1932

Abstract

Synapse formation is mediated by a surprisingly large number and wide variety of genes encoding many different protein classes. One of the families increasingly implicated in synapse wiring is the immunoglobulin superfamily (IgSF). IgSF molecules are by definition any protein containing at least one Ig-like domain, making this family one of the most common protein classes encoded by the genome. Here, we review the emerging roles for IgSF molecules in synapse formation specifically in the vertebrate brain, focusing on examples from three classes of IgSF members: () cell adhesion molecules, () signaling molecules, and () immune molecules expressed in the brain. The critical roles for IgSF members in regulating synapse formation may explain their extensive involvement in neuropsychiatric and neurodevelopmental disorders. Solving the IgSF code for synapse formation may reveal multiple new targets for rescuing IgSF-mediated deficits in synapse formation and, eventually, new treatments for psychiatric disorders caused by altered IgSF-induced synapse wiring.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031513
2018-11-23
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120417-031513.html?itemId=/content/journals/10.1146/annurev-genet-120417-031513&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA et al. 2005. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310:5746317–20
    [Google Scholar]
  2. 2.  Adelson JD, Sapp RW, Brott BK, Lee H, Miyamichi K et al. 2016. Developmental sculpting of intracortical circuits by MHC class I H2-Db and H2-Kb. Cereb. Cortex 26:41453–63
    [Google Scholar]
  3. 3.  Albayrak Ö, Pütter C, Volckmar A-L, Cichon S, Hoffmann P et al. 2013. Common obesity risk alleles in childhood attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B 162B:4295–305
    [Google Scholar]
  4. 4.  Alonso P, Gratacòs M, Menchón JM, Segalàs C, González JR et al. 2008. Genetic susceptibility to obsessive‐compulsive hoarding: the contribution of neurotrophic tyrosine kinase receptor type 3 gene. Genes Brain Behav 7:7778–85
    [Google Scholar]
  5. 5.  Ammendrup-Johnsen I, Naito Y, Craig AM, Takahashi H 2015. Neurotrophin-3 enhances the synaptic organizing function of TrkC-protein tyrosine phosphatase σ in rat hippocampal neurons. J. Neurosci. 35:3612425–31
    [Google Scholar]
  6. 6.  An H, Brettle M, Lee T, Heng B, Lim CK et al. 2016. Soluble LILRA3 promotes neurite outgrowth and synapses formation through a high-affinity interaction with Nogo 66. J. Cell Sci. 129:61198–209
    [Google Scholar]
  7. 7.  Ango F, di Cristo G, Higashiyama H, Bennett V, Wu P, Huang ZJ 2004. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at Purkinje axon initial segment. Cell 119:2257–72
    [Google Scholar]
  8. 8.  Ango F, Wu C, der Want JJV, Wu P, Schachner M, Huang ZJ 2008. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites. PLOS Biol 6:4e103
    [Google Scholar]
  9. 9.  Armengol L, Gratacòs M, Pujana MA, Ribasés M, Martín-Santos R, Estivill X 2002. 5′ UTR-region SNP in the NTRK3 gene is associated with panic disorder. Mol. Psychiatry 7:9928–30
    [Google Scholar]
  10. 10.  Barclay AN 2003. Membrane proteins with immunoglobulin-like domains—a master superfamily of interaction molecules. Semin. Immunol. 15:4215–23
    [Google Scholar]
  11. 11.  Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X et al. 2002. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:55861525–31
    [Google Scholar]
  12. 12.  Bochner DN, Sapp RW, Adelson JD, Zhang S, Lee H et al. 2014. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia. Sci. Transl. Med. 6:258258ra140
    [Google Scholar]
  13. 13.  Borg I, Freude K, Kübart S, Hoffmann K, Menzel C et al. 2005. Disruption of Netrin G1 by a balanced chromosome translocation in a girl with Rett syndrome. Eur. J. Hum. Genet. 13:8921–27
    [Google Scholar]
  14. 14.  Brennaman LH, Zhang X, Guan H, Triplett JW, Brown A et al. 2013. Polysialylated NCAM and EphrinA/EphA regulate synaptic development of GABAergic interneurons in prefrontal cortex. Cereb. Cortex 23:1162–77
    [Google Scholar]
  15. 15.  Bucan M, Abrahams BS, Wang K, Glessner JT, Herman EI et al. 2009. Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLOS Genet 5:6e1000536
    [Google Scholar]
  16. 16.  Burton SD, Johnson JW, Zeringue HC, Meriney SD 2012. Distinct roles of neuroligin-1 and SynCAM1 in synapse formation and function in primary hippocampal neuronal cultures. Neuroscience 215:1–16
    [Google Scholar]
  17. 17.  Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL et al. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28:1264–78
    [Google Scholar]
  18. 18.  Cameron S, Chang W-T, Chen Y, Zhou Y, Taran S, Rao Y 2013. Visual circuit assembly requires fine tuning of the novel Ig transmembrane protein borderless. J. Neurosci. 33:4417413–21
    [Google Scholar]
  19. 19.  Carrié A, Jun L, Bienvenu T, Vinet M-C, McDonell N et al. 1999. A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat. Genet. 23:125–31
    [Google Scholar]
