The evolution of a nervous system as a control system of the body's functions is a key innovation of animals. Its fundamental units are neurons, highly specialized cells dedicated to fast cell–cell communication. Neurons pass signals to other neurons, muscle cells, or gland cells at specialized junctions, the synapses, where transmitters are released from vesicles in a Ca2+-dependent fashion to activate receptors in the membrane of the target cell. Reconstructing the origins of neuronal communication out of a more simple process remains a central challenge in biology. Recent genomic comparisons have revealed that all animals, including the nerveless poriferans and placozoans, share a basic set of genes for neuronal communication. This suggests that the first animal, the Urmetazoan, was already endowed with neurosecretory cells that probably started to connect into neuronal networks soon afterward. Here, we discuss scenarios for this pivotal transition in animal evolution.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abedin M, King N. 1.  2010. Diverse evolutionary paths to cell adhesion. Trends Cell Biol 20:12734–42 [Google Scholar]
  2. Achim K, Arendt D. 2.  2014. Structural evolution of cell types by step-wise assembly of cellular modules. Curr. Opin. Genet. Dev. 27:102–8 [Google Scholar]
  3. Ackermann F, Waites CL, Garner CC. 3.  2015. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 16:8923–38 [Google Scholar]
  4. Adamska M. 4.  2016. Sponges as models to study emergence of complex animals. Curr. Opin. Genet. Dev. 39:21–28 [Google Scholar]
  5. Alié A, Manuel M. 5.  2010. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans. BMC Evol. Biol. 10:134 [Google Scholar]
  6. Anderson PAV. 6.  2015. Evolution of the first nervous systems. J. Exp. Biol 2184, Spec. Issue Cambridge, UK: Co. Biol. Ltd. [Google Scholar]
  7. Andrews NW, Almeida PE, Corrotte M. 7.  2014. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol 24:12734–42 [Google Scholar]
  8. Anne C, Gasnier B. 8.  2014. Vesicular neurotransmitter transporters: mechanistic aspects. Curr. Top. Membr. 73:149–74 [Google Scholar]
  9. Apodaca G, Gallo LI, Bryant DM. 9.  2012. Role of membrane traffic in the generation of epithelial cell asymmetry. Nat. Cell Biol. 14:121235–43 [Google Scholar]
  10. Arbas EA, Meinertzhagen IA, Shaw SR. 10.  1991. Evolution in nervous systems. Annu. Rev. Neurosci. 14:9–38 [Google Scholar]
  11. Archbold JK, Whitten AE, Hu S-H, Collins BM, Martin JL. 11.  2014. SNARE-ing the structures of Sec1/Munc18 proteins. Curr. Opin. Struct. Biol. 29:44–51 [Google Scholar]
  12. Arendt D, Benito-Gutierrez E, Brunet T, Marlow H. 12.  2015. Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution. Philos. Trans. R. Soc. B 370:168420150286 [Google Scholar]
  13. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C. 13.  et al. 2016. The origin and evolution of cell types. Nat. Rev. Genet. 17:12744–57 [Google Scholar]
  14. Arendt D, Tosches MA, Marlow H. 14.  2016. From nerve net to nerve ring, nerve cord and brain—evolution of the nervous system. Nat. Rev. Neurosci. 17:161–72 [Google Scholar]
  15. Ashery U, Bielopolski N, Barak B, Yizhar O. 15.  2009. Friends and foes in synaptic transmission: the role of tomosyn in vesicle priming. Trends Neurosci 32:5275–82 [Google Scholar]
  16. Attenborough RMF, Hayward DC, Kitahara MV, Miller DJ, Ball EE. 16.  2012. A “neural” enzyme in nonbilaterian animals and algae: preneural origins for peptidylglycine α-amidating monooxygenase. Mol. Biol. Evol. 29:103095–109 [Google Scholar]
