1932

Abstract

Advances in genome-wide sequence technologies allow for detailed insights into the complexity of RNA landscapes of organisms from all three domains of life. Recent analyses of archaeal transcriptomes identified interaction and regulation networks of noncoding RNAs in this understudied domain. Here, we review current knowledge of small, noncoding RNAs with important functions for the archaeal lifestyle, which often requires adaptation to extreme environments. One focus is RNA metabolism at elevated temperatures in hyperthermophilic archaea, which reveals elevated amounts of RNA-guided RNA modification and virus defense strategies. Genome rearrangement events result in unique fragmentation patterns of noncoding RNA genes that require elaborate maturation pathways to yield functional transcripts. RNA-binding proteins, e.g., L7Ae and LSm, are important for many posttranscriptional control functions of RNA molecules in archaeal cells. We also discuss recent insights into the regulatory potential of their noncoding RNA partners.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031300
2018-11-23
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120417-031300.html?itemId=/content/journals/10.1146/annurev-genet-120417-031300&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aagaard C, Dalgaard JZ, Garrett RA 1995. Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron cells of Sulfolobus acidocaldarius. PNAS 92:12285–89
    [Google Scholar]
  2. 2.  Aittaleb M, Rashid R, Chen Q, Palmer JR, Daniels CJ, Li H 2003. Structure and function of archaeal box C/D sRNP core proteins. Nat. Struct. Biol. 10:256–63
    [Google Scholar]
  3. 3.  Altman S 1990. Enzymatic cleavage of RNA by RNA. Biosci. Rep. 10:317–37
    [Google Scholar]
  4. 4.  Arluison V, Mura C, Guzman MR, Liquier J, Pellegrini O et al. 2006. Three-dimensional structures of fibrillar Sm proteins: Hfq and other Sm-like proteins. J. Mol. Biol. 356:86–96
    [Google Scholar]
  5. 5.  Babski J, Haas KA, Näther-Schindler D, Pfeiffer F, Förstner KU et al. 2016. Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq). BMC Genom 17:1–19
    [Google Scholar]
  6. 6.  Babski J, Maier LK, Heyer R, Jaschinski K, Prasse D et al. 2014. Small regulatory RNAs in Archaea. RNA Biol 11:484–93
    [Google Scholar]
  7. 7.  Baird NJ, Zhang J, Hamma T, Ferre-D'Amare AR 2012. YbxF and YlxQ are bacterial homologs of L7Ae and bind K-turns but not K-loops. RNA 18:759–70
    [Google Scholar]
  8. 8.  Baker DL, Youssef OA, Chastkofsky MI, Dy DA, Terns RM, Terns MP 2005. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev 19:1238–48
    [Google Scholar]
  9. 9.  Ban N, Nissen P, Hansen J, Moore PB, Steitz TA 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–20
    [Google Scholar]
  10. 10.  Barns SM, Delwiche CF, Palmer JD, Pace NR 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. PNAS 93:9188–93
    [Google Scholar]
  11. 11.  Becker HF, Heliou A, Djaout K, Lestini R, Regnier M, Myllykallio H 2017. High-throughput sequencing reveals circular substrates for an archaeal RNA ligase. RNA Biol 14:1075–85
    [Google Scholar]
  12. 12.  Becker MM, Lapouge K, Segnitz B, Wild K, Sinning I 2017. Structures of human SRP72 complexes provide insights into SRP RNA remodeling and ribosome interaction. Nucleic Acids Res 45:470–81
    [Google Scholar]
  13. 13.  Bertels F, Rainey PB 2011. Curiosities of REPINs and RAYTs. Mobile Genet. Elements 1:262–68
    [Google Scholar]
  14. 14.  Bower-Phipps KR, Taylor DW, Wang HW, Baserga SJ 2012. The box C/D sRNP dimeric architecture is conserved across domain Archaea. RNA 18:1527–40
