1932

Abstract

This review explores the recent divergence in international patent law relating to genes and associated subject matter. This divergence stems primarily from decisions of the highest courts in the United States and Australia on the eligibility of patent claims relating to the gene sequences. Patent offices, courts, and policy makers have struggled for many years to clearly articulate the bounds of patent claims on isolated and synthetic DNA and related products and processes, including methods for their use in genetic diagnostics. This review provides context to the current divergence by mapping key events in the gene patent journey from the early 1980s onward in five key jurisdictions: the United States, the member states of the European Patent Convention, Australia, Canada, and China. Early approaches to gene patenting had some commonalities across jurisdictions, which makes exploration of the recent divergence all the more interesting.There is insufficient empirical evidence to date to confidently predict the consequences of this recent divergence. However, it could potentially have a significant effect on local industry and on consumer access.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083118-015112
2019-08-31
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/genom/20/1/annurev-genom-083118-015112.html?itemId=/content/journals/10.1146/annurev-genom-083118-015112&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aboy M, Crespo C, Liddell K, Liddicoat J, Jordan M 2018. Was the Myriad decision a ‘surgical strike’ on isolated DNA patents, or does it have wider impacts?. Nat. Biotechnol. 36:1146–49
    [Google Scholar]
  2. 2.
    Aboy M, Liddell K, Liddicoat J, Crespo C 2016. Myriad's impact on gene patents. Nat. Biotechnol. 34:1119–23
    [Google Scholar]
  3. 3.
    Aboy M, Liddicoat J, Liddell K, Jordan M, Crespo C 2017. After Myriad, what types of claim amendments change a patent ineligible isolated gene claim into an eligible patent claim that is ‘markedly different’ from nature?. Nat. Biotechnol. 35:820–25
    [Google Scholar]
  4. 4.
    Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH et al. 1991. Complementary DNA sequencing: expressed sequence tags and the Human Genome Project. Science 252:1651–56
    [Google Scholar]
  5. 5.
    Agarwal A, Sayers LC, Cho MK, Cook-Deegan R, Chandrasekharan S 2013. Commercial landscape of noninvasive prenatal testing in the United States. Prenat. Diagn. 33:521–31
    [Google Scholar]
  6. 6.
    Allen J. 2018. Universities: fallen angels or stewards of Bayh-Dole?. IP Watchdog Oct. 29. http://www.ipwatchdog.com/2018/10/29/universities-fallen-angels-stewards-bayh-dole
    [Google Scholar]
  7. 7.
    Amgen, Inc. v. Chugai Pharmaceutical Co. 927 F.2d 1200 (Fed. Cir 1991.)
  8. 8.
    Ariosa Diagnostics, Inc. v. Sequenom, Inc. 788 F.3d 1371 (Fed. Cir 2015.)
  9. 9.
    Association for Molecular Pathology v. Myriad Genetics, Inc. 569 U.S. 576 2013.)
  10. 10.
    Association for Molecular Pathology v. U.S. Patent and Trademark Office 702 F. Supp. 2d 181, 200-206 (S.D.N.Y. 2010), as amended (Apr. 5 2010.)
  11. 11.
    Association for Molecular Pathology v. U.S. Patent and Trademark Office 653 F.3d 1329 (Fed. Cir 2011.)
  12. 12.
    Association for Molecular Pathology v. U.S. Patent and Trademark Office 89 F.3d 1303 (Fed. Cir 2012.)
  13. 13.
    Aust. Law Reform Comm 2004. Genes and ingenuity: gene patenting and human health Rep. 99 Commonw. Aust. Canberra, Aust:.
    [Google Scholar]
  14. 14.
    Aust. Patent Off 2015. Examination practice following the High Court decision in D'Arcy v Myriad Genetics Inc Pract. Doc., Aust. Patent Off. Philip, Aust: https://www.ipaustralia.gov.au/sites/g/files/net856/f/examination_practice_following_the_high_court_decision_in_darcy_v_myriad_genetics_inc.pdf
    [Google Scholar]
  15. 15.
