Studies in mammals and have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on , we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agrawal N, Delanoue R, Mauri A, Basco D, Pasco M. 1.  et al. 2016. The Drosophila TNF Eiger is an adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metab. 23:675–84 [Google Scholar]
  2. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B. 2.  et al. 1996. Role of leptin in the neuroendocrine response to fasting. Nature 382:250–52 [Google Scholar]
  3. Alfa RW, Park S, Skelly K-R, Poffenberger G, Jain N. 3.  et al. 2015. Suppression of insulin production and secretion by a decretin hormone. Cell Metab. 21:323–33 [Google Scholar]
  4. Andersen D, Colombani J, Leopold P. 4.  2013. Coordination of organ growth: principles and outstanding questions from the world of insects. Trends Cell Biol. 23:336–44 [Google Scholar]
  5. Armstrong AR, Laws KM, Drummond-Barbosa D. 5.  2014. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila. Development 141:4479–88 [Google Scholar]
  6. Bai H, Kang P, Hernandez AM, Tatar M. 6.  2013. Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLOS Genet. 9:e1003941 [Google Scholar]
  7. Bai H, Kang P, Tatar M. 7.  2012. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 11:978–85 [Google Scholar]
  8. Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B. 8.  et al. 2004. Regulation of fasted blood glucose by resistin. Science 303:1195–98 [Google Scholar]
  9. Beyenbach KW, Skaer H, Dow JA. 9.  2010. The developmental, molecular, and transport biology of Malpighian tubules. Annu. Rev. Entomol. 55:351–74 [Google Scholar]
  10. Billeter J-C, Atallah J, Krupp JJ, Millar JG, Levine JD. 10.  2009. Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461:987–91 [Google Scholar]
  11. Birse RT, Choi J, Reardon K, Rodriguez J, Graham S. 11.  et al. 2010. High-fat-diet–induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 12:533–44 [Google Scholar]
  12. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L. 12.  et al. 2012. A PGC1-α–dependent myokine that drives brown-fat–like development of white fat and thermogenesis. Nature 481:463–68 [Google Scholar]
  13. Boucher J, Mori MA, Lee KY, Smyth G, Liew CW. 13.  et al. 2012. Impaired thermogenesis and adipose tissue development in mice with fat-specific disruption of insulin and IGF-1 signalling. Nat. Commun. 3:902 [Google Scholar]
  14. Brand AH, Perrimon N. 14.  1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–15 [Google Scholar]
  15. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. 15.  2001. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11:213–21 [Google Scholar]
  16. Buchman TG. 16.  2002. The community of the self. Nature 420:246–51 [Google Scholar]
  17. Buchon N, Silverman N, Cherry S. 17.  2014. Immunity in Drosophila melanogaster: from microbial recognition to whole-organism physiology. Nat. Rev. Immunol. 14:796–810 [Google Scholar]
  18. Campbell JE, Drucker DJ. 18.  2013. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17:819–37 [Google Scholar]
  19. Cao H, Sekiya M, Ertunc ME, Burak MF, Mayers JR. 19.  et al. 2013. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 17:768–78 [Google Scholar]
  20. Carroll SB. 20.  2001. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–9 [Google Scholar]
  21. Chatterjee D, Katewa SD, Qi Y, Jackson SA, Kapahi P, Jasper H. 21.  2014. Control of metabolic adaptation to fasting by dILP6-induced insulin signaling in Drosophila oenocytes. PNAS 111:17959–64 [Google Scholar]
  22. Chen H, Zheng X, Zheng Y. 22.  2014. Age-associated loss of lamin-B leads to systemic inflammation and gut hyperplasia. Cell 159:829–43 [Google Scholar]
  23. Chng WB, Bou Sleiman MS, Schüpfer F, Lemaitre B. 23.  2014. Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression. Cell Rep. 9:336–48 [Google Scholar]