    [Google Scholar]
  15. 15.  Breaker RR 2018. Riboswitches and translation control. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a032797
    [Crossref] [Google Scholar]
  16. 16.  Brenneis M, Soppa J 2009. Regulation of translation in haloarchaea: 5′- and 3′-UTRs are essential and have to functionally interact in vivo. PLOS ONE 4:e4484
    [Google Scholar]
  17. 17.  Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P 2008. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6:245–52
    [Google Scholar]
  18. 18.  Brooks AN, Reiss DJ, Allard A, Wu W-J, Salvanha DM et al. 2014. A system-level model for the microbial regulatory genome. Mol. Syst. Biol. 10:740
    [Google Scholar]
  19. 19.  Browne PD, Cadillo-Quiroz H 2013. Contribution of transcriptomics to systems-level understanding of methanogenic archaea. Archaea 2013:586369
    [Google Scholar]
  20. 20.  Buddeweg A, Sharma K, Urlaub H, Schmitz RA 2017. sRNA41 affects ribosome binding sites within polycistronic mRNAs in Methanosarcina mazei Gö1. Mol. Microbiol. 107:595–609
    [Google Scholar]
  21. 21.  Caban K, Kinzy SA, Copeland PR 2007. The L7Ae RNA binding motif is a multifunctional domain required for the ribosome-dependent Sec incorporation activity of Sec insertion sequence binding protein 2. Mol. Cell Biol. 27:6350–60
    [Google Scholar]
  22. 22.  Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT et al. 2015. Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25:690–701
    [Google Scholar]
  23. 23.  Cavicchioli R 2011. Archaea—timeline of the third domain. Nat. Rev. Microbiol. 9:51–61
    [Google Scholar]
  24. 24.  Chan PP, Cozen AE, Lowe TM 2011. Discovery of permuted and recently split transfer RNAs in Archaea. Genome Biol 12:R38
    [Google Scholar]
  25. 25.  Charpentier B, Muller S, Branlant C 2005. Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Res 33:3133–44
    [Google Scholar]
  26. 26.  Cho IM, Lai LB, Susanti D, Mukhopadhyay B, Gopalan V 2010. Ribosomal protein L7Ae is a subunit of archaeal RNase P. PNAS 107:14573–78
    [Google Scholar]
  27. 27.  Clouet d'Orval B, Bortolin ML, Gaspin C, Bachellerie JP 2001. Box C/D RNA guides for the ribose methylation of archaeal tRNAs: The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res 29:4518–29
    [Google Scholar]
  28. 28.  Collins BM, Harrop SJ, Kornfeld GD, Dawes IW, Curmi PM, Mabbutt BC 2001. Crystal structure of a heptameric Sm-like protein complex from archaea: implications for the structure and evolution of snRNPs. J. Mol. Biol. 309:915–23
    [Google Scholar]
  29. 29.  Dar D, Prasse D, Schmitz RA, Sorek R 2016. Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea. Nat. Microbiol. 1:1–9
    [Google Scholar]
  30. 30.  Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N et al. 2016. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352:aad9822
    [Google Scholar]
  31. 31.  Daume M, Uhl M, Backofen R, Randau L 2017. RIP-Seq suggests translational regulation by L7Ae in Archaea. mBio 8:e00730–17
    [Google Scholar]
  32. 32.  Demolli S, Geist MM, Weigand JE, Matschiavelli N, Suess B, Rother M 2014. Development of β-lactamase as a tool for monitoring conditional gene expression by a tetracycline-riboswitch in Methanosarcina acetivorans. Archaea 2014:725610
    [Google Scholar]
  33. 33.  Dennis PP, Omer A 2005. Small non-coding RNAs in Archaea. Curr. Opin. Microbiol. 8:685–94
    [Google Scholar]
  34. 34.  Dennis PP, Tripp V, Lui L, Lowe T, Randau L 2015. C/D box sRNA-guided 2′-O-methylation patterns of archaeal rRNA molecules. BMC Genom 16:632
    [Google Scholar]
