 5:4441–50
    [Google Scholar]
  87. 87.  Heard E, Mongelard F, Arnaud D, Avner P 1999. Xist yeast artificial chromosome transgenes function as X-inactivation centers only in multicopy arrays and not as single copies. Mol. Cell. Biol. 19:43156–66
    [Google Scholar]
  88. 88.  Heitz E 1928. Das Heterochromatin der Moose. Jahrb. Wiss. Bot. 69:762–818
    [Google Scholar]
  89. 89.  Hendrich BD, Brown CJ, Willard HF 1993. Evolutionary conservation of possible functional domains of the human and murine XIST genes. Hum. Mol. Genet. 2:6663–72
    [Google Scholar]
  90. 90.  Hiriart E, Gruffat H, Buisson M, Mikaelian I, Keppler S et al. 2005. Interaction of the Epstein-Barr virus mRNA export factor EB2 with human Spen proteins SHARP, OTT1, and a novel member of the family, OTT3, links Spen proteins with splicing regulation and mRNA export. J. Biol. Chem. 280:4436935–45
    [Google Scholar]
  91. 91.  Hoehn H, Martin GM 1973. Nonrandom arrangement of human chromatin: topography of disomic markers X, Y, and 1h+. Cytogenet. Genome Res. 12:6443–52
    [Google Scholar]
  92. 92.  Hong R, Lin B, Lu X, Lai L-T, Chen X et al. 2017. High-resolution RNA allelotyping along the inactive X chromosome: evidence of RNA polymerase III in regulating chromatin configuration. Sci. Rep. 7:45460
    [Google Scholar]
  93. 93.  Horakova AH, Calabrese JM, McLaughlin CR, Tremblay DC, Magnuson T, Chadwick BP 2012. The mouse DXZ4 homolog retains Ctcf binding and proximity to Pls3 despite substantial organizational differences compared to the primate macrosatellite. Genome Biol 13:8R70
    [Google Scholar]
  94. 94.  Horvath LM, Li N, Carrel L 2013. Deletion of an X-inactivation boundary disrupts adjacent gene silencing. PLOS Genet 9:11e1003952
    [Google Scholar]
  95. 95.  Jansz N, Keniry A, Trussart M, Bildsoe H, Beck T et al. 2018. Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters. Nat. Struct. Mol. Biol. 25:766–77
    [Google Scholar]
  96. 96.  Jonkers I, Barakat TS, Achame EM, Monkhorst K, Kenter A et al. 2009. RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139:5999–1011
    [Google Scholar]
  97. 97.  Jonkers I, Monkhorst K, Rentmeester E, Grootegoed JA, Grosveld F, Gribnau J 2008. Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle. Mol. Cell. Biol. 28:185583–94
    [Google Scholar]
  98. 98.  Kalantry S, Magnuson T, Gunster M, Hamer K, Blaauwen J den 2006. The Polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLOS Genet 2:5e66
    [Google Scholar]
  99. 99.  Kanda N 1973. A new differential technique for staining the heteropycnotic X-chromosome in female mice. Exp. Cell Res. 80:2463–67
    [Google Scholar]
  100. 100.  Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K et al. 2018. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 19:125
  101. 101.  Klinger HP 1958. The fine structure of the sex chromatin body. Exp. Cell Res. 14:1207–11
    [Google Scholar]
  102. 102.  Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A 2004. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLOS Biol 2:7E171
    [Google Scholar]
  103. 103.  Kolpa HJ, Fackelmayer FO, Lawrence JB 2016. SAF-A requirement in anchoring XIST RNA to chromatin varies in transformed and primary cells. Dev. Cell 39:19–10
    [Google Scholar]
  104. 104.  Koo S, Huntly BJ, Wang Y, Chen J, Brumme K et al. 2010. Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica 95:101642–50
    [Google Scholar]
  105. 105.  Kundu S, Ji F, Sunwoo H, Jain G, Lee JT et al. 2017. Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol. Cell 65:3432–46.e5
    [Google Scholar]
  106. 106.  Lafrenière RG, Carrel L, Willard HF 1994. A novel transmembrane transporter encoded by the XPCT gene in Xq13.2. Hum. Mol. Genet. 3:71133–39
    [Google Scholar]
  107. 107.  Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB et al. 2017. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:7662236–40
    [Google Scholar]
  108. 108.  Lee JT 2000. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103:117–27
    [Google Scholar]
  109. 109.  Leeb M, Wutz A 2007. Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J. Cell Biol. 178:2219–29
    [Google Scholar]
  110. 110.  Li N, Carrel L 2008. Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. PNAS 105:4417055–60
    [Google Scholar]
  111. 111.  Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:5950289–93
    [Google Scholar]