  17. Ax P. 17.  1996. Multicellular Animals Berlin: Springer [Google Scholar]
  18. Baker RW, Hughson FM. 18.  2016. Chaperoning SNARE assembly and disassembly. Nat. Rev. Mol. Cell Biol. 17:8465–79 [Google Scholar]
  19. Benton R. 19.  2015. Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol. Evol. 30:10590–600 [Google Scholar]
  20. Bissa B, Beedle AM, Govindarajan R. 20.  2016. Lysosomal solute carrier transporters gain momentum in research. Clin. Pharmacol. Ther. 100:5431–36 [Google Scholar]
  21. Blasky AJ, Mangan A, Prekeris R. 21.  2015. Polarized protein transport and lumen formation during epithelial tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 31:575–91 [Google Scholar]
  22. Bosch TCG. 22.  2013. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu. Rev. Microbiol. 67:499–518 [Google Scholar]
  23. Bosch TCG, Klimovich A, Domazet-Lošo T, Gründer S, Holstein TW. 23.  et al. 2017. Back to the basics: cnidarians start to fire. Trends Neurosci 40:292–105 [Google Scholar]
  24. Boustany R-MN. 24.  2013. Lysosomal storage diseases—the horizon expands. Nat. Rev. Neurol. 9:10583–98 [Google Scholar]
  25. Brunet T, Arendt D. 25.  2016. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes. Philos. Trans. R. Soc. B 371:168520150043 [Google Scholar]
  26. Burke RD, Moller DJ, Krupke OA, Taylor VJ. 26.  2014. Sea urchin neural development and the metazoan paradigm of neurogenesis. Genesis 52:3208–21 [Google Scholar]
  27. Burkhardt P. 27.  2015. The origin and evolution of synaptic proteins—choanoflagellates lead the way. J. Exp. Biol. 218:Pt. 4506–14 [Google Scholar]
  28. Burkhardt P, Stegmann CM, Cooper B, Kloepper TH, Imig C. 28.  et al. 2011. Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. PNAS 108:3715264–69 [Google Scholar]
  29. Cai X, Wang X, Patel S, Clapham DE. 29.  2015. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium 57:3166–73 [Google Scholar]
  30. Case LB, Waterman CM. 30.  2015. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17:8955–63 [Google Scholar]
  31. Cereijido M, Contreras RG, Shoshani L. 31.  2004. Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol. Rev. 84:41229–62 [Google Scholar]
  32. César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G. 32.  et al. 2015. A call for systematic research on solute carriers. Cell 162:3478–87 [Google Scholar]
  33. Chang HF, Bzeih H, Chitirala P, Ravichandran K, Sleiman M. 33.  et al. 2017. Preparing the lethal hit: interplay between exo- and endocytic pathways in cytotoxic T lymphocytes. Cell. Mol. Life Sci. 74:3399–408 [Google Scholar]
  34. Chantranupong L, Wolfson RL, Sabatini DM. 34.  2015. Nutrient-sensing mechanisms across evolution. Cell 161:167–83 [Google Scholar]
  35. Cromar G, Wong K-C, Loughran N, On T, Song H. 35.  et al. 2014. New tricks for “old” domains: how novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM. Genome Biol. Evol. 6:102897–917 [Google Scholar]
  36. Cunningham JA, Liu AG, Bengtson S, Donoghue PCJ. 36.  2017. The origin of animals: Can molecular clocks and the fossil record be reconciled?. BioEssays 39:11–12 [Google Scholar]
  37. Davis LE. 37.  1974. Ultrastructural studies of the development of nerves in Hydra. Am. Zoologist 14:2551–73 [Google Scholar]
  38. Dayel MJ, King N. 38.  2014. Prey capture and phagocytosis in the choanoflagellate Salpingoeca rosetta. PLOS ONE 9:5e95577 [Google Scholar]
  39. de Mendoza A, Suga H, Ruiz-Trillo I. 39.  2010. Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol. Biol. 10:193 [Google Scholar]