  35. 35.  Dyall-Smith ML, Pfeiffer F, Klee K, Palm P, Gross K et al. 2011. Haloquadratum walsbyi: limited diversity in a global pond. PLOS ONE 6:e20968
    [Google Scholar]
  36. 36.  Ellis MJ, Haniford DB 2016. Riboregulation of bacterial and archaeal transposition. Wiley Interdiscip. Rev. RNA 7:382–98
    [Google Scholar]
  37. 37.  Eme L, Doolittle WF 2015. Archaea. Curr. Biol. 25:R851–55
    [Google Scholar]
  38. 38.  Farlow WG 1880. On the nature of the peculiar reddening of salted codfish during the summer season Rep. Comm. 1878 969–74 U.S. Comm. Fish Fisheries Washington, DC:
    [Google Scholar]
  39. 39.  Fischer S, Benz J, Spath B, Maier LK, Straub J et al. 2010. The archaeal Lsm protein binds to small RNAs. J. Biol. Chem. 285:34429–38
    [Google Scholar]
  40. 40.  Fujishima K, Sugahara J, Kikuta K, Hirano R, Sato A et al. 2009. Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. PNAS 106:2683–87
    [Google Scholar]
  41. 41.  Fukuhara H, Kifusa M, Watanabe M, Terada A, Honda T et al. 2006. A fifth protein subunit Ph1496p elevates the optimum temperature for the ribonuclease P activity from Pyrococcus horikoshii OT3. Biochem. Biophys. Res. Commun. 343:956–64
    [Google Scholar]
  42. 42.  Ganot P, Bortolin ML, Kiss T 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809
    [Google Scholar]
  43. 43.  Gaspin C, Cavaille J, Erauso G, Bachellerie JP 2000. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J. Mol. Biol. 297:895–906
    [Google Scholar]
  44. 44.  Gomes-Filho V, Zaramela LS, Italiani VC, Baliga NS, Vêncio RZ, Koide T 2015. Sense overlapping transcripts in IS1341-type transposase genes are functional non-coding RNAs in archaea. RNA Biol 12:490–500
    [Google Scholar]
  45. 45.  Gorski SA, Vogel J, Doudna JA 2017. RNA-based recognition and targeting: sowing the seeds of specificity. Nat. Rev. Mol. Cell Biol. 18:215–28
    [Google Scholar]
  46. 46.  Gottesman S, Storz G 2011. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. Biol. 3:a003798
    [Google Scholar]
  47. 47.  Guy L, Ettema TJ 2011. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19:580–87
    [Google Scholar]
  48. 48.  Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gelugne JP, Caizergues-Ferrer M 1998. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J 17:7078–90
    [Google Scholar]
  49. 49.  Heyer R, Dorr M, Jellen-Ritter A, Spath B, Babski J et al. 2012. High throughput sequencing reveals a plethora of small RNAs including tRNA derived fragments in Haloferax volcanii. RNA Biol 9:1011–18
    [Google Scholar]
  50. 50.  Hirata A, Kitajima T, Hori H 2011. Cleavage of intron from the standard or non-standard position of the precursor tRNA by the splicing endonuclease of Aeropyrum pernix, a hyper-thermophilic Crenarchaeon, involves a novel RNA recognition site in the Crenarchaea specific loop. Nucleic Acids Res 39:9376–89
    [Google Scholar]
  51. 51.  Huang L, Lilley DM 2013. The molecular recognition of kink-turn structure by the L7Ae class of proteins. RNA 19:1703–10
    [Google Scholar]
  52. 52.  Huang L, Lilley DM 2016. The kink turn, a key architectural element in RNA structure. J. Mol. Biol. 428:790–801
    [Google Scholar]
  53. 53.  Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67
    [Google Scholar]
  54. 54.  Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ et al. 2016. A new view of the tree of life. Nat. Microbiol. 1:16048
    [Google Scholar]
  55. 55.  Ignatova Z, Narberhaus F 2017. Systematic probing of the bacterial RNA structurome to reveal new functions. Curr. Opin. Microbiol. 36:14–19
    [Google Scholar]