  20. 20.  Casey JP, Magalhaes T, Conroy JM, Regan R, Shah N et al. 2012. A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Hum. Genet. 131:4565–79
    [Google Scholar]
  21. 21.  Chacon MA, Boulanger LM 2013. MHC class I protein is expressed by neurons and neural progenitors in mid-gestation mouse brain. Mol. Cell. Neurosci. 52:117–27
    [Google Scholar]
  22. 22.  Chan SS-Y, Zheng H, Su M-W, Wilk R, Killeen MT et al. 1996. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87:2187–95
    [Google Scholar]
  23. 23.  Chen L, Flies DB 2013. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13:4227–42
    [Google Scholar]
  24. 24.  Chen X, Long F, Cai B, Chen X, Chen G 2018. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 3: evidence from chromosome 3 high density association screen. J. Comp. Neurol. 526:159–79
    [Google Scholar]
  25. 25.  Choi Y, Nam J, Whitcomb DJ, Song YS, Kim D et al. 2016. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Sci. Rep. 6:26676
    [Google Scholar]
  26. 26.  Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST 2010. Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 166:2508–21
    [Google Scholar]
  27. 27.  Connor SA, Ammendrup-Johnsen I, Chan AW, Kishimoto Y, Murayama C et al. 2016. Altered cortical dynamics and cognitive function upon haploinsufficiency of the autism-linked excitatory synaptic suppressor MDGA2. Neuron 91:51052–68
    [Google Scholar]
  28. 28.  Corriveau RA, Huh GS, Shatz CJ 1998. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21:3505–20
    [Google Scholar]
  29. 29.  de Wit J, Ghosh A 2014. Control of neural circuit formation by leucine-rich repeat proteins. Trends Neurosci 37:10539–50
    [Google Scholar]
  30. 30.  Demyanenko GP, Mohan V, Zhang X, Brennaman LH, Dharbal KES et al. 2014. Neural cell adhesion molecule NrCAM regulates Semaphorin 3F-induced dendritic spine remodeling. J. Neurosci. 34:3411274–87
    [Google Scholar]
  31. 31.  Dityatev A, Dityateva G, Schachner M 2000. Synaptic strength as a function of post- versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 26:1207–17
    [Google Scholar]
  32. 32.  Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N et al. 2004. Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J. Neurosci. 24:429372–82
    [Google Scholar]
  33. 33.  Dixon-Salazar TJ, Fourgeaud L, Tyler CM, Poole JR, Park JJ, Boulanger LM 2014. MHC class I limits hippocampal synapse density by inhibiting neuronal insulin receptor signaling. J. Neurosci. 34:3511844–56
    [Google Scholar]
  34. 34.  Dunah AW, Hueske E, Wyszynski M, Hoogenraad CC, Jaworski J et al. 2005. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat. Neurosci. 8:4458–67
    [Google Scholar]
  35. 35.  Eastwood SL, Harrison PJ 2008. Decreased mRNA expression of netrin-G1 and netrin-G2 in the temporal lobe in schizophrenia and bipolar disorder. Neuropsychopharmacology 33:4933–45
    [Google Scholar]
  36. 36.  Elegheert J, Cvetkoka V, Clayton AJ, Heroven C, Vennekens KM et al. 2017. Structural mechanism for modulation of synaptic neuroligin-neurexin signaling by MDGA proteins. Neuron 95:4896–913.e10
    [Google Scholar]
  37. 37.  Elia J, Gai X, Xie HM, Perin JC, Geiger E et al. 2010. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol. Psychiatry 15:6637–46
    [Google Scholar]
  38. 38.  Elmer BM, Estes ML, Barrow SL, McAllister AK 2013. MHCI requires MEF2 transcription factors to negatively regulate synapse density during development and in disease. J. Neurosci. 33:3413791–804
    [Google Scholar]
  39. 39.  Estes ML, McAllister AK 2016. Maternal immune activation: implications for neuropsychiatric disorders. Science 353:6301772–77
    [Google Scholar]
  40. 40.  Fayen J, Huang J-H, Meyerson H, Zhang D, Getty R et al. 1995. Class I MHC alpha 3 domain can function as an independent structural unit to bind CD8α. Mol. Immunol. 32:4267–75
    [Google Scholar]
  41. 41.  Feng Y, Vetró Á, Kiss E, Kapornai K, Daróczi G et al. 2008. Association of the neurotrophic tyrosine kinase receptor 3 (NTRK3) gene and childhood-onset mood disorders. Am. J. Psychiatry 165:5610–16
    [Google Scholar]
  42. 42.  Ferguson K, Long H, Cameron S, Chang W-T, Rao Y 2009. The conserved Ig superfamily member Turtle mediates axonal tiling in Drosophila. J. Neurosci. 29:4514151–59
    [Google Scholar]
  43. 43.  Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P et al. 2017. InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Res 45:D1D190–99
    [Google Scholar]
  44. 44.  Fogel AI, Akins MR, Krupp AJ, Stagi M, Stein V, Biederer T 2007. SynCAMs organize synapses through heterophilic adhesion. J. Neurosci. 27:4612516–30
    [Google Scholar]
  45. 45.  Fogel AI, Li Y, Giza J, Wang Q, Lam TT et al. 2010. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J. Biol. Chem. 285:4534864–74
    [Google Scholar]
  46. 46.  Fogel AI, Stagi M, de Arce KP, Biederer T 2011. Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation. EMBO J 30:234728–38
    [Google Scholar]
  47. 47.  Foster M, Sherrington CS 1897. A Text Book of Physiology, Part III: The Central Nervous System London: Macmillan. , 7th ed..