  24. Clemmons DR. 24.  2007. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat. Rev. Drug Discov. 6:821–33 [Google Scholar]
  25. Coleman DL. 25.  2010. A historical perspective on leptin. Nat. Med. 16:1097–99 [Google Scholar]
  26. Colombani J, Andersen DS, Boulan L, Boone E, Romero N. 26.  et al. 2015. Drosophila Lgr3 couples organ growth with maturation and ensures developmental stability. Curr. Biol. 25:2723–29Demonstrates that Lgr3 positive neurons are the site of Dilp8 action. [Google Scholar]
  27. Colombani J, Andersen DS, Léopold P. 27.  2012. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336:582–85 [Google Scholar]
  28. Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Léopold P. 28.  2003. A nutrient sensor mechanism controls Drosophila growth. Cell 114:739–49 [Google Scholar]
  29. Dai J-D, Gilbert LI. 29.  1991. Metamorphosis of the corpus allatum and degeneration of the prothoracic glands during the larval-pupal-adult transformation of Drosophila melanogaster: a cytophysiological analysis of the ring gland. Dev. Biol. 144:309–26 [Google Scholar]
  30. Da-Ré C, De Pittà C, Zordan MA, Teza G, Nestola F. 30.  et al. 2014. UCP4C mediates uncoupled respiration in larvae of Drosophila melanogaster. EMBO Rep. 15:586–91 [Google Scholar]
  31. Delanoue R, Meschi E, Agrawal N, Mauri A, Tsatskis Y. 30a.  et al. 2016. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor. Science 253:1553–56 [Google Scholar]
  32. de Laval B, Pawlikowska P, Petit-Cocault L, Bilhou-Nabera C, Aubin-Houzelstein G. 31.  et al. 2013. Thrombopoietin-increased DNA-PK-dependent DNA repair limits hematopoietic stem and progenitor cell mutagenesis in response to DNA damage. Cell Stem Cell 12:37–48 [Google Scholar]
  33. Demontis F, Patel VK, Swindell WR, Perrimon N. 32.  2014. Intertissue control of the nucleolus via a myokine-dependent longevity pathway. Cell Rep. 7:1481–94 [Google Scholar]
  34. Demontis F, Perrimon N. 33.  2010. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–25 [Google Scholar]
  35. Demontis F, Piccirillo R, Goldberg AL, Perrimon N. 34.  2013. The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 12:943–49 [Google Scholar]
  36. Diop SB, Bodmer R. 35.  2015. Gaining insights into diabetic cardiomyopathy from Drosophila. Trends Endocrinol. Metab. 26:618–27 [Google Scholar]
  37. Donath MY, Burcelin R. 36.  2013. GLP-1 effects on islets: hormonal, neuronal, or paracrine?. Diabetes Care 36:S145–48 [Google Scholar]
  38. Droujinine IA, Perrimon N. 37.  2013. Defining the interorgan communication network: systemic coordination of organismal cellular processes under homeostasis and localized stress. Front. Cell. Infect. Microbiol. 3:82 [Google Scholar]
  39. Dziarski R, Gupta D. 38.  2006. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 7:232 [Google Scholar]
  40. Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN. 39.  et al. 2015. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 22:164–74 [Google Scholar]
  41. Farrah T, Deutsch EW, Omenn GS, Campbell DS, Sun Z. 40.  et al. 2011. A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol. Cell. Proteom. 10:M110.006353 [Google Scholar]
  42. Figueroa-Clarevega A, Bilder D. 41.  2015. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev. Cell 33:47–55Shows the role of Dilp-binding protein ImpL2 in systemic physiology. [Google Scholar]
  43. Fisher FM, Maratos-Flier E. 42.  2015. Understanding the physiology of FGF21. Annu. Rev. Physiol. 78:223–41 [Google Scholar]
  44. Flatt T, Tu M-P, Tatar M. 43.  2005. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 27:999–1010 [Google Scholar]
  45. Foster KR, Shaulsky G, Strassmann JE, Queller DC, Thompson CR. 44.  2004. Pleiotropy as a mechanism to stabilize cooperation. Nature 431:693–96Demonstrates the role of multifunctionality of signaling pathways in the evolution to multicellularity. [Google Scholar]