  56. 56.  Jager D, Forstner KU, Sharma CM, Santangelo TJ, Reeve JN 2014. Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genom 15:684
    [Google Scholar]
  57. 57.  Jager D, Pernitzsch SR, Richter AS, Backofen R, Sharma CM, Schmitz RA 2012. An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains. Nucleic Acids Res 40:10964–79
    [Google Scholar]
  58. 58.  Jager D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA 2009. Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. PNAS 106:21878–82
    [Google Scholar]
  59. 59.  Jaschinski K, Babski J, Lehr M, Burmester A, Benz J et al. 2014. Generation and phenotyping of a collection of sRNA gene deletion mutants of the haloarchaeon Haloferax volcanii. PLOS ONE 9:e90763
    [Google Scholar]
  60. 60.  Jorgensen SL, Hannisdal B, Lanzen A, Baumberger T, Flesland K et al. 2012. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. PNAS 109:E2846–55
    [Google Scholar]
  61. 61.  Karijolich J, Yu YT 2011. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474:395–98
    [Google Scholar]
  62. 62.  Katahira M, Sato H, Mishima K, Uesugi S, Fujii S 1993. NMR studies of G:A mismatches in oligodeoxyribonucleotide duplexes modelled after ribozymes. Nucleic Acids Res 21:5418–24
    [Google Scholar]
  63. 63.  Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, Kierzek R 2014. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res 42:3492–501
    [Google Scholar]
  64. 64.  Kilic T, Sanglier S, Van Dorsselaer A, Suck D 2006. Oligomerization behavior of the archaeal Sm2-type protein from Archaeoglobus fulgidus. Protein Sci 15:2310–17
    [Google Scholar]
  65. 65.  Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T 1996. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–88
    [Google Scholar]
  66. 66.  Kiss-Laszlo Z, Henry Y, Kiss T 1998. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J 17:797–807
    [Google Scholar]
  67. 67.  Kjems J, Garrett RA 1988. Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium Desulfurococcus mobilis. Cell 54:693–703
    [Google Scholar]
  68. 68.  Klein DJ, Schmeing TM, Moore PB, Steitz TA 2001. The kink-turn: a new RNA secondary structure motif. EMBO J 20:4214–21
    [Google Scholar]
  69. 69.  Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT et al. 2009. Prevalence of transcription promoters within archaeal operons and coding sequences. Mol. Syst. Biol. 5:1–16
    [Google Scholar]
  70. 70.  Koo BK, Park CJ, Fernandez CF, Chim N, Ding Y et al. 2011. Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface. J. Mol. Biol. 411:927–42
    [Google Scholar]
  71. 71.  Koonin EV 2017. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry versus convergence. Biol. Direct 12:5
    [Google Scholar]
  72. 72.  Koonin EV, Bork P, Sander C 1994. A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and a ribosome modification enzyme?. Nucleic Acids Res 22:2166–67
    [Google Scholar]
  73. 73.  Kuhn JF, Tran EJ, Maxwell ES 2002. Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. Nucleic Acids Res 30:931–41
    [Google Scholar]
  74. 74.  Lai SM, Lai LB, Foster MP, Gopalan V 2014. The L7Ae protein binds to two kink-turns in the Pyrococcus furiosus RNase P RNA. Nucleic Acids Res 42:13328–38
    [Google Scholar]
  75. 75.  Lapinaite A, Simon B, Skjaerven L, Rakwalska-Bange M, Gabel F, Carlomagno T 2013. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 502:519–23
    [Google Scholar]
  76. 76.  Lechner M, Rossmanith W, Hartmann RK, Tholken C, Gutmann B et al. 2015. Distribution of ribonucleoprotein and protein-only RNase P in Eukarya. Mol. Biol. Evol. 32:3186–93
    [Google Scholar]