  112. 112.  Loda A, Brandsma JH, Vassilev I, Servant N, Loos F et al. 2017. Genetic and epigenetic features direct differential efficiency of Xist-mediated silencing at X-chromosomal and autosomal locations. Nat. Commun. 8:1690
    [Google Scholar]
  113. 113.  Luikenhuis S, Wutz A, Jaenisch R 2001. Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Mol. Cell. Biol. 21:248512–20
    [Google Scholar]
  114. 114.  Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F et al. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:51012–25
    [Google Scholar]
  115. 115.  Lyon MF 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–73
    [Google Scholar]
  116. 116.  Lyon MF 1998. X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80:1–4133–37
    [Google Scholar]
  117. 117.  Lyon MF 2006. Do LINEs have a role in X-chromosome inactivation?. J. Biomed. Biotechnol. 2006:159746
    [Google Scholar]
  118. 118.  Maclary E, Buttigieg E, Hinten M, Gayen S, Harris C et al. 2014. Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nat. Commun. 5:4209
    [Google Scholar]
  119. 119.  Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R 1997. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:2156–66
    [Google Scholar]
  120. 120.  McHugh CA, Chen C-K, Chow A, Surka CF, Tran C et al. 2015. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:7551232–36
    [Google Scholar]
  121. 121.  Merkenschlager M, Nora EP 2016. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genom. Hum. Genet. 17:17–43
    [Google Scholar]
  122. 122.  Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N 1999. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol. 147:71399–408
    [Google Scholar]
  123. 123.  Migeon BR, Chowdhury AK, Dunston JA, McIntosh I 2001. Identification of TSIX, encoding an RNA antisense to human XIST, reveals differences from its murine counterpart: implications for X inactivation. Am. J. Hum. Genet. 69:5951–60
    [Google Scholar]
  124. 124.  Migeon BR, Lee CH, Chowdhury AK, Carpenter H 2002. Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. Am. J. Hum. Genet. 71:2286–93
    [Google Scholar]
  125. 125.  Minajigi A, Froberg JE, Wei C, Sunwoo H, Kesner B et al. 2015. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349:6245aab2276
    [Google Scholar]
  126. 126.  Moindrot B, Cerase A, Coker H, Masui O, Grijzenhout A et al. 2015. A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist RNA-mediated silencing. Cell Rep 12:4562–72
    [Google Scholar]
  127. 127.  Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F et al. 2015. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep 12:4554–61
    [Google Scholar]
  128. 128.  Monkhorst K, Jonkers I, Rentmeester E, Grosveld F, Gribnau J 2008. X inactivation counting and choice is a stochastic process: evidence for involvement of an X-linked activator. Cell 132:3410–21
    [Google Scholar]
  129. 129.  Moore KL, Barr ML 1957. The sex chromatin in human malignant tissues. Br. J. Cancer 11:3384–90
    [Google Scholar]
  130. 130.  Mutzel V, Okamoto I, Dunkel I, Saitou M, Giorgetti L et al. 2017. Two coupled feedback loops explain random mono-allelic Xist upregulation at the onset of X-chromosome inactivation. bioRxiv 204909. https://doi.org/10.1101/204909
    [Crossref]
  131. 131.  Narendra V, Rocha PP, An D, Raviram R, Skok JA et al. 2015. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347:62251017–21
    [Google Scholar]
  132. 132.  Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR et al. 2013. Organization of the mitotic chromosome. Science 342:6161948–53
    [Google Scholar]
  133. 133.  Navarro P, Page DR, Avner P, Rougeulle C 2006. Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev 20:202787–92
    [Google Scholar]
  134. 134.  Navarro P, Pichard S, Ciaudo C, Avner P, Rougeulle C 2005. Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev 19:121474–84
    [Google Scholar]
  135. 135.  Nesterova TB, Slobodyanyuk SY, Elisaphenko EA, Shevchenko AI, Johnston C et al. 2001. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res 11:5833–49
    [Google Scholar]
  136. 136.  Ng K, Daigle N, Bancaud A, Ohhata T, Humphreys P et al. 2011. A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol. Biol. Cell 22:142634–45
    [Google Scholar]
  137. 137.  Nora EP, Goloborodko A, Valton A-L, Gibcus JH, Uebersohn A et al. 2017. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:5930–44.e22
    [Google Scholar]
  138. 138.  Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:7398381–85
    [Google Scholar]