  40. de Saint Basile G, Ménasché G, Fischer A. 40.  2010. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat. Rev. Immunol. 10:8568–79 [Google Scholar]
  41. Droser ML, Gehling JG. 41.  2015. The advent of animals: the view from the Ediacaran. PNAS 112:164865–70 [Google Scholar]
  42. Dunn CW, Leys SP, Haddock SHD. 42.  2015. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30:5282–91 [Google Scholar]
  43. Dunn CW, Ryan JF. 43.  2015. The evolution of animal genomes. Curr. Opin. Genet. Dev. 35:25–32 [Google Scholar]
  44. Eitel M, Osigus H-J, DeSalle R, Schierwater B. 44.  2013. Global diversity of the placozoa. PLOS ONE 8:4e57131 [Google Scholar]
  45. Emes RD, Grant SGN. 45.  2012. Evolution of synapse complexity and diversity. Annu. Rev. Neurosci. 35:111–31 [Google Scholar]
  46. Erwin DH. 46.  2015. Early metazoan life: divergence, environment and ecology. Philos. Trans. R. Soc. B 370:168420150036 [Google Scholar]
  47. Fahey B, Degnan BM. 47.  2010. Origin of animal epithelia: insights from the sponge genome. Evol. Dev. 12:6601–17 [Google Scholar]
  48. Fahey B, Degnan BM. 48.  2012. Origin and evolution of laminin gene family diversity. Mol. Biol. Evol. 29:71823–36 [Google Scholar]
  49. Fasshauer D, Jahn R. 49.  2007. Budding insights on cell polarity. Nat. Struct. Mol. Biol. 14:360–62 [Google Scholar]
  50. Fukuda M. 50.  2013. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 14:9949–63 [Google Scholar]
  51. Ganot P, Zoccola D, Tambutté E, Voolstra CR, Aranda M. 51.  et al. 2015. Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes. Mol. Biol. Evol. 32:144–62 [Google Scholar]
  52. Gribble FM, Reimann F. 52.  2016. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78:277–99 [Google Scholar]
  53. Gründer S, Assmann M. 53.  2015. Peptide-gated ion channels and the simple nervous system of Hydra. J. Exp. Biol. 218:Pt. 4551–61 [Google Scholar]
  54. Harden N, Wang SJH, Krieger C. 54.  2016. Making the connection—shared molecular machinery and evolutionary links underlie the formation and plasticity of occluding junctions and synapses. J. Cell Sci. 129:163067–76 [Google Scholar]
  55. Hartenstein V. 55.  2006. The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J. Endocrinol. 190:3555–70 [Google Scholar]
  56. Hartenstein V, Stollewerk A. 56.  2015. The evolution of early neurogenesis. Dev. Cell 32:4390–407 [Google Scholar]
  57. Heller E, Fuchs E. 57.  2015. Tissue patterning and cellular mechanics. J. Cell Biol. 211:2219–31 [Google Scholar]
  58. Hoglund PJ, Nordstrom KJV, Schioth HB, Fredriksson R. 58.  2011. The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of bilaterian species. Mol. Biol. Evol. 28:41531–41 [Google Scholar]
  59. Hong W, Lev S. 59.  2014. Tethering the assembly of SNARE complexes. Trends Cell Biol 24:135–43 [Google Scholar]
  60. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang S-R. 60.  2008. Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu. Rev. Pharmacol. Toxicol. 48:393–423 [Google Scholar]
  61. Hortsch M, Margolis B. 61.  2003. Septate and paranodal junctions: kissing cousins. Trends Cell Biol 13:11557–61 [Google Scholar]
  62. Humphrey JD, Dufresne ER, Schwartz MA. 62.  2014. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:12802–12 [Google Scholar]
  63. Hynes RO. 63.  2012. The evolution of metazoan extracellular matrix. J. Cell Biol. 196:6671–79 [Google Scholar]