    [Google Scholar]
  48. 48.  Fourgeaud L, Davenport CM, Tyler CM, Cheng TT, Spencer MB, Boulanger LM 2010. MHC class I modulates NMDA receptor function and AMPA receptor trafficking. PNAS 107:5122278–83
    [Google Scholar]
  49. 49.  Fowler DK, Peters JH, Williams C, Washbourne P 2017. Redundant postsynaptic functions of SynCAMs 1–3 during synapse formation. Front. Mol. Neurosci. 10:24
    [Google Scholar]
  50. 50.  Franek KJ, Butler J, Johnson J, Simensen R, Friez MJ et al. 2011. Deletion of the immunoglobulin domain of IL1RAPL1 results in nonsyndromic X-linked intellectual disability associated with behavioral problems and mild dysmorphism. Am. J. Med. Genet. A 155:51109–14
    [Google Scholar]
  51. 51.  Frietze KK, Pappy AL, Melson JW, O'Driscoll EE, Tyler CM et al. 2016. Cryptic protein-protein interaction motifs in the cytoplasmic domain of MHCI proteins. BMC Immunol 17:24
    [Google Scholar]
  52. 52.  Gahmberg CG, Tian L, Ning L, Nyman-Huttunen H 2008. ICAM-5—a novel two-facetted adhesion molecule in the mammalian brain. Immunol. Lett. 117:2131–35
    [Google Scholar]
  53. 53.  Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G et al. 2018. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359:6376693–97
    [Google Scholar]
  54. 54.  Gangwar SP, Zhong X, Seshadrinathan S, Chen H, Machius M, Rudenko G 2017. Molecular mechanism of MDGA1: regulation of neuroligin 2:neurexin trans-synaptic bridges. Neuron 94:61132–41.e4
    [Google Scholar]
  55. 55.  Gardoni F, Boraso M, Zianni E, Corsini E, Galli CL et al. 2011. Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-1β and NMDA stimulation. J. Neuroinflamm. 8:14
    [Google Scholar]
  56. 56.  Giza JI, Jung Y, Jeffrey RA, Neugebauer NM, Picciotto MR, Biederer T 2013. The synaptic adhesion molecule SynCAM 1 contributes to cocaine effects on synapse structure and psychostimulant behavior. Neuropsychopharmacology 38:4628–38
    [Google Scholar]
  57. 57.  Glynn MW, Elmer BM, Garay PA, Liu X-B, Needleman LA et al. 2011. MHCI negatively regulates synapse density during the establishment of cortical connections. Nat. Neurosci. 14:4442–51
    [Google Scholar]
  58. 58.  Goddard CA, Butts DA, Shatz CJ 2007. Regulation of CNS synapses by neuronal MHC class I. PNAS 104:166828–33
    [Google Scholar]
  59. 59.  Goldman JS, Ashour MA, Magdesian MH, Tritsch NX, Harris SN et al. 2013. Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly. J. Neurosci. 33:4417278–89
    [Google Scholar]
  60. 60.  Guan H, Maness PF 2010. Perisomatic GABAergic innervation in prefrontal cortex is regulated by ankyrin interaction with the L1 cell adhesion molecule. Cereb. Cortex 20:112684–93
    [Google Scholar]
  61. 61.  Guirado R, Perez-Rando M, Sanchez-Matarredona D, Castillo-Gómez E, Liberia T et al. 2014. The dendritic spines of interneurons are dynamic structures influenced by PSA-NCAM expression. Cereb. Cortex 24:113014–24
    [Google Scholar]
  62. 62.  Han KA, Jeon S, Um JW, Ko J 2016. Emergent synapse organizers: LAR-RPTPs and their companions. International Review of Cell and Molecular Biology 324 KW Jeon 39–65 London: Academic
    [Google Scholar]
  63. 63.  Hashimoto T, Maekawa S, Miyata S 2009. IgLON cell adhesion molecules regulate synaptogenesis in hippocampal neurons. Cell Biochem. Funct. 27:7496–98
    [Google Scholar]
  64. 64.  Hashimoto T, Yamada M, Maekawa S, Nakashima T, Miyata S 2008. IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Res 1224:1–11
    [Google Scholar]
  65. 65.  Hebert AM, Strohmaier J, Whitman MC, Chen T, Gubina E et al. 2001. Kinetics and thermodynamics of β2-microglobulin binding to the α3 domain of major histocompatibility complex class I heavy chain. Biochemistry 40:175233–42
    [Google Scholar]
  66. 66.  Hirayasu K, Arase H 2015. Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication for disease associations. J. Hum. Genet. 60:11703–8
    [Google Scholar]
  67. 67.  Horn KE, Glasgow SD, Gobert D, Bull S-J, Luk T et al. 2013. DCC expression by neurons regulates synaptic plasticity in the adult brain. Cell Rep 3:1173–85
    [Google Scholar]
  68. 68.  Hoy JL, Constable JR, Vicini S, Fu Z, Washbourne P 2009. SynCAM1 recruits NMDA receptors via protein 4.1B. Mol. Cell. Neurosci. 42:4466–83
    [Google Scholar]
  69. 69.  Hruska M, Dalva MB 2012. Ephrin regulation of synapse formation, function and plasticity. Mol. Cell. Neurosci. 50:135–44
    [Google Scholar]
  70. 70.  Hu J, Liao J, Sathanoori M, Kochmar S, Sebastian J et al. 2015. CNTN6 copy number variations in 14 patients: a possible candidate gene for neurodevelopmental and neuropsychiatric disorders. J. Neurodev. Disord. 7:26
    [Google Scholar]
  71. 71.  Kähler AK, Djurovic S, Kulle B, Jönsson EG, Agartz I et al. 2008. Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. Am. J. Med. Genet. B 147B:71089–100