  46. Frisch RE. 45.  1982. Malnutrition and fertility. Science 215:1272–73 [Google Scholar]
  47. Galic S, Oakhill JS, Steinberg GR. 46.  2010. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316:129–39 [Google Scholar]
  48. Gáliková M, Diesner M, Klepsatel P, Hehlert P, Xu Y. 47.  et al. 2015. Energy homeostasis control in Drosophila adipokinetic hormone mutants. Genetics 201:665–83 [Google Scholar]
  49. Garelli A, Gontijo AM, Miguela V, Caparros E, Dominguez M. 48.  2012. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336:579–82 [Google Scholar]
  50. Garelli A, Heredia F, Casimiro AP, Macedo A, Nunes C. 49.  et al. 2015. Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nat. Commun. 6:8732Demonstrates that Lgr3 positive neurons are the site of Dilp8 action. [Google Scholar]
  51. Ghosh AC, O'Connor MB. 50.  2014. Systemic activin signaling independently regulates sugar homeostasis, cellular metabolism, and pH balance in Drosophila melanogaster. PNAS 111:5729–34 [Google Scholar]
  52. Grönke S, Müller G, Hirsch J, Fellert S, Andreou A. 51.  et al. 2007. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLOS Biol. 5:e137 [Google Scholar]
  53. Grosberg RK, Strathmann RR. 52.  2007. The evolution of multicellularity: a minor major transition?. Annu. Rev. Ecol. Evol. Syst. 38:621–54 [Google Scholar]
  54. Gusarova V, Alexa CA, Na E, Stevis PE, Xin Y. 53.  et al. 2014. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159:691–96 [Google Scholar]
  55. Gutierrez E, Wiggins D, Fielding B, Gould AP. 54.  2007. Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445:275–80 [Google Scholar]
  56. Hall JE. 55.  2003. Historical perspective of the renin-angiotensin system. Mol. Biotechnol. 24:27–39 [Google Scholar]
  57. Han H, Pan C, Liu C, Lv X, Yang X. 56.  et al. 2015. Gut-neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila. Cell Discov. 1:15006 [Google Scholar]
  58. Hartwig S, Raschke S, Knebel B, Scheler M, Irmler M. 57.  et al. 2014. Secretome profiling of primary human skeletal muscle cells. Biochim. Biophys. Acta 1844:1011–17 [Google Scholar]
  59. Honegger B, Galic M, Köhler K, Wittwer F, Brogiolo W. 58.  et al. 2008. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J. Biol. 7:10Shows the role of Dilp-binding protein ImpL2 in systemic physiology. [Google Scholar]
  60. Hong HS, Lee J, Lee E, Kwon YS, Lee E. 59.  et al. 2009. A new role of substance P as an injury-inducible messenger for mobilization of CD29+ stromal-like cells. Nat. Med. 15:425–35 [Google Scholar]
  61. Hotamisligil GS, Shargill NS, Spiegelman BM. 60.  1993. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259:87–91 [Google Scholar]
  62. Hwa V, Oh Y, Rosenfeld RG. 61.  1999. The insulin-like growth factor-binding protein (IGFBP) superfamily 1. Endocr. Rev. 20:761–87 [Google Scholar]
  63. Ikeya T, Galic M, Belawat P, Nairz K, Hafen E. 62.  2002. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12:1293–300 [Google Scholar]
  64. Jindra M, Uhlirova M, Charles J-P, Smykal V, Hill RJ. 63.  2015. Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLOS Genet. 11:e1005394 [Google Scholar]
  65. Jørgensen SB, Honeyman J, Oakhill JS, Fazakerley D, Stöckli J. 64.  et al. 2009. Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation. Am. J. Physiol. Endocrinol. Metab. 297:E57–66 [Google Scholar]
  66. Karsenty G, Olson EN. 65.  2016. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell 164:1248–56 [Google Scholar]
  67. Katewa SD, Demontis F, Kolipinski M, Hubbard A, Gill MS. 66.  et al. 2012. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab. 16:97–103 [Google Scholar]
  68. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS. 67.  et al. 2014. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–34 [Google Scholar]