    Aust. Res. Counc 2018. National principles of intellectual property management for publicly funded research. Australian Research Council https://www.arc.gov.au/policies-strategies/policy/national-principles-intellectual-property-management-publicly-funded-research
    [Google Scholar]
  16. 16.
    Aust. Res. Counc., Aust. Tert. Inst. Commer. Co. Assoc., Aust. Vice-Chancellor's Comm., Dep. Educ. Train. Youth Aff., Dep. Ind. Sci. Resour. et al. 2001. National principles of intellectual property management for publicly funded research Policy Doc., Commonw. Aust Canberra, Aust:.
    [Google Scholar]
  17. 17.
    Aust. Senate Community Aff. Ref. Comm 2010. Gene patents Rep., Commonw. Aust. Canberra, Aust:.
    [Google Scholar]
  18. 18.
    Aust. Senate Leg. Const. Aff. Legis. Comm 2011. Patent Amendment (Human Genes and Biological Materials) Bill 2010 Rep., Commonw. Aust. Canberra, Aust:.
    [Google Scholar]
  19. 19.
    Beauchamp C. 2015. Invented by Law: Alexander Graham Bell and the Patent that Changed America Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  20. 20.
    Bittlingmayer G. 1988. Property rights, progress and the aircraft patent agreement. J. Law Econ. 31:227–48
    [Google Scholar]
  21. 21.
    Bostyn SJR, Iserentant H, Sattler de Sousa eBrito C, Taormino J, Farquharson A et al. 2016. Final Report of the Expert Group on the development and implications of patent law in the field of biotechnology and genetic engineering Rep. E02973 Eur. Comm. Brussels, Belg:.
    [Google Scholar]
  22. 22.
    Brenner v. Manson 383 US 519 1966.)
  23. 23.
    Carbone J, Gold ER, Sampat B, Chandrasekharan S, Knowles L et al. 2010. DNA patents and diagnostics: not a pretty picture. Nat. Biotechnol. 28:784–91
    [Google Scholar]
  24. 24.
    Caulfield T, Cook-Deegan RM, Kieff FS, Walsh JP 2006. Evidence and anecdotes: an analysis of human gene patenting controversies. Nat. Biotechnol. 24:1091–94
    [Google Scholar]
  25. 25.
    Chao B, Mapes A. 2016. An early look at Mayo's impact on personalized medicine. Patently-O 2016:10–14
    [Google Scholar]
  26. 26.
    Cho MK, Illangasekare S, Weaver MA, Leonard DGB, Merz JF 2003. Effect of patents and licenses on the provision of clinical genetic testing services. J. Mol. Diagn. 5:3–8
    [Google Scholar]
  27. 27.
    Cleveland Clinic Foundation v. True Health Diagnostics 859 F.3d 1352 (Fed. Cir 2017.)
  28. 28.
    Cohen SN, Boyer HB. 1980. Process for producing biologically functional molecular chimeras US Patent 4,237,224
    [Google Scholar]
  29. 29.
    Comm. Intellect. Prop. Rights Genom. Protein Res. Innov 2006. Reaping the Benefits of Genomic and Proteomic Research: Intellectual Property Rights, Innovation, and Public Health, ed. SA Merrill, AM Mazza Washington, DC: Natl. Acad. Press
    [Google Scholar]
  30. 30.
    Convention on the Grant of European Patents 1065 U.N.T.S. 199 1973.)
  31. 31.
    Cook-Deegan R, Chandrasekharan S. 2014. Patents and genome-wide DNA sequence analysis: Is it safe to go into the human genome?. J. Law Med. Ethics 42:42–51
    [Google Scholar]
  32. 32.
    Cook-Deegan R, Conley JM, Evans JP, Vorhaus D 2013. The new controversy in genetic testing: clinical data as trade secrets. ? Eur. J. Hum. Genet. 21:585–88
    [Google Scholar]
  33. 33.