  77. 77.  Liang B, Xue S, Terns RM, Terns MP, Li H 2007. Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nat. Struct. Mol. Biol. 14:1189–95
    [Google Scholar]
  78. 78.  Liang XH, Liu Q, Fournier MJ 2009. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 15:1716–28
    [Google Scholar]
  79. 79.  Lilley DM 2012. The structure and folding of kink turns in RNA. Wiley Interdiscip. Rev. RNA 3:797–805
    [Google Scholar]
  80. 80.  Lilley DM 2014. The K-turn motif in riboswitches and other RNA species. Biochim. Biophys. Acta 1839:995–1004
    [Google Scholar]
  81. 81.  Liu F, Jenssen TK, Trimarchi J, Punzo C, Cepko CL et al. 2007. Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates. BMC Genom 8:153
    [Google Scholar]
  82. 82.  Maier LK, Benz J, Fischer S, Alstetter M, Jaschinski K et al. 2015. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells. Biochimie 117:129–37
    [Google Scholar]
  83. 83.  Martens B, Bezerra GA, Kreuter MJ, Grishkovskaya I, Manica A et al. 2015. The Heptameric SmAP1 and SmAP2 proteins of the crenarchaeon Sulfolobus solfataricus bind to common and distinct RNA targets. Life 5:1264–81
    [Google Scholar]
  84. 84.  Martens B, Hou L, Amman F, Wolfinger MT, Evguenieva-Hackenberg E, Blasi U 2017. The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Res 45:7938–49
    [Google Scholar]
  85. 85.  Martens B, Manoharadas S, Hasenohrl D, Manica A, Blasi U 2013. Antisense regulation by transposon-derived RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO Rep 14:527–33
    [Google Scholar]
  86. 86.  Mayes AE, Verdone L, Legrain P, Beggs JD 1999. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J 18:4321–31
    [Google Scholar]
  87. 87.  Meng J, Xu J, Qin D, He Y, Xiao X, Wang F 2014. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:650–59
    [Google Scholar]
  88. 88.  Moore T, Zhang Y, Fenley MO, Li H 2004. Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12:807–18
    [Google Scholar]
  89. 89.  Mura C, Cascio D, Sawaya MR, Eisenberg DS 2001. The crystal structure of a heptameric archaeal Sm protein: implications for the eukaryotic snRNP core. PNAS 98:5532–37
    [Google Scholar]
  90. 90.  Mura C, Kozhukhovsky A, Gingery M, Phillips M, Eisenberg D 2003. The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs). Protein Sci 12:832–47
    [Google Scholar]
  91. 91.  Mura C, Randolph PS, Patterson J, Cozen AE 2013. Archaeal and eukaryotic homologs of Hfq: a structural and evolutionary perspective on Sm function. RNA Biol 10:636–51
    [Google Scholar]
  92. 92.  Ni J, Tien AL, Fournier MJ 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565–73
    [Google Scholar]
  93. 93.  Nielsen JS, Boggild A, Andersen CB, Nielsen G, Boysen A et al. 2007. An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii. RNA 13:2213–23
    [Google Scholar]
  94. 94.  Nolivos S, Carpousis AJ, Clouet-d'Orval B 2005. The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn. Nucleic Acids Res 33:6507–14
    [Google Scholar]
  95. 95.  Noon KR, Bruenger E, McCloskey JA 1998. Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus. J. Bacteriol 180:2883–88
    [Google Scholar]
  96. 96.  Nottrott S, Hartmuth K, Fabrizio P, Urlaub H, Vidovic I et al. 1999. Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5′ stem-loop of U4 snRNA. EMBO J 18:6119–33
    [Google Scholar]
  97. 97.  Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J et al. 2011. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39:3204–23
    [Google Scholar]
  98. 98.  Omer AD, Lowe TM, Russell AG, Ebhardt H, Eddy SR, Dennis PP 2000. Homologs of small nucleolar RNAs in Archaea. Science 288:517–22