  139. 139.  Norris DP, Brockdorff N, Rastan S 1991. Methylation status of CpG-rich islands on active and inactive mouse X chromosomes. Mamm. Genome 1:278–83
    [Google Scholar]
  140. 140.  Nozawa R-S, Nagao K, Igami K-T, Shibata S, Shirai N et al. 2013. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat. Struct. Mol. Biol. 20:5566–73
    [Google Scholar]
  141. 141.  Ober C, Loisel DA, Gilad Y 2008. Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 9:12911–22
    [Google Scholar]
  142. 142.  Ogawa Y, Lee JT 2003. Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol. Cell 11:3731–43
    [Google Scholar]
  143. 143.  Ohhata T, Hoki Y, Sasaki H, Sado T 2007. Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135:2227–35
    [Google Scholar]
  144. 144.  Ohhata T, Wutz A 2013. Reactivation of the inactive X chromosome in development and reprogramming. Cell. Mol. Life Sci. 70:142443–61
    [Google Scholar]
  145. 145.  Ohno S, Kaplan WD, Kinosita R 1959. Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp. Cell Res 18:415–18
    [Google Scholar]
  146. 146.  Ohno S, Kaplan WD, Kinosita R 1959. The centromeric and nucleolus-associated heterochromatin of Rattus norvegicus. Exp. Cell Res 16:2348–57
    [Google Scholar]
  147. 147.  Okamoto I, Arnaud D, Le Baccon P, Otte AP, Disteche CM et al. 2005. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438:7066369–73
    [Google Scholar]
  148. 148.  Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E 2004. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:5658644–49
    [Google Scholar]
  149. 149.  Okamoto I, Patrat C, Thépot D, Peynot N, Fauque P et al. 2011. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472:7343370–74
    [Google Scholar]
  150. 150.  Passarge E 1979. Emil Heitz and the concept of heterochromatin: Longitudinal chromosome differentiation was recognized fifty years ago. Am. J. Hum. Genet. 31:2106–15
    [Google Scholar]
  151. 151.  Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M et al. 2015. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:51066–77
    [Google Scholar]
  152. 152.  Patil DP, Chen C-K, Pickering BF, Chow A, Jackson C et al. 2016. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:7620369–73
    [Google Scholar]
  153. 153.  Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N 1996. Requirement for Xist in X chromosome inactivation. Nature 379:6561131–37
    [Google Scholar]
  154. 154.  Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP et al. 2016. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165:41012–26
    [Google Scholar]
  155. 155.  Pinheiro I, Heard E 2017. X chromosome inactivation: new players in the initiation of gene silencing. F1000Research 6:344
    [Google Scholar]
  156. 156.  Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N et al. 2017. hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish Polycomb-mediated chromosomal silencing. Mol. Cell 68:5955–969.e10
    [Google Scholar]
  157. 157.  Rao SSP, Huang S-C, Glenn St Hilaire B, Engreitz JM, Perez EM et al. 2017. Cohesin loss eliminates all loop domains. Cell 171:2305–320.e24
    [Google Scholar]
  158. 158.  Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:71665–80
    [Google Scholar]
  159. 159.  Rastan S, Robertson EJ 1985. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J. Embryol. Exp. Morphol. 90:379–88
    [Google Scholar]
  160. 160.  Rego A, Sinclair PB, Tao W, Kireev I, Belmont AS 2008. The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J. Cell Sci. 121:71119–27
    [Google Scholar]
  161. 161.  Ridings-Figueroa R, Stewart ER, Nesterova TB, Coker H, Pintacuda G et al. 2017. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev 31:9876–88
    [Google Scholar]
  162. 162.  Rinke B, Bischoff A, Meffert M, Scharschmidt R, Hausmann M et al. 1995. Volume ratios of painted chromosome territories 5, 7 and X in female human cell nuclei studied with confocal laser microscopy and the Cavalieri estimator. Bioimaging 3:11–11
    [Google Scholar]
  163. 163.  Rogner UC, Spyropoulos DD, Le Novère N, Changeux J-P, Avner P 2000. Control of neurulation by the nucleosome assembly protein-1–like 2. Nat. Genet. 25:4431–35
    [Google Scholar]
  164. 164.  Rougeulle C, Avner P 1996. Cloning and characterization of a murine brain specific gene Bpx and its human homologue lying within the Xic candidate region. Hum. Mol. Genet. 5:141–49
    [Google Scholar]