  69. Kaushansky K. 68.  1998. Thrombopoietin. N. Engl. J. Med. 339:746–54 [Google Scholar]
  70. Kim SK, Rulifson EJ. 69.  2004. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431:316–20 [Google Scholar]
  71. Kir S, White JP, Kleiner S, Kazak L, Cohen P. 70.  et al. 2014. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513:100–4 [Google Scholar]
  72. Knoll AH. 71.  2011. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 39:217–39 [Google Scholar]
  73. Koyama T, Mirth CK. 72.  2016. Growth-blocking peptides as nutrition-sensitive signals for insulin secretion and body size regulation. PLOS Biol. 14:e1002392 [Google Scholar]
  74. Kurtovic A, Widmer A, Dickson BJ. 73.  2007. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446:542–46 [Google Scholar]
  75. Kwon Y, Song W, Droujinine IA, Hu Y, Asara JM, Perrimon N. 74.  2015. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell 33:36–46Shows the role of Dilp-binding protein ImpL2 in systemic physiology. [Google Scholar]
  76. LaFever L, Drummond-Barbosa D. 75.  2005. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309:1071–73 [Google Scholar]
  77. Lai S-L, Lee T. 76.  2006. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9:703–9 [Google Scholar]
  78. Lee-Hoeflich ST, Zhao X, Mehra A, Attisano L. 77.  2005. The Drosophila type II receptor, wishful thinking, binds BMP and myoglianin to activate multiple TGFβ family signaling pathways. FEBS Lett. 579:4615–21 [Google Scholar]
  79. Lee G, Park JH. 78.  2004. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311–23 [Google Scholar]
  80. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD. 79.  et al. 2007. Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–69 [Google Scholar]
  81. Lehr S, Hartwig S, Lamers D, Famulla S, Müller S. 80.  et al. 2012. Identification and validation of novel adipokines released from primary human adipocytes. Mol. Cell. Proteom. 11:M111.010504 [Google Scholar]
  82. Leopold P, Perrimon N. 81.  2007. Drosophila and the genetics of the internal milieu. Nature 450:186–88 [Google Scholar]
  83. Li L, Shen JJ, Bournat JC, Huang L, Chattopadhyay A. 82.  et al. 2009. Activin signaling: effects on body composition and mitochondrial energy metabolism. Endocrinology 150:3521–29 [Google Scholar]
  84. Libby E, Ratcliff WC. 83.  2014. Ratcheting the evolution of multicellularity. Science 346:426–27Illustrates early evolution to multicellularity and/or multicellular communities. [Google Scholar]
  85. Liddle RA. 84.  1997. Cholecystokinin cells. Annu. Rev. Physiol. 59:221–42 [Google Scholar]
  86. Lim WA, Pawson T. 85.  2010. Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142:661–67 [Google Scholar]
  87. Lin S, Ewen-Campen B, Ni X, Housden BE, Perrimon N. 86.  2015. In vivo transcriptional activation using CRISPR-Cas9 in Drosophila. Genetics 201:433–42 [Google Scholar]
  88. Liu T, Qian W-J, Gritsenko MA, Xiao W, Moldawer LL. 87.  et al. 2006. High dynamic range characterization of the trauma patient plasma proteome. Mol. Cell. Proteom. 5:1899–913 [Google Scholar]
  89. Lo C-M, Obici S, Dong HH, Haas M, Lou D. 88.  et al. 2011. Impaired insulin secretion and enhanced insulin sensitivity in cholecystokinin-deficient mice. Diabetes 60:2000–7 [Google Scholar]
  90. Lo JC, Ljubicic S, Leibiger B, Kern M, Leibiger IB. 89.  et al. 2014. Adipsin is an adipokine that improves β cell function in diabetes. Cell 158:41–53 [Google Scholar]
  91. Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR. 90.  et al. 2013. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153:828–39 [Google Scholar]
  92. Mantovani A, Locati M, Vecchi A, Sozzani S, Allavena P. 91.  2001. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 22:328–36 [Google Scholar]