    [Google Scholar]
  99. 99.  Omer AD, Ziesche S, Ebhardt H, Dennis PP 2002. In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. PNAS 99:5289–94
    [Google Scholar]
  100. 100.  Orell A, Tripp V, Aliaga-Tobar V, Albers SV, Maracaja-Coutinho V, Randau L 2018. A regulatory RNA is involved in RNA duplex formation and biofilm regulation in Sulfolobus acidocaldarius. Nucleic Acids Res 46:4794–806
    [Google Scholar]
  101. 101.  Oruganti S, Zhang Y, Li H 2005. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochem. Biophys. Res. Commun. 333:550–54
    [Google Scholar]
  102. 102.  Palmer JR, Baltrus T, Reeve JN, Daniels CJ 1992. Transfer RNA genes from the hyperthermophilic Archaeon, Methanopyrus kandleri. Biochim. Biophys. Acta 1132:315–18
    [Google Scholar]
  103. 103.  Phok K, Moisan A, Rinaldi D, Brucato N, Carpousis AJ et al. 2011. Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi. BMC Genomics 12:312
    [Google Scholar]
  104. 104.  Piriyapongsa J, Jordan IK 2007. A family of human microRNA genes from miniature inverted-repeat transposable elements. PLOS ONE 2:e203
    [Google Scholar]
  105. 105.  Plagens A, Daume M, Wiegel J, Randau L 2015. Circularization restores signal recognition particle RNA functionality in Thermoproteus. eLife 4:e11623
    [Google Scholar]
  106. 106.  Polacek N, Mankin AS 2005. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit. Rev. Biochem. Mol. Biol. 40:285–311
    [Google Scholar]
  107. 107.  Prasse D, Forstner KU, Jager D, Backofen R, Schmitz RA 2017. sRNA154 a newly identified regulator of nitrogen fixation in Methanosarcina mazei strain Gö1. RNA Biol 14:1544–58
    [Google Scholar]
  108. 108.  Qi L, Yue L, Feng D, Qi F, Li J, Dong X 2017. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis. Nucleic Acids Res 45:7285–98
    [Google Scholar]
  109. 109.  Randau L 2012. RNA processing in the minimal organism Nanoarchaeum equitans. Genome Biol 13:R63
    [Google Scholar]
  110. 110.  Randau L, Calvin K, Hall M, Yuan J, Podar M et al. 2005. The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. PNAS 102:17934–39
    [Google Scholar]
  111. 111.  Randau L, Munch R, Hohn MJ, Jahn D, Soll D 2005. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves. Nature 433:537–41
    [Google Scholar]
  112. 112.  Randau L, Pearson M, Soll D 2005. The complete set of tRNA species in Nanoarchaeum equitans. FEBS Lett 579:2945–47
    [Google Scholar]
  113. 113.  Randau L, Schroder I, Soll D 2008. Life without RNase P. Nature 453:120–23
    [Google Scholar]
  114. 114.  Randau L, Soll D 2008. Transfer RNA genes in pieces. EMBO Rep 9:623–28
    [Google Scholar]
  115. 115.  Randau L, Stanley BJ, Kohlway A, Mechta S, Xiong Y, Soll D 2009. A cytidine deaminase edits C to U in transfer RNAs in Archaea. Science 324:657–59
    [Google Scholar]
  116. 116.  Reichow SL, Hamma T, Ferre-D'Amare AR, Varani G 2007. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452–64
    [Google Scholar]
  117. 117.  Reyes VM, Abelson J 1988. Substrate recognition and splice site determination in yeast tRNA splicing. Cell 55:719–30
    [Google Scholar]
  118. 118.  Rosenblad MA, Lopez MD, Piccinelli P, Samuelsson T 2006. Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes. Nucleic Acids Res 34:5145–56
    [Google Scholar]
  119. 119.  Rosenblad MA, Samuelsson T 2004. Identification of chloroplast signal recognition particle RNA genes. Plant Cell Physiol 45:1633–39
    [Google Scholar]
  120. 120.  Rozhdestvensky TS, Tang TH, Tchirkova IV, Brosius J, Bachellerie JP, Huttenhofer A 2003. Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res 31:869–77