  64. Izumi Y, Furuse M. 64.  2014. Molecular organization and function of invertebrate occluding junctions. Semin. Cell Dev. Biol. 36:186–93 [Google Scholar]
  65. Jacob F. 65.  1977. Evolution and tinkering. Science 196:42951161–66 [Google Scholar]
  66. Jager M, Manuel M. 66.  2016. Ctenophores: an evolutionary-developmental perspective. Curr. Opin. Genet. Dev. 39:85–92 [Google Scholar]
  67. Jahn R, Fasshauer D. 67.  2012. Molecular machines governing exocytosis of synaptic vesicles. Nature 490:7419201–7 [Google Scholar]
  68. James DJ, Martin TFJ. 68.  2013. CAPS and Munc13: CATCHRs that SNARE vesicles. Front. Endocrinol. 4:187 [Google Scholar]
  69. Jékely G. 69.  2013. Global view of the evolution and diversity of metazoan neuropeptide signaling. PNAS 110:218702–7 [Google Scholar]
  70. Jékely G, Paps J, Nielsen C. 70.  2015. The phylogenetic position of ctenophores and the origin(s) of nervous systems. Evodevo 6:11 [Google Scholar]
  71. Jorgensen EM. 71.  2014. Animal evolution: looking for the first nervous system. Curr. Biol. 24:14R655–58 [Google Scholar]
  72. Joshi S, Whiteheart SW. 72.  2016. The nuts and bolts of the platelet release reaction. Platelets 28:129–37 [Google Scholar]
  73. Kavalali ET, Jorgensen EM. 73.  2014. Visualizing presynaptic function. Nat. Neurosci. 17:110–16 [Google Scholar]
  74. Kloepper TH, Kienle CN, Fasshauer D. 74.  2007. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18:93463–71 [Google Scholar]
  75. Kloepper TH, Kienle CN, Fasshauer D. 75.  2008. SNAREing the basis of multicellularity: consequences of protein family expansion during evolution. Mol. Biol. Evol. 25:92055–68 [Google Scholar]
  76. Klöpper TH, Kienle N, Fasshauer D, Munro S. 76.  2012. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 10:71 [Google Scholar]
  77. Koch H, Hofmann K, Brose N. 77.  2000. Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem. J. 349:Pt. 1247–53 [Google Scholar]
  78. Krishnan A, Schiöth HB. 78.  2015. The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system. J. Exp. Biol. 218:Pt. 4562–71 [Google Scholar]
  79. la Roche de M, Asano Y, Griffiths GM. 79.  2016. Origins of the cytolytic synapse. Nat. Rev. Immunol. 16:7421–32 [Google Scholar]
  80. Leadbeater BSC. 80.  2015. The Choanoflagellates: Evolution, Biology, and Ecology Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  81. Lek A, Evesson FJ, Sutton RB, North KN, Cooper ST. 81.  2012. Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair. Traffic 13:2185–94 [Google Scholar]
  82. Lemmon MA. 82.  2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9:299–111 [Google Scholar]
  83. Leys SP, Nichols SA, Adams EDM. 83.  2009. Epithelia and integration in sponges. Integr. Comp. Biol. 49:2167–77 [Google Scholar]
  84. Lichtneckert R, Reichert H. 84.  2007. Origin and evolution of the first nervous system. Evolution of Nervous Systems, Vol. 1 J Kaas 289–315 Oxford, UK: Elsevier [Google Scholar]
  85. Liebeskind BJ, Hillis DM, Zakon HH, Hofmann HA. 85.  2016. Complex homology and the evolution of nervous systems. Trends Ecol. Evol. 31:2127–35 [Google Scholar]
  86. Lim C-Y, Zoncu R. 86.  2016. The lysosome as a command-and-control center for cellular metabolism. J. Cell Biol. 214:6653–64 [Google Scholar]
  87. Mackie GO. 87.  1990. The elementary nervous-system revisited. Am. Zoologist 30:4907–20 [Google Scholar]
  88. Margolis KG, Gershon MD, Bogunovic M. 88.  2016. Cellular organization of neuroimmune interactions in the gastrointestinal tract. Trends Immunol 37:7487–501 [Google Scholar]