  93. Matusek T, Wendler F, Polès S, Pizette S, D'Angelo G. 92.  et al. 2014. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516:99–103 [Google Scholar]
  94. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP. 93.  et al. 2008. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005 [Google Scholar]
  95. McFarlane MR, Brown MS, Goldstein JL, Zhao T-J. 94.  2014. Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab. 20:54–60 [Google Scholar]
  96. McPherron AC. 95.  2010. Metabolic functions of myostatin and GDF11. Immunol. Endocr. Metab. Agents Med. Chem. 10:217 [Google Scholar]
  97. Metaxakis A, Tain LS, Grönke S, Hendrich O, Hinze Y. 96.  et al. 2014. Lowered insulin signalling ameliorates age-related sleep fragmentation in Drosophila. PLOS Biol. 12:e1001824 [Google Scholar]
  98. Meyer C. 97.  2010. Final answer: Ghrelin can suppress insulin secretion in humans, but is it clinically relevant?. Diabetes 59:2726–28 [Google Scholar]
  99. Mirth CK, Tang HY, Makohon-Moore SC, Salhadar S, Gokhale RH. 98.  et al. 2014. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. PNAS 111:7018–23 [Google Scholar]
  100. Mitri S, Foster KR. 99.  2013. The genotypic view of social interactions in microbial communities. Annu. Rev. Genet. 47:247–73Illustrates early evolution to multicellularity and/or multicellular communities. [Google Scholar]
  101. Murphy KT, Schwartz GJ, Nguyen NLT, Mendez JM, Ryu V, Bartness TJ. 100.  2013. Leptin-sensitive sensory nerves innervate white fat. Am. J. Physiol. Endocrinol. Metab. 304:E1338–47 [Google Scholar]
  102. Nagaev I, Bokarewa M, Tarkowski A, Smith U. 101.  2006. Human resistin is a systemic immune-derived proinflammatory cytokine targeting both leukocytes and adipocytes. PLOS ONE 1:e31 [Google Scholar]
  103. Nässel DR, Broeck JV. 102.  2016. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell. Mol. Life Sci. 73:271–90 [Google Scholar]
  104. Ni J-Q, Markstein M, Binari R, Pfeiffer B, Liu L-P. 103.  et al. 2008. Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat. Methods 5:49–51 [Google Scholar]
  105. Okamoto N, Nakamori R, Murai T, Yamauchi Y, Masuda A, Nishimura T. 104.  2013. A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila. Genes Dev. 27:87–97 [Google Scholar]
  106. Okamoto N, Yamanaka N, Yagi Y, Nishida Y, Kataoka H. 105.  et al. 2009. A fat body–derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev. Cell 17:885–91 [Google Scholar]
  107. Oury F, Sumara G, Sumara O, Ferron M, Chang H. 106.  et al. 2011. Endocrine regulation of male fertility by the skeleton. Cell 144:796–809 [Google Scholar]
  108. Owusu-Ansah E, Perrimon N. 107.  2015. Cellular stress signaling between organs in metazoa. Annu. Rev. Cell Dev. Biol. 31:497–522 [Google Scholar]
  109. Owusu-Ansah E, Song W, Perrimon N. 108.  2013. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712Shows the role of Dilp-binding protein ImpL2 in systemic physiology. [Google Scholar]
  110. Padmanabha D, Baker KD. 109.  2014. Drosophila gains traction as a repurposed tool to investigate metabolism. Trends Endocrinol. Metab. 25:518–27 [Google Scholar]
  111. Palm W, Swierczynska MM, Kumari V, Ehrhart-Bornstein M, Bornstein SR, Eaton S. 110.  2013. Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals. PLOS Biol. 11:e1001505 [Google Scholar]
  112. Passeri E, Bugiardini E, Sansone VA, Pizzocaro A, Fulceri C. 111.  et al. 2015. Gonadal failure is associated with visceral adiposity in myotonic dystrophies. Eur. J. Clin. Investig. 45:702–10 [Google Scholar]
  113. Pedersen BK, Febbraio MA. 112.  2012. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8:457–65 [Google Scholar]
  114. Poggioli T, Vujic A, Yang P, Macias-Trevino C, Uygur A. 113.  et al. 2016. Circulating growth differentiation factor 11/8 levels decline with age. Circ. Res. 118:29–37 [Google Scholar]