    [Google Scholar]
  121. 121.  Saito H, Fujita Y, Kashida S, Hayashi K, Inoue T 2011. Synthetic human cell fate regulation by protein-driven RNA switches. Nat. Commun. 2:160
    [Google Scholar]
  122. 122.  Saito H, Kobayashi T, Hara T, Fujita Y, Hayashi K et al. 2010. Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat. Chem. Biol. 6:71–78
    [Google Scholar]
  123. 123.  Salgado-Garrido J, Bragado-Nilsson E, Kandels-Lewis S, Seraphin B 1999. Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J 18:3451–62
    [Google Scholar]
  124. 124.  Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S et al. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–55
    [Google Scholar]
  125. 125.  Siezen RJ, Wilson G, Todt T 2010. Prokaryotic whole-transcriptome analysis: deep sequencing and tiling arrays. Microbial. Biotechnol. 3:125–30
    [Google Scholar]
  126. 126.  Sittka A, Sharma CM, Rolle K, Vogel J 2009. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biol 6:266–75
    [Google Scholar]
  127. 127.  Slupska MM, King AG, Fitz-Gibbon S, Besemer J, Borodovsky M, Miller JH 2001. Leaderless transcripts of the crenarchaeal hyperthermophile Pyrobaculum aerophilum. J. Mol. Biol. 309:347–60
    [Google Scholar]
  128. 128.  Soma A, Onodera A, Sugahara J, Kanai A, Yachie N et al. 2007. Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318:450–53
    [Google Scholar]
  129. 129.  Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J et al. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–79
    [Google Scholar]
  130. 130.  Speed MC, Burkhart BW, Picking JW, Santangelo TJ 2018. An archaeal fluoride-responsive riboswitch provides an inducible expression system for hyperthermophiles. Appl. Environ. Microbiol. 84:e02306–17
    [Google Scholar]
  131. 131.  Stapleton JA, Endo K, Fujita Y, Hayashi K, Takinoue M et al. 2012. Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition. ACS Synth. Biol. 1:83–88
    [Google Scholar]
  132. 132.  Sugahara J, Kikuta K, Fujishima K, Yachie N, Tomita M, Kanai A 2008. Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order Thermoproteales. Mol. Biol. Evol. 25:2709–16
    [Google Scholar]
  133. 133.  Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A 2006. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:e63
    [Google Scholar]
  134. 134.  Tam OH, Aravin AA, Stein P, Girard A, Murchison EP et al. 2008. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–38
    [Google Scholar]
  135. 135.  Thore S, Mayer C, Sauter C, Weeks S, Suck D 2003. Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA: common features of RNA binding in Archaea and Eukarya. J. Biol. Chem. 278:1239–47
    [Google Scholar]
  136. 136.  Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP 2005. Coevolution of tRNA intron motifs and tRNA endonuclease architecture in Archaea. PNAS 102:15418–22
    [Google Scholar]
  137. 137.  Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP 2005. Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization. PNAS 102:8933–38
    [Google Scholar]
  138. 138.  Toro I, Basquin J, Teo-Dreher H, Suck D 2002. Archaeal Sm proteins form heptameric and hexameric complexes: crystal structures of the Sm1 and Sm2 proteins from the hyperthermophile Archaeoglobus fulgidus. J. Mol. Biol. 320:129–42
    [Google Scholar]
  139. 139.  Toro I, Thore S, Mayer C, Basquin J, Seraphin B, Suck D 2001. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex. EMBO J 20:2293–303
    [Google Scholar]
  140. 140.  Tran E, Zhang X, Lackey L, Maxwell ES 2005. Conserved spacing between the box C/D and C′/D′ RNPs of the archaeal box C/D sRNP complex is required for efficient 2′-O-methylation of target RNAs. RNA 11:285–93