    [Google Scholar]
  72. 72.  Kashevarova AA, Nazarenko LP, Schultz-Pedersen S, Skryabin NA, Salyukova OA et al. 2014. Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability. Mol. Cytogenet. 7:197
    [Google Scholar]
  73. 73.  Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS-Y et al. 1996. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87:2175–85
    [Google Scholar]
  74. 74.  Kim JA, Kim D, Won SY, Han KA, Park D et al. 2017. Structural insights into modulation of neurexin-neuroligin trans-synaptic adhesion by MDGA1/neuroligin-2 complex. Neuron 94:61121–31.e6
    [Google Scholar]
  75. 75.  Koido K, Janno S, Traks T, Parksepp M, Ljubajev Ü et al. 2014. Associations between polymorphisms of LSAMP gene and schizophrenia. Psychiatry Res 215:3797–98
    [Google Scholar]
  76. 76.  Krueger DD, Tuffy LP, Papadopoulos T, Brose N 2012. The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr. Opin. Neurobiol. 22:3412–22
    [Google Scholar]
  77. 77.  Kubagawa H, Burrows PD, Cooper MD 1997. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. PNAS 94:105261–66
    [Google Scholar]
  78. 78.  Kwon S-K, Woo J, Kim S-Y, Kim H, Kim E 2010. Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, PTPδ, and PTPσ via specific domains regulate excitatory synapse formation. J. Biol. Chem. 285:1813966–78
    [Google Scholar]
  79. 79.  Lee H, Brott BK, Kirkby LA, Adelson JD, Cheng S et al. 2014. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 509:7499195–200
    [Google Scholar]
  80. 80.  Lee K, Kim Y, Lee S-J, Qiang Y, Lee D et al. 2013. MDGAs interact selectively with neuroligin-2 but not other neuroligins to regulate inhibitory synapse development. PNAS 110:1336–41
    [Google Scholar]
  81. 81.  Li J, Liu J, Feng G, Li T, Zhao Q et al. 2011. The MDGA1 gene confers risk to schizophrenia and bipolar disorder. Schizophr. Res. 125:2194–200
    [Google Scholar]
  82. 82.  Li Y, Zhang P, Choi T-Y, Park SK, Park H et al. 2015. Splicing-dependent trans-synaptic SALM3–LAR-RPTP interactions regulate excitatory synapse development and locomotion. Cell Rep 12:101618–30
    [Google Scholar]
  83. 83.  Lie E, Ko JS, Choi S-Y, Roh JD, Cho YS et al. 2016. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat. Commun. 7:12328
    [Google Scholar]
  84. 84.  Lin Z, Liu J, Ding H, Xu F, Liu H 2018. Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation. Nat. Commun. 9:1268
    [Google Scholar]
  85. 85.  Linhoff MW, Laurén J, Cassidy RM, Dobie FA, Takahashi H et al. 2009. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61:5734–49
    [Google Scholar]
  86. 86.  Litwack ED, Babey R, Buser R, Gesemann M, O'Leary DDM 2004. Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Mol. Cell. Neurosci. 25:2263–74
    [Google Scholar]
  87. 87.  Loh KH, Stawski PS, Draycott AS, Udeshi ND, Lehrman EK et al. 2016. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166:51295–307.e21
    [Google Scholar]
  88. 88.  Long EO 2008. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol. Rev. 224:170–84
    [Google Scholar]
  89. 89.  Long H, Ou Y, Rao Y, van Meyel DJ 2009. Dendrite branching and self-avoidance are controlled by Turtle, a conserved IgSF protein in Drosophila. Development 136:203475–84
    [Google Scholar]
  90. 90.  Lonskaya I, Partridge J, Lalchandani RR, Chung A, Lee T et al. 2013. Soluble ICAM-5, a product of activity dependent proteolysis, increases mEPSC frequency and dendritic expression of GluA1. PLOS ONE 8:7e69136
    [Google Scholar]
  91. 91.  Machold RP, Ploegh HL 1996. Intermediates in the assembly and degradation of class I major histocompatibility complex (MHC) molecules probed with free heavy chain–specific monoclonal antibodies. J. Exp. Med. 184:62251–60
    [Google Scholar]
  92. 92.  Mandai K, Rikitake Y, Mori M, Takai Y 2015. Nectins and nectin-like molecules in development and disease. Curr. Top. Dev. Biol. 112:197–231
    [Google Scholar]
  93. 93.  Marui T, Funatogawa I, Koishi S, Yamamoto K, Matsumoto H et al. 2009. Association of the neuronal cell adhesion molecule (NRCAM) gene variants with autism. Int. J. Neuropsychopharmacol. 12:11–10
    [Google Scholar]
  94. 94.  Massa PT, Ozato K, McFarlin DE 1993. Cell type‐specific regulation of major histocompatibility complex (MHC) class I gene expression in astrocytes, oligodendrocytes, and neurons. Glia 8:3201–7
    [Google Scholar]
  95. 95.  Matsuno H, Okabe S, Mishina M, Yanagida T, Mori K, Yoshihara Y 2006. Telencephalin slows spine maturation. J. Neurosci. 26:61776–86
    [Google Scholar]
  96. 96.  McAllister AK 2014. Major histocompatibility complex I in brain development and schizophrenia. Biol. Psychiatry 75:4262–68
    [Google Scholar]