  89. Marlow H, Arendt D. 89.  2014. Evolution: ctenophore genomes and the origin of neurons. Curr. Biol. 24:16R757–61 [Google Scholar]
  90. Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. 90.  2016. The exocyst complex in health and disease. Front. Cell Dev. Biol. 4:40024 [Google Scholar]
  91. Miller PW, Clarke DN, Weis WI, Lowe CJ, Nelson WJ. 91.  2013. The evolutionary origin of epithelial cell–cell adhesion mechanisms. Curr. Top. Membr. 72:267–311 [Google Scholar]
  92. Mirabeau O, Joly J-S. 92.  2013. Molecular evolution of peptidergic signaling systems in bilaterians. PNAS 110:22E2028–37 [Google Scholar]
  93. Monk T, Paulin MG. 93.  2014. Predation and the origin of neurones. Brain Behav. Evol. 84:4246–61 [Google Scholar]
  94. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP. 94.  et al. 2014. The ctenophore genome and the evolutionary origins of neural systems. Nature 510:7503109–14 [Google Scholar]
  95. Murray PS, Zaidel-Bar R. 95.  2014. Pre-metazoan origins and evolution of the cadherin adhesome. Biol. Open 3:121183–95 [Google Scholar]
  96. Nakanishi N, Renfer E, Technau U, Rentzsch F. 96.  2012. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 139:2347–57 [Google Scholar]
  97. Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N. 97.  2012. Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. PNAS 109:3213046–51 [Google Scholar]
  98. Nickel M. 98.  2010. Evolutionary emergence of synaptic nervous systems: What can we learn from the non-synaptic, nerveless Porifera?. Invertebr. Biol. 129:11–16 [Google Scholar]
  99. Nielsen C. 99.  2008. Six major steps in animal evolution: Are we derived sponge larvae?. Evol. Dev. 10:2241–57 [Google Scholar]
  100. Nielsen C. 100.  2012. Animal Evolution: Interrelationships of the Living Phyla Oxford, UK: Oxford Univ. Press [Google Scholar]
  101. Nouvian R, Neef J, Bulankina AV, Reisinger E, Pangršič T. 101.  et al. 2011. Exocytosis at the hair cell ribbon synapse apparently operates without neuronal SNARE proteins. Nat. Neurosci. 14:4411–13 [Google Scholar]
  102. Nusbaum MP, Blitz DM, Marder E. 102.  2017. Functional consequences of neuropeptide and small-molecule co-transmission. Nat. Rev. Neurosci. 18:389–403 [Google Scholar]
  103. Omote H, Miyaji T, Hiasa M, Juge N, Moriyama Y. 103.  2016. Structure, function, and drug interactions of neurotransmitter transporters in the postgenomic era. Annu. Rev. Pharmacol. Toxicol. 56:385–402 [Google Scholar]
  104. Oren M, Brickner I, Brikner I, Appelbaum L, Levy O. 104.  2014. Fast neurotransmission related genes are expressed in non nervous endoderm in the sea anemone Nematostella vectensis. PLOS ONE 9:4e93832 [Google Scholar]
  105. O'Rourke NA, Weiler NC, Micheva KD, Smith SJ. 105.  2012. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat. Rev. Neurosci. 13:6365–79 [Google Scholar]
  106. Ottaviani E, Malagoli D, Franceschi C. 106.  2007. Common evolutionary origin of the immune and neuroendocrine systems: from morphological and functional evidence to in silico approaches. Trends Immunol 28:11497–502 [Google Scholar]
  107. Ozbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC. 107.  2010. The evolution of extracellular matrix. Mol. Biol. Cell 21:244300–5 [Google Scholar]
  108. Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB. 108.  2015. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162:2259–70 [Google Scholar]
  109. Palm W, Thompson CB. 109.  2017. Nutrient acquisition strategies of mammalian cells. Nature 546:234–42 [Google Scholar]