  115. Port F, Chen H-M, Lee T, Bullock SL. 114.  2014. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. PNAS 111:E2967–76 [Google Scholar]
  116. Potter CJ, Tasic B, Russler EV, Liang L, Luo L. 115.  2010. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–48 [Google Scholar]
  117. Quante M, Tu SP, Tomita H, Gonda T, Wang SS. 116.  et al. 2011. Bone marrow–derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19:257–72 [Google Scholar]
  118. Rai M, Demontis F. 117.  2015. Systemic nutrient and stress signaling via myokines and myometabolites. Annu. Rev. Physiol. 78:85–107 [Google Scholar]
  119. Rajan A, Perrimon N. 118.  2012. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151:123–37Illustrates the physiologic role for leptin structural ortholog Upd2 and the neural circuit it acts through. [Google Scholar]
  120. Rao RR, Long JZ, White JP, Svensson KJ, Lou J. 119.  et al. 2014. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–91 [Google Scholar]
  121. Rehfeld J, Larsson L-I, Goltermann N, Schwartz T, Holst J. 120.  et al. 1980. Neural regulation of pancreatic hormone secretion by the C-terminal tetrapeptide of CCK. Nature 284:33–38 [Google Scholar]
  122. Reiff T, Jacobson J, Cognigni P, Antonello Z, Ballesta E. 121.  et al. 2015. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. eLife 4:e06930 [Google Scholar]
  123. Ren GR, Hauser F, Rewitz KF, Kondo S, Engelbrecht AF. 122.  et al. 2015. CCHamide-2 is an orexigenic brain-gut peptide in Drosophila. PLOS ONE 10:e0133017 [Google Scholar]
  124. Richter DJ, King N. 123.  2013. The genomic and cellular foundations of animal origins. Annu. Rev. Genet. 47:509–37 [Google Scholar]
  125. Roberts LD, Boström P, O'Sullivan JF, Schinzel RT, Lewis GD. 124.  et al. 2014. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19:96–108 [Google Scholar]
  126. Rodenfels J, Lavrynenko O, Ayciriex S, Sampaio JL, Shevchenko A, Eaton S. 125.  2014. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development. Genes Dev. 28:2636–51 [Google Scholar]
  127. Romere C, Duerrschmid C, Bournat J, Constable P, Jain M. 126.  et al. 2016. Asprosin, a fastin-induced glucogenic protein hormone. Cell 165:566–79 [Google Scholar]
  128. Rulifson EJ, Kim SK, Nusse R. 127.  2002. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296:1118–20 [Google Scholar]
  129. Sabio G, Das M, Mora A, Zhang Z, Jun JY. 128.  et al. 2008. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322:1539–43 [Google Scholar]
  130. Sano H, Nakamura A, Texada MJ, Truman JW, Ishimoto H. 129.  et al. 2015. The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster. PLOS Genet. 11:e1005209 [Google Scholar]
  131. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A. 130.  et al. 2001. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator–activated receptor-γ action in humans. Diabetes 50:2199–202 [Google Scholar]
  132. Scadden DT. 131.  2006. The stem-cell niche as an entity of action. Nature 441:1075–79 [Google Scholar]
  133. Schafer MJ, Atkinson EJ, Vanderboom PM, Kotajarvi B, White TA. 132.  et al. 2016. Quantification of GDF11 and myostatin in human aging and cardiovascular disease. Cell Metab. 23:1207–15 [Google Scholar]
  134. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. 133.  2012. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J. Biol. Chem. 287:11968–80 [Google Scholar]
  135. Shapiro L, Scherer PE. 134.  1998. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr Biol. 8:335–40 [Google Scholar]
  136. Shim J, Mukherjee T, Mondal BC, Liu T, Young GC. 135.  et al. 2013. Olfactory control of blood progenitor maintenance. Cell 155:1141–53An example of how sensory signals translate to physiological control. [Google Scholar]