  97. 97.  McConnell MJ, Huang YH, Datwani A, Shatz CJ 2009. H2-Kb and H2-Db regulate cerebellar long-term depression and limit motor learning. PNAS 106:166784–89
    [Google Scholar]
  98. 98.  Mercati O, Danckaert A, André-Leroux G, Bellinzoni M, Gouder L et al. 2013. Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites. Biol. Open 2:3324–34
    [Google Scholar]
  99. 99.  Mishra A, Knerr B, Paixão S, Kramer ER, Klein R 2008. The protein dendrite arborization and synapse maturation 1 (Dasm-1) is dispensable for dendrite arborization. Mol. Cell. Biol. 28:82782–91
    [Google Scholar]
  100. 100.  Mishra A, Traut MH, Becker L, Klopstock T, Stein V, Klein R 2014. Genetic evidence for the adhesion protein IgSF9/Dasm1 to regulate inhibitory synapse development independent of its intracellular domain. J. Neurosci. 34:124187–99
    [Google Scholar]
  101. 101.  Mizoguchi A, Nakanishi H, Kimura K, Matsubara K, Ozaki-Kuroda K et al. 2002. Nectin: an adhesion molecule involved in formation of synapses. J. Cell Biol. 156:3555–65
    [Google Scholar]
  102. 102.  Mostafa GA, Shehab AA, Al-Ayadhi LY 2013. The link between some alleles on human leukocyte antigen system and autism in children. J. Neuroimmunol. 255:170–74
    [Google Scholar]
  103. 103.  Murai KK, Misner D, Ranscht B 2002. Contactin supports synaptic plasticity associated with hippocampal long-term depression but not potentiation. Curr. Biol. 12:3181–90
    [Google Scholar]
  104. 104.  Nair D, Hosy E, Petersen JD, Constals A, Giannone G et al. 2013. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33:3213204–24
    [Google Scholar]
  105. 105.  Needleman LA, Liu X-B, El-Sabeawy F, Jones EG, McAllister AK 2010. MHC class I molecules are present both pre- and postsynaptically in the visual cortex during postnatal development and in adulthood. PNAS 107:3916999–94
    [Google Scholar]
  106. 106.  Needleman LA, McAllister AK 2012. The major histocompatibility complex and autism spectrum disorder. Dev. Neurobiol. 72:101288–301
    [Google Scholar]
  107. 107.  Neumann H, Cavalie A, Jenne DE, Wekerle H 1995. Induction of MHC class I genes in neurons. Science 269:5223549–52
    [Google Scholar]
  108. 108.  Nikonenko AG, Sun M, Lepsveridze E, Apostolova I, Petrova I et al. 2006. Enhanced perisomatic inhibition and impaired long‐term potentiation in the CA1 region of juvenile CHL1‐deficient mice. Eur. J. Neurosci. 23:71839–52
    [Google Scholar]
  109. 109.  Ning L, Tian L, Smirnov S, Vihinen H, Llano O et al. 2013. Interactions between ICAM-5 and β1 integrins regulate neuronal synapse formation. J. Cell Sci. 126:177–89
    [Google Scholar]
  110. 110.  O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T et al. 2008. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 40:91053–55
    [Google Scholar]
  111. 111.  Ohtake Y, Saito A, Li S 2018. Diverse functions of protein tyrosine phosphatase σ in the nervous and immune systems. Exp. Neurol. 302:196–204
    [Google Scholar]
  112. 112.  O'Neill LAJ 2008. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol. Rev. 226:110–18
    [Google Scholar]
  113. 113.  O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N et al. 2012. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:7397246–50
    [Google Scholar]
  114. 114.  Paetau S, Rolova T, Ning L, Gahmberg CG 2017. Neuronal ICAM-5 inhibits microglia adhesion and phagocytosis and promotes an anti-inflammatory response in LPS stimulated microglia. Front. Mol. Neurosci. 10:431
    [Google Scholar]
  115. 115.  Panichareon B, Nakayama K, Thurakitwannakarn W, Iwamoto S, Sukhumsirichart W 2012. OPCML gene as a schizophrenia susceptibility locus in Thai population. J. Mol. Neurosci. 46:2373–77
    [Google Scholar]
  116. 116.  Park KA, Ribic A, Gaupp FML, Coman D, Huang Y et al. 2016. Excitatory synaptic drive and feedforward inhibition in the hippocampal CA3 circuit are regulated by SynCAM 1. J. Neurosci. 36:287464–75
    [Google Scholar]
  117. 117.  Park YK, Goda Y 2016. Integrins in synapse regulation. Nat. Rev. Neurosci. 17:12745–56
    [Google Scholar]
  118. 118.  Patzke C, Max KEA, Behlke J, Schreiber J, Schmidt H et al. 2010. The coxsackievirus–adenovirus receptor reveals complex homophilic and heterophilic interactions on neural cells. J. Neurosci. 30:82897–910
    [Google Scholar]
  119. 119.  Pavlowsky A, Gianfelice A, Pallotto M, Zanchi A, Vara H et al. 2010. A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation. Curr. Biol. 20:2103–15
    [Google Scholar]
  120. 120.  Peaper DR, Cresswell P 2008. Regulation of MHC class I assembly and peptide binding. Annu. Rev. Cell Dev. Biol. 24:343–68
    [Google Scholar]
  121. 121.  Pedersen AE, Skov S, Bregenholt S, Ruhwald M, Claesson MH 1999. Signal transduction by the major histocompatibility complex class I molecule. APMIS 107:7–12887–95
    [Google Scholar]