  110. Pearse AGE. 110.  1968. Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc. R. Soc. B 170:71–80 [Google Scholar]
  111. Pei J, Ma C, Rizo J, Grishin NV. 111.  2009. Remote homology between Munc13 MUN domain and vesicle tethering complexes. J. Mol. Biol. 391:3509–17 [Google Scholar]
  112. Perera RM, Zoncu R. 112.  2016. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 32:223–53 [Google Scholar]
  113. Pinheiro PS, Houy S, Sørensen JB. 113.  2016. C2-domain containing calcium sensors in neuroendocrine secretion. J. Neurochem. 139:6943–58 [Google Scholar]
  114. Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O. 114.  et al. 2015. Genomic data do not support comb jellies as the sister group to all other animals. PNAS 112:5015402–7 [Google Scholar]
  115. Pobbati AV, Razeto A, Böddener M, Becker S, Fasshauer D. 115.  2004. Structural basis for the inhibitory role of tomosyn in exocytosis. J. Biol. Chem. 279:4547192–200 [Google Scholar]
  116. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J. 116.  et al. 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:583486–94 [Google Scholar]
  117. Rebsamen M, Pochini L, Stasyk T, de Araújo MEG, Galluccio M. 117.  et al. 2015. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519:7544477–81 [Google Scholar]
  118. Rentzsch F, Layden M, Manuel M. 118.  2017. The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdiscip. Rev. Dev. Biol. 6:1e257 [Google Scholar]
  119. Richter DJ, King N. 119.  2013. The genomic and cellular foundations of animal origins. Annu. Rev. Genet. 47:509–37 [Google Scholar]
  120. Riquelme M. 120.  2013. Tip growth in filamentous fungi: a road trip to the apex. Annu. Rev. Microbiol. 67:587–609 [Google Scholar]
  121. Rizo J, Xu J. 121.  2015. The synaptic vesicle release machinery. Annu. Rev. Biophys. 44:339–67 [Google Scholar]
  122. Rodriguez-Boulan E, Macara IG. 122.  2014. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15:4225–42 [Google Scholar]
  123. Rokas A. 123.  2008. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42:235–51 [Google Scholar]
  124. Román-Fernández A, Bryant DM. 124.  2016. Complex polarity: building multicellular tissues through apical membrane traffic. Traffic 17:121244–61 [Google Scholar]
  125. Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT. 125.  et al. 2013. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342:61641242592 [Google Scholar]
  126. Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU, Sabatini DM. 126.  2016. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536:7615229–33 [Google Scholar]
  127. Schlessinger A, Yee SW, Sali A, Giacomini KM. 127.  2013. SLC classification: an update. Clin. Pharmacol. Ther. 94:119–23 [Google Scholar]
  128. Schüler A, Schmitz G, Reft A, Ozbek S, Thurm U, Bornberg-Bauer E. 128.  2015. The rise and fall of TRP-N, an ancient family of mechanogated ion channels, in Metazoa. Genome Biol. Evol. 7:61713–27 [Google Scholar]
  129. Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I. 129.  2017. The origin of Metazoa: a unicellular perspective. Nat. Rev. Genet. 18:498–512 [Google Scholar]
  130. Senatore A, Raiss H, Le P. 130.  2016. Physiology and evolution of voltage-gated calcium channels in early diverging animal phyla: Cnidaria, Placozoa, Porifera and Ctenophora. Front. Physiol. 7:481 [Google Scholar]
  131. Shaham S. 131.  2010. Chemosensory organs as models of neuronal synapses. Nat. Rev. Neurosci. 11:3212–17 [Google Scholar]