  165. 165.  Ryan VH, Dignon GL, Zerze GH, Chabata CV, Silva R et al. 2018. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69:3465–479.e7
    [Google Scholar]
  166. 166.  Sado T, Hoki Y, Sasaki H 2005. Tsix silences Xist through modification of chromatin structure. Dev. Cell 9:1159–65
    [Google Scholar]
  167. 167.  Sado T, Hoki Y, Sasaki H 2006. Tsix defective in splicing is competent to establish Xist silencing. Development 133:244925–31
    [Google Scholar]
  168. 168.  Sado T, Wang Z, Sasaki H, Li E 2001. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128:81275–86
    [Google Scholar]
  169. 169.  Sakaguchi T, Hasegawa Y, Brockdorff N, Tsutsui K, Tsutsui KM et al. 2016. Control of chromosomal localization of Xist by hnRNP U family molecules. Dev. Cell 39:111–12
    [Google Scholar]
  170. 170.  Sakata Y, Nagao K, Hoki Y, Sasaki H, Obuse C, Sado T 2017. Defects in dosage compensation impact global gene regulation in the mouse trophoblast. Development 144:152784–97
    [Google Scholar]
  171. 171.  Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS 112:47E6456–65
    [Google Scholar]
  172. 172.  Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves  et al. 2012. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148:1–2335–48
    [Google Scholar]
  173. 173.  Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L et al. 2006. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25:133110–22
    [Google Scholar]
  174. 174.  Schoenfelder S, Sugar R, Dimond A, Javierre B-M, Armstrong H et al. 2015. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47:101179–86
    [Google Scholar]
  175. 175.  Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA et al. 2015. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523:7559212–16
    [Google Scholar]
  176. 176.  Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G et al. 2017. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551:767851–56
    [Google Scholar]
  177. 177.  Shibata S, Lee JT 2004. Tsix transcription- versus RNA-based mechanisms in Xist repression and epigenetic choice. Curr. Biol. 14:191747–54
    [Google Scholar]
  178. 178.  Shin JD, Bossenz M, Chung Y, Ma H, Byron M et al. 2010. Maternal Rnf12/RLIM is required for imprinted X-chromosome inactivation in mice. Nature 467:7318977–81
    [Google Scholar]
  179. 179.  Simmler MC, Heard E, Rougeulle C, Cruaud C, Weissenbach J, Avner P 1997. Localization and expression analysis of a novel conserved brain expressed transcript, Brx/BRX, lying within the Xic/XIC candidate region. Mamm. Genome 8:10760–66
    [Google Scholar]
  180. 180.  Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R et al. 2006. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38:111348–54
    [Google Scholar]
  181. 181.  Sloan CA, Chan ET, Davidson JM, Malladi VS, Strattan JS et al. 2016. ENCODE data at the ENCODE portal. Nucleic Acids Res 44:D726–32
    [Google Scholar]
  182. 182.  Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A et al. 2014. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenet. Chromatin 7:8
    [Google Scholar]
  183. 183.  Soma M, Fujihara Y, Okabe M, Ishino F, Kobayashi S 2014. Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos. Sci. Rep. 4:5181
    [Google Scholar]
  184. 184.  Sousa EJ, Stuart HT, Bates LE, Ghorbani M, Nichols J et al. 2018. Exit from naive pluripotency induces a transient X chromosome inactivation-like state in males. Cell Stem Cell 22:6919–28
    [Google Scholar]
  185. 185.  Souyris M, Cenac C, Azar P, Daviaud D, Canivet A et al. 2018. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3:19eaap8855
    [Google Scholar]
  186. 186.  Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJG et al. 2011. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 25:131371–83
    [Google Scholar]
  187. 187.  Stavropoulos N, Lu N, Lee JT 2001. A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. PNAS 98:1810232–37
    [Google Scholar]
  188. 188.  Stavropoulos N, Rowntree RK, Lee JT 2005. Identification of developmentally specific enhancers for Tsix in the regulation of X chromosome inactivation. Mol. Cell. Biol. 25:72757–69
    [Google Scholar]
  189. 189.  Straub T 2003. Heterochromatin dynamics. PLOS Biol 1:1E14
    [Google Scholar]
  190. 190.  Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH 2017. Phase separation drives heterochromatin domain formation. Nature 547:7662241–45
    [Google Scholar]