  122. 122.  Penzes P, Buonanno A, Passafaro M, Sala C, Sweet RA 2013. Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. J. Neurochem. 126:2165–82
    [Google Scholar]
  123. 123.  Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM 2011. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14:3285–93
    [Google Scholar]
  124. 124.  Perez de Arce K, Schrod N, Metzbower SWR, Allgeyer E, Kong GK-W et al. 2015. Topographic mapping of the synaptic cleft into adhesive nanodomains. Neuron 88:61165–72
    [Google Scholar]
  125. 125.  Pettem KL, Yokomaku D, Takahashi H, Ge Y, Craig AM 2013. Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development. J. Cell Biol. 200:3321–36
    [Google Scholar]
  126. 126.  Pimenta AF, Reinoso BS, Levitt P 1996. Expression of the mRNAs encoding the limbic system-associated membrane protein (LAMP): II. Fetal rat brain. J. Comp. Neurol. 375:2289–302
    [Google Scholar]
  127. 127.  Piton A, Gauthier J, Hamdan FF, Lafrenière RG, Yang Y et al. 2011. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol. Psychiatry 16:8867–80
    [Google Scholar]
  128. 128.  Piton A, Michaud JL, Peng H, Aradhya S, Gauthier J et al. 2008. Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Hum. Mol. Genet. 17:243965–74
    [Google Scholar]
  129. 129.  Poljak RJ, Amzel LM, Avey HP, Chen BL, Phizackerley RP, Saul F 1973. Three-dimensional structure of the Fab′ fragment of a human immunoglobulin at 2.8-Å resolution. PNAS 70:123305–10
    [Google Scholar]
  130. 130.  Ramos-Brossier M, Montani C, Lebrun N, Gritti L, Martin C et al. 2015. Novel IL1RAPL1 mutations associated with intellectual disability impair synaptogenesis. Hum. Mol. Genet. 24:41106–18
    [Google Scholar]
  131. 131.  Ribic A, Schlumbohm C, Fuchs E, Flügge G, Mätz-Rensing K, Walter L 2011. Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey. Behav. Brain Funct. 7:11
    [Google Scholar]
  132. 132.  Ribic A, Zhang M, Schlumbohm C, Mätz-Rensing K, Uchanska-Ziegler B et al. 2010. Neuronal MHC class I molecules are involved in excitatory synaptic transmission at the hippocampal mossy fiber synapses of marmoset monkeys. Cell. Mol. Neurobiol. 30:6827–39
    [Google Scholar]
  133. 133.  Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H et al. (Schizophr. Work. Group Psychiatr. Genom. Consort.). 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:7510421–27
    [Google Scholar]
  134. 134.  Robbins EM, Krupp AJ, Perez de Arce K, Ghosh AK, Fogel AI et al. 2010. SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron 68:5894–906
    [Google Scholar]
  135. 135.  Roelvink PW, Lee GM, Einfeld DA, Kovesdi I, Wickham TJ 1999. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing Adenoviridae. Science 286:54441568–71
    [Google Scholar]
  136. 136.  Roppongi RT, Karimi B, Siddiqui TJ 2017. Role of LRRTMs in synapse development and plasticity. Neurosci. Res. 116:18–28
    [Google Scholar]
  137. 137.  Sakurai K, Toyoshima M, Takeda Y, Shimoda Y, Watanabe K 2010. Synaptic formation in subsets of glutamatergic terminals in the mouse hippocampal formation is affected by a deficiency in the neural cell recognition molecule NB-3. Neurosci. Lett. 473:2102–6
    [Google Scholar]
  138. 138.  Sakurai K, Toyoshima M, Ueda H, Matsubara K, Takeda Y et al. 2009. Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse. Dev. Neurobiol. 69:12811–24
    [Google Scholar]
  139. 139.  Salyakina D, Cukier HN, Lee JM, Sacharow S, Nations LD et al. 2011. Copy number variants in extended autism spectrum disorder families reveal candidates potentially involved in autism risk. PLOS ONE 6:10e26049
    [Google Scholar]
  140. 140.  Sara Y, Biederer T, Atasoy D, Chubykin A, Mozhayeva MG et al. 2005. Selective capability of SynCAM and neuroligin for functional synapse assembly. J. Neurosci. 25:1260–70
    [Google Scholar]
  141. 141.  Schormair B, Kemlink D, Roeske D, Eckstein G, Xiong L et al. 2008. PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome. Nat. Genet. 40:8946–48
    [Google Scholar]
  142. 142.  Seong E, Yuan L, Arikkath J 2015. Cadherins and catenins in dendrite and synapse morphogenesis. Cell Adhes. Migr. 9:3202–13
    [Google Scholar]
  143. 143.  Shi S-H, Cheng T, Jan LY, Jan Y-N 2004. The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation. PNAS 101:3613346–51
    [Google Scholar]
  144. 144.  Shi S-H, Cox DN, Wang D, Jan LY, Jan Y-N 2004. Control of dendrite arborization by an Ig family member, dendrite arborization and synapse maturation 1 (Dasm1). PNAS 101:3613341–45
    [Google Scholar]
  145. 145.  Shiina T, Hosomichi K, Inoko H, Kulski JK 2009. The HLA genomic loci map: expression, interaction, diversity and disease. J. Hum. Genet. 54:115–39
    [Google Scholar]
  146. 146.  Shimoda Y, Watanabe K 2009. Contactins. Cell Adhes. Migr. 3:164–70