    [Google Scholar]
  141. 141.  Tran EJ, Zhang X, Maxwell ES 2003. Efficient RNA 2′-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C′/D′ RNPs. EMBO J 22:3930–40
    [Google Scholar]
  142. 142.  Tripp V, Martin R, Orell A, Alkhnbashi OS, Backofen R, Randau L 2017. Plasticity of archaeal C/D box sRNA biogenesis. Mol. Microbiol. 103:151–64
    [Google Scholar]
  143. 143.  Vogel J, Luisi BF 2011. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9:578–89
    [Google Scholar]
  144. 144.  Walter P, Blobel G 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299:691–98
    [Google Scholar]
  145. 145.  Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY 2011. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12:641–55
    [Google Scholar]
  146. 146.  Wang H, Boisvert D, Kim KK, Kim R, Kim SH 2000. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 Å resolution. EMBO J 19:317–23
    [Google Scholar]
  147. 147.  Wang P, Yang L, Gao YQ, Zhao XS 2015. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation. Nucleic Acids Res 43:7207–16
    [Google Scholar]
  148. 148.  Watanabe Y, Yokobori S, Inaba T, Yamagishi A, Oshima T et al. 2002. Introns in protein-coding genes in Archaea. FEBS Lett 510:27–30
    [Google Scholar]
  149. 149.  Watkins NJ, Bohnsack MT 2012. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip. Rev. RNA 3:397–414
    [Google Scholar]
  150. 150.  Watkins NJ, Segault V, Charpentier B, Nottrott S, Fabrizio P et al. 2000. A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP. Cell 103:457–66
    [Google Scholar]
  151. 151.  Weichenrieder O 2014. RNA binding by Hfq and ring-forming (L)Sm proteins: a trade-off between optimal sequence readout and RNA backbone conformation. RNA Biol 11:537–49
    [Google Scholar]
  152. 152.  Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K et al. 2010. Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 11:R31
    [Google Scholar]
  153. 153.  Westhof E, Auffinger P 2006. RNA tertiary structure. Encyclopedia of Analytical Chemistry RA Meyers Chichester, UK: John Wiley https://doi.org/10.1002/9780470027318.a1428
    [Crossref] [Google Scholar]
  154. 154.  Wilusz CJ, Wilusz J 2013. Lsm proteins and Hfq: Life at the 3′ end. RNA Biol 10:592–601
    [Google Scholar]
  155. 155.  Winkler WC, Grundy FJ, Murphy BA, Henkin TM 2001. The GA motif: an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs. RNA 7:1165–72
    [Google Scholar]
  156. 156.  Woese CR, Fox GE 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74:5088–90
    [Google Scholar]
  157. 157.  Woese CR, Kandler O, Wheelis ML 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:4576–79
    [Google Scholar]
  158. 158.  Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R 2010. A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–41
    [Google Scholar]
  159. 159.  Yip WS, Vincent NG, Baserga SJ 2013. Ribonucleoproteins in archaeal pre-rRNA processing and modification. Archaea 2013:614735
    [Google Scholar]
  160. 160.  Zago MA, Dennis PP, Omer AD 2005. The expanding world of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol. Microbiol 55:1812–28
    [Google Scholar]
  161. 161.  Zaramela LS, Vêncio RZN, ten-Caten F, Baliga NS, Koide T 2014. Transcription start site associated RNAs (TSSaRNAs) are ubiquitous in all domains of life. PLOS ONE 9:e107680
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031300
Loading
/content/journals/10.1146/annurev-genet-120417-031300
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error