  191. 191.  Sun BK, Deaton AM, Lee JT 2006. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol. Cell 21:5617–28
    [Google Scholar]
  192. 192.  Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT 2013. Jpx RNA activates Xist by evicting CTCF. Cell 153:71537–51
    [Google Scholar]
  193. 193.  Sunwoo H, Colognori D, Froberg JE, Jeon Y, Lee JT 2017. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). PNAS 114:4010654–59
    [Google Scholar]
  194. 194.  Symmons O, Pan L, Remeseiro S, Aktas T, Klein F et al. 2016. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell 39:5529–43
    [Google Scholar]
  195. 195.  Tada T, Takagi N, Adler ID 1993. Parental imprinting on the mouse X chromosome: effects on the early development of X0, XXY and XXX embryos. Genet. Res. 62:2139–48
    [Google Scholar]
  196. 196.  Takagi N, Abe K 1990. Detrimental effects of two active X chromosomes on early mouse development. Development 109:1189–201
    [Google Scholar]
  197. 197.  Takagi N, Sugawara O, Sasaki M 1982. Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse. Chromosoma 85:2275–86
    [Google Scholar]
  198. 198.  Teller K, Illner D, Thamm S, Casas-Delucchi CS, Versteeg R et al. 2011. A top-down analysis of Xa- and Xi-territories reveals differences of higher order structure at ≥20 Mb genomic length scales. Nucleus 2:5465–77
    [Google Scholar]
  199. 199.  Tian D, Sun S, Lee JT 2010. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143:3390–403
    [Google Scholar]
  200. 200.  Wang CY, Jégu T, Chu HP, Oh HJ, Lee JT 2018. SMCHD1 merges chromosome compartments and assists formation of super-structures on the inactive X. Cell 174:2406–21
    [Google Scholar]
  201. 201.  Wang F, Shin JD, Shea JM, Yu J, Bšković A et al. 2016. Regulation of X-linked gene expression during early mouse development by Rlim. eLife 5:e19127
    [Google Scholar]
  202. 202.  Wang J, Mager J, Chen Y, Schneider E, Cross JC et al. 2001. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat. Genet. 28:4371–75
    [Google Scholar]
  203. 203.  Wang J, Syrett CM, Kramer MC, Basu A, Atchison ML, Anguera MC 2016. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. PNAS 113:14E2029–38
    [Google Scholar]
  204. 204.  Wang S, Su J-H, Beliveau BJ, Bintu B, Moffitt JR et al. 2016. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:6299598–602
    [Google Scholar]
  205. 205.  Weiler KS, Wakimoto BT 1995. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29:577–605
    [Google Scholar]
  206. 206.  Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM et al. 2017. YY1 is a structural regulator of enhancer-promoter loops. Cell 171:71573–1588.e28
    [Google Scholar]
  207. 207.  Wijchers PJ, Krijger PHL, Geeven G, Zhu Y, Denker A et al. 2016. Cause and consequence of tethering a subTAD to different nuclear compartments. Mol. Cell 61:3461–73
    [Google Scholar]
  208. 208.  Wilson-Sayres MA, Makova MD 2013. Gene survival and death on the human Y chromosome. Mol. Biol. Evol. 30:4781–87
    [Google Scholar]
  209. 209.  Wutz A, Jaenisch R 2000. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5:4695–705
    [Google Scholar]
  210. 210.  Wutz A, Rasmussen TP, Jaenisch R 2002. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30:2167–74
    [Google Scholar]
  211. 211.  Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR et al. 2017. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36:243573–99
    [Google Scholar]
  212. 212.  Xu N, Donohoe ME, Silva SS, Lee JT 2007. Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat. Genet. 39:111390–96
    [Google Scholar]
  213. 213.  Xu N, Tsai C-L, Lee JT 2006. Transient homologous chromosome pairing marks the onset of X inactivation. Science 311:57641149–52
    [Google Scholar]
  214. 214.  Yang F, Babak T, Shendure J, Disteche CM 2010. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20:5614–22
    [Google Scholar]
  215. 215.  Yang F, Deng X, Ma W, Berletch JB, Rabaia N et al. 2015. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol 16:152
    [Google Scholar]
  216. 216.  Zhan Y, Mariani L, Barozzi I, Schulz EG, Blüthgen N et al. 2017. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res 27:3479–90
    [Google Scholar]
  217. 217.  Zhang L-F, Huynh KD, Lee JT 2007. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129:4693–706
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120116-024611
Loading
/content/journals/10.1146/annurev-genet-120116-024611
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error