    [Google Scholar]
  147. 147.  Shoukier M, Fuchs S, Schwaibold E, Lingen M, Gärtner J et al. 2013. Microduplication of 3p26.3 in nonsyndromic intellectual disability indicates an important role of CHL1 for normal cognitive function. Neuropediatrics 44:5268–71
    [Google Scholar]
  148. 148.  Shyn SI, Shi J, Kraft JB, Potash JB, Knowles JA et al. 2011. Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Mol. Psychiatry 16:2202–15
    [Google Scholar]
  149. 149.  Sinkus ML, Adams CE, Logel J, Freedman R, Leonard S 2013. Expression of immune genes on chromosome 6p21.3–22.1 in schizophrenia. Brain Behav. Immun. 32:51–62
    [Google Scholar]
  150. 150.  Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL et al. 2009. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol. Psychiatry 14:8755–63
    [Google Scholar]
  151. 151.  Song YS, Lee H-J, Prosselkov P, Itohara S, Kim E 2013. Trans-induced cis interaction in the tripartite NGL-1, netrin-G1 and LAR adhesion complex promotes development of excitatory synapses. J. Cell Sci. 126:214926–38
    [Google Scholar]
  152. 152.  Soudais C, Boutin S, Hong SS, Chillon M, Danos O et al. 2000. Canine adenovirus type 2 attachment and internalization: coxsackievirus-adenovirus receptor, alternative receptors, and an RGD-independent pathway. J. Virol. 74:2210639–49
    [Google Scholar]
  153. 153.  Spiliotis ET, Pentcheva T, Edidin M 2002. Probing for membrane domains in the endoplasmic reticulum: retention and degradation of unassembled MHC class I molecules. Mol. Biol. Cell 13:51566–81
    [Google Scholar]
  154. 154.  Stagi M, Fogel AI, Biederer T 2010. SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones. PNAS 107:167568–73
    [Google Scholar]
  155. 155.  Starkey HDV, Kirk CAV, Bixler GV, Imperio CG, Kale VP et al. 2012. Neuroglial expression of the MHCI pathway and PirB receptor is upregulated in the hippocampus with advanced aging. J. Mol. Neurosci. 48:1111–26
    [Google Scholar]
  156. 156.  Struyk AF, Canoll PD, Wolfgang MJ, Rosen CL, D'Eustachio P, Salzer JL 1995. Cloning of neurotrimin defines a new subfamily of differentially expressed neural cell adhesion molecules. J. Neurosci. 15:32141–56
    [Google Scholar]
  157. 157.  Südhof TC 2008. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:7215903
    [Google Scholar]
  158. 158.  Syken J, Shatz CJ 2003. Expression of T cell receptor βlocus in central nervous system neurons. PNAS 100:2213048–53
    [Google Scholar]
  159. 159.  Sytnyk V, Leshchyns'ka I, Delling M, Dityateva G, Dityatev A, Schachner M 2002. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J. Cell Biol. 159:4649–61
    [Google Scholar]
  160. 160.  Sytnyk V, Leshchyns'ka I, Schachner M 2017. Neural cell adhesion molecules of the immunoglobulin superfamily regulate synapse formation, maintenance, and function. Trends Neurosci 40:5295–308
    [Google Scholar]
  161. 161.  Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT et al. 2011. Postsynaptic TrkC and presynaptic PTPσ function as a bidirectional excitatory synaptic organizing complex. Neuron 69:2287–303
    [Google Scholar]
  162. 162.  Takahashi H, Craig AM 2013. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci 36:9522–34
    [Google Scholar]
  163. 163.  Takahashi H, Katayama K, Sohya K, Miyamoto H, Prasad T et al. 2012. Selective control of inhibitory synapse development by Slitrk3-PTPδ trans-synaptic interaction. Nat. Neurosci. 15:3389–98
    [Google Scholar]
  164. 164.  Takai T 2005. Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 115:4433–40
    [Google Scholar]
  165. 165.  Tanabe Y, Naito Y, Vasuta C, Lee AK, Soumounou Y et al. 2017. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2α. Nat. Commun. 8:1408
    [Google Scholar]
  166. 166.  Tang A-H, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA 2016. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536:7615210–14
    [Google Scholar]
  167. 167.  Tetruashvily MM, Melson JW, Park JJ, Peng X, Boulanger LM 2016. Expression and alternative splicing of classical and nonclassical MHCI genes in the hippocampus and neuromuscular junction. Mol. Cell. Neurosci. 72:34–45
    [Google Scholar]
  168. 168.  Tian L, Stefanidakis M, Ning L, Lint PV, Nyman-Huttunen H et al. 2007. Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J. Cell Biol. 178:4687–700
    [Google Scholar]
  169. 169.  Togashi H, Miyoshi J, Honda T, Sakisaka T, Takai Y, Takeichi M 2006. Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. J. Cell Biol. 174:1141–51
    [Google Scholar]
  170. 170.  van Spronsen M, Hoogenraad CC 2010. Synapse pathology in psychiatric and neurologic disease. Curr. Neurol. Neurosci. Rep. 10:3207–14
    [Google Scholar]