  132. Sheng M, Hoogenraad CC. 132.  2007. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76:823–47 [Google Scholar]
  133. Smith CL, Reese TS. 133.  2016. Adherens junctions modulate diffusion between epithelial cells in Trichoplax adhaerens. Biol. Bull. 231:3216–24 [Google Scholar]
  134. Smith CL, Varoqueaux F, Kittelmann M, Azzam RN, Cooper B. 134.  et al. 2014. Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr. Biol. 24:141565–72 [Google Scholar]
  135. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U. 135.  et al. 2008. The Trichoplax genome and the nature of placozoans. Nature 454:7207955–60 [Google Scholar]
  136. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA. 136.  et al. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:7307720–26 [Google Scholar]
  137. Südhof TC. 137.  2012. The presynaptic active zone. Neuron 75:111–25 [Google Scholar]
  138. Takashima S, Gold D, Hartenstein V. 138.  2013. Stem cells and lineages of the intestine: a developmental and evolutionary perspective. Dev. Genes Evol. 223:1–285–102 [Google Scholar]
  139. Telford MJ, Budd GE, Philippe H. 139.  2015. Phylogenomic insights into animal evolution. Curr. Biol. 25:19R876–87 [Google Scholar]
  140. Telford MJ, Moroz LL, Halanych KM. 140.  2016. Evolution: a sisterly dispute. Nature 529:7586286–87 [Google Scholar]
  141. Tepass U. 141.  2012. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol. 28:655–85 [Google Scholar]
  142. Tyler S. 142.  2003. Epithelium—the primary building block for metazoan complexity. Integr. Comp. Biol. 43:155–63 [Google Scholar]
  143. van den Pol AN. 143.  2012. Neuropeptide transmission in brain circuits. Neuron 76:198–115 [Google Scholar]
  144. Vogl C, Cooper BH, Neef J, Wojcik SM, Reim K. 144.  et al. 2015. Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells. J. Cell Sci. 128:4638–44 [Google Scholar]
  145. Wan KY, Goldstein RE. 145.  2016. Coordinated beating of algal flagella is mediated by basal coupling. PNAS 113:20E2784–93 [Google Scholar]
  146. Wang S, Tsun Z-Y, Wolfson RL, Shen K, Wyant GA. 146.  et al. 2015. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:6218188–94 [Google Scholar]
  147. Whelan NV, Kocot KM, Moroz LL, Halanych KM. 147.  2015. Error, signal, and the placement of Ctenophora sister to all other animals. PNAS 112:185773–78 [Google Scholar]
  148. Wirtz-Peitz F, Knoblich JA. 148.  2006. Lethal giant larvae take on a life of their own. Trends Cell Biol 16:5234–41 [Google Scholar]
  149. Wood CR, Rosenbaum JL. 149.  2015. Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol 25:5276–85 [Google Scholar]
  150. Wray GA. 150.  2015. Molecular clocks and the early evolution of metazoan nervous systems. Philos. Trans. R. Soc. B 370:168420150046 [Google Scholar]
  151. Wu B, Guo W. 151.  2015. The exocyst at a glance. J. Cell Sci. 128:162957–64 [Google Scholar]
  152. Xu H, Ren D. 152.  2015. Lysosomal physiology. Annu. Rev. Physiol. 77:57–80 [Google Scholar]
  153. Yu I-M, Hughson FM. 153.  2010. Tethering factors as organizers of intracellular vesicular traffic. Annu. Rev. Cell Dev. Biol. 26:137–56 [Google Scholar]
  154. Zhang D, Aravind L. 154.  2010. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene 469:1–218–30 [Google Scholar]
  155. Zhen Y, Stenmark H. 155.  2015. Cellular functions of Rab GTPases at a glance. J. Cell Sci. 128:173171–76 [Google Scholar]
  156. Zihni C, Mills C, Matter K, Balda MS. 156.  2016. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17:9564–80 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error