  137. Silverthorn DU, Ober WC, Garrison CW, Silverthorn AC, Johnson BR. 136.  2009. Human Physiology: An Integrated Approach San Francisco, CA: Pearson/Benjamin Cummings
  138. Singh SR, Liu W, Hou SX. 137.  2007. The adult Drosophila Malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1:191–203 [Google Scholar]
  139. Sinha M, Jang YC, Oh J, Khong D, Wu EY. 138.  et al. 2014. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344:649–52 [Google Scholar]
  140. Slaidina M, Delanoue R, Gronke S, Partridge L, Léopold P. 139.  2009. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev. Cell 17:874–84 [Google Scholar]
  141. Smith EP, An Z, Wagner C, Lewis AG, Cohen EB. 140.  et al. 2014. The role of β cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab. 19:1050–57 [Google Scholar]
  142. Song W, Veenstra JA, Perrimon N. 141.  2014. Control of lipid metabolism by tachykinin in Drosophila. Cell Rep. 9:40–47 [Google Scholar]
  143. Steinberg GR, Michell BJ, van Denderen BJ, Watt MJ, Carey AL. 142.  et al. 2006. Tumor necrosis factor α–induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab. 4:465–74 [Google Scholar]
  144. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR. 143.  et al. 2001. The hormone resistin links obesity to diabetes. Nature 409:307–12 [Google Scholar]
  145. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J. 144.  et al. 1995. Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–71 [Google Scholar]
  146. Tatar M, Kopelman A, Epstein D, Tu M-P, Yin C-M, Garofalo RS. 145.  2001. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–10 [Google Scholar]
  147. Tsuzuki S, Ochiai M, Matsumoto H, Kurata S, Ohnishi A, Hayakawa Y. 146.  2012. Drosophila growth-blocking peptide-like factor mediates acute immune reactions during infectious and non-infectious stress. Sci. Rep. 2:210 [Google Scholar]
  148. Vallejo DM, Juarez-Carreño S, Bolivar J, Morante J, Dominguez M. 147.  2015. A brain circuit that synchronizes growth and maturation revealed through Dilp8 binding to Lgr3. Science 350:aac6767Demonstrates that Lgr3 positive neurons are the site of Dilp8 action. [Google Scholar]
  149. Voet D, Voet JG. 148.  2004. Biochemistry Hoboken, NJ: John Wiley Sons
  150. Vorlová S, Rocco G, LeFave CV, Jodelka FM, Hess K. 149.  et al. 2011. Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol. Cell 43:927–39 [Google Scholar]
  151. Waterson MJ, Chung BY, Harvanek ZM, Ostojic I, Alcedo J, Pletcher SD. 150.  2014. Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling. PNAS 111:8137–42 [Google Scholar]
  152. Wu J, Spiegelman BM. 151.  2014. Irisin ERKs the fat. Diabetes 63:381–83 [Google Scholar]
  153. Wu Q, Brown MR. 152.  2006. Signaling and function of insulin-like peptides in insects. Annu. Rev. Entomol. 51:1–24 [Google Scholar]
  154. Yamanaka N, Rewitz KF, O'Connor MB. 153.  2013. Ecdysone control of developmental transitions: lessons from Drosophila research. Annu. Rev. Entomol. 58:497 [Google Scholar]
  155. Yamauchi T, Iwabu M, Okada-Iwabu M, Kadowaki T. 154.  2014. Adiponectin receptors: a review of their structure, function and how they work. Best Pract. Res. Clin. Endocrinol. Metab. 28:15–23 [Google Scholar]
  156. Yan D, Neumüller RA, Buckner M, Ayers K, Li H. 155.  et al. 2014. A regulatory network of Drosophila germline stem cell self-renewal. Dev. Cell 28:459–73 [Google Scholar]
  157. Yang H, Kronhamn J, Ekström JO, Korkut GG, Hultmark D. 156.  2015. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection. EMBO Rep. 16:1664–72 [Google Scholar]
  158. Yi P, Park J-S, Melton DA. 157.  2013. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 153:747–58 [Google Scholar]
  159. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. 158.  1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–32 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error