  171. 171.  Vawter MP, Cannon-Spoor HE, Hemperly JJ, Hyde TM, VanderPutten DM et al. 1998. Abnormal expression of cell recognition molecules in schizophrenia. Exp. Neurol. 149:2424–32
    [Google Scholar]
  172. 172.  Vawter MP, Howard AL, Hyde TM, Kleinman JE, Freed WJ 1999. Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia. Mol. Psychiatry 4:5467–75
    [Google Scholar]
  173. 173.  Vidal GS, Djurisic M, Brown K, Sapp RW, Shatz CJ 2016. Cell-autonomous regulation of dendritic spine density by PirB. eNeuro 3:5ENEURO.0089–16.2016
    [Google Scholar]
  174. 174.  Wang K, Zhang H, Bloss CS, Duvvuri V, Kaye W et al. 2011. A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol. Psychiatry 16:9949–59
    [Google Scholar]
  175. 175.  Wang K-S, Liu X-F, Aragam N 2010. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr. Res. 124:1192–99
    [Google Scholar]
  176. 176.  Wang X-X, Li J-T, Xie X-M, Gu Y, Si T-M et al. 2017. Nectin-3 modulates the structural plasticity of dentate granule cells and long-term memory. Transl. Psychiatry 7:9e1228
    [Google Scholar]
  177. 177.  Wawryk SO, Novotny JR, Wicks IP, Wilkinson D, Maher D et al. 1989. The role of the LFA-1/ICAM-1 interaction in human leukocyte homing and adhesion. Immunol. Rev. 108:1135–61
    [Google Scholar]
  178. 178.  Williams DB, Barber BH, Flavell RA, Allen H 1989. Role of beta 2-microglobulin in the intracellular transport and surface expression of murine class I histocompatibility molecules. J. Immunol. 142:82796–806
    [Google Scholar]
  179. 179.  Wong GHW, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW 1984. Inducible expression of H-2 and Ia antigens on brain cells. Nature 310:5979688–91
    [Google Scholar]
  180. 180.  Woo J, Kwon S-K, Choi S, Kim S, Lee J-R et al. 2009. Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat. Neurosci. 12:4428–37
    [Google Scholar]
  181. 181.  Woo J, Kwon S-K, Nam J, Choi S, Takahashi H et al. 2013. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. J. Cell Biol. 201:6929–44
    [Google Scholar]
  182. 182.  Wyszynski M, Kim E, Dunah AW, Passafaro M, Valtschanoff JG et al. 2002. Interaction between GRIP and liprin-α/SYD2 is required for AMPA receptor targeting. Neuron 34:139–52
    [Google Scholar]
  183. 183.  Yamada M, Hashimoto T, Hayashi N, Higuchi M, Murakami A et al. 2007. Synaptic adhesion molecule OBCAM; synaptogenesis and dynamic internalization. Brain Res 1165:5–14
    [Google Scholar]
  184. 184.  Yamagata M, Sanes JR 2008. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451:7177465–69
    [Google Scholar]
  185. 185.  Yamashita Y, Fukuta D, Tsuji A, Nagabukuro A, Matsuda Y et al. 1998. Genomic structures and chromosomal location of p91, a novel murine regulatory receptor family. J. Biochem. 123:2358–68
    [Google Scholar]
  186. 186.  Yang X, Hou D, Jiang W, Zhang C 2014. Intercellular protein–protein interactions at synapses. Protein Cell 5:6420–44
    [Google Scholar]
  187. 187.  Yasumura M, Yoshida T, Yamazaki M, Abe M, Natsume R et al. 2014. IL1RAPL1 knockout mice show spine density decrease, learning deficiency, hyperactivity and reduced anxiety-like behaviours. Sci. Rep. 4:6613
    [Google Scholar]
  188. 188.  Yim YS, Kwon Y, Nam J, Yoon HI, Lee K et al. 2013. Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases. PNAS 110:104057–62
    [Google Scholar]
  189. 189.  Yoshida T, Shiroshima T, Lee S-J, Yasumura M, Uemura T et al. 2012. Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J. Neurosci. 32:82588–600
    [Google Scholar]
  190. 190.  Youngs EL, Henkhaus R, Hellings JA, Butler MG 2012. IL1RAPL1 gene deletion as a cause of X-linked intellectual disability and dysmorphic features. Eur. J. Med. Genet. 55:132–36
    [Google Scholar]
  191. 191.  Zhang Z, Yu H, Jiang S, Liao J, Lu T et al. 2015. Evidence for association of cell adhesion molecules pathway and NLGN1 polymorphisms with schizophrenia in Chinese Han population. PLOS ONE 10:12e0144719
    [Google Scholar]
  192. 192.  Zhiling Y, Fujita E, Tanabe Y, Yamagata T, Momoi T, Momoi MY 2008. Mutations in the gene encoding CADM1 are associated with autism spectrum disorder. Biochem. Biophys. Res. Commun. 377:3926–29
    [Google Scholar]
  193. 193.  Zinn K, Özkan E 2017. Neural immunoglobulin superfamily interaction networks. Curr. Opin. Neurobiol. 45:99–105
    [Google Scholar]
  194. 194.  Zuko A, Kleijer KTE, Oguro-Ando A, Kas MJH, van Daalen E et al. 2013. Contactins in the neurobiology of autism. Eur. J. Pharmacol. 719:163–74
    [Google Scholar]
  195. 195.  Zussy C, Loustalot F, Junyent F, Gardoni F, Bories C et al. 2016. Coxsackievirus adenovirus receptor loss impairs adult neurogenesis, synapse content, and hippocampus plasticity. J. Neurosci. 36:379558–71
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031513
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error