    Cook-Deegan R, Heaney C. 2010. Patents in genomics and human genetics. Annu. Rev. Genom. Hum. Genet. 11:383–425
    [Google Scholar]
  34. 34.
    Crouch DE. 2018. A glimmer of an idea on an experimental use exemption. Patent Docs Nov. 8. https://www.patentdocs.org/2018/11/a-glimmer-of-an-idea-on-an-experimental-use-exemption.html
    [Google Scholar]
  35. 35.
    D'Arcy v. Myriad Genetics, Inc. 258 CLR 334 2015.)
  36. 36.
    Diamond v. Chakrabarty 447 US 303 1980.)
  37. 37.
    Diamond v. Diehr 450 US 175 1981.)
  38. 38.
    Díaz Pozo M. 2017. Patenting Genes: The Requirement of Industrial Application Cheltenham, UK: Edward Elgar
    [Google Scholar]
  39. 39.
    Dreyfuss RC. 1989. The Federal Circuit: a case study in specialized courts. N.Y. Univ. Law Rev. 64:1–78
    [Google Scholar]
  40. 40.
    Dreyfuss RC. 2013. Double or nothing: technology transfer under the Bayh-Dole Act. Business Innovation and the Law: Perspectives from Intellectual Property, Labour, Competition and Corporate Law M Pittard, A Monotti, J Duns 52–73 Cheltenham, UK: Edward Elgar
    [Google Scholar]
  41. 41.
    Dreyfuss RC, Nielsen J, Nicol D 2018. Patenting nature—a comparative perspective. J. Law Biosci. 6:1–40
    [Google Scholar]
  42. 42.
    Easton DF, Pharoah PDP, Antoniou AC et al. 2015. Gene-panel sequencing and the prediction of breast-cancer risk. N. Engl. J. Med. 372:2243–57
    [Google Scholar]
  43. 43.
    Eisenberg RS. 1992. Genes, patents and product development. Science 257:903–8
    [Google Scholar]
  44. 44.
    Eisenberg RS. 2001. Bargaining over the transfer of proprietary research tools: Is this market failing or emerging?. Expanding the Boundaries of Intellectual Property: Innovation Policy for the Knowledge Society RC Dreyfuss, DL Zimmerman, H First 223–50 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  45. 45.
    Eisenberg RS. 2002. Why the gene patenting controversy persists. Acad. Med. 77:1381–87
    [Google Scholar]
  46. 46.
    Eisenberg RS. 2008. Noncompliance, nonenforcement, nonproblem? Rethinking the anticommons in biomedical research. Houst. Law Rev. 45:1059–99
    [Google Scholar]
  47. 47.
    Eisenberg RS, Cook-Deegan R. 2018. Universities: the fallen angels of Bayh-Dole. ? Daedalus 147:76–89
    [Google Scholar]
  48. 48.
    Eisenberg RS, Nelson R. 2002. Public versus proprietary science: a fruitful tension. ? Acad. Med. 77:1392–99
    [Google Scholar]
  49. 49.
    Eur. Patent Off 2006. Implementing regulations to the Convention on the Grant of European Patents Regul. Doc., Eur. Patent Off. Munich, Ger: https://www.epo.org/law-practice/legal-texts/html/epc/2016/e/EPC_reg_20180401_en_20181012.pdf
    [Google Scholar]
  50. 50.
    Eur. Patent Off. Boards Appeal 2002. Relaxin/Howard Florey Institute Case T 0272/95 Eur. Patent Off. Boards Appeal Haar, Ger: https://www.epo.org/law-practice/case-law-appeals/recent/t950272eu2.html
    [Google Scholar]
  51. 51.
    Eur. Patent Off. Boards Appeal 2007. Breast and ovarian cancer/University of Utah Research Foundation Case T 1213/05 Eur. Patent Off. Boards Appeal Haar, Ger: https://www.epo.org/law-practice/case-law-appeals/recent/t051213eu1.html
    [Google Scholar]
  52. 52.
    Eur. Patent Off. Boards Appeal 2008. Method of diagnosis/University of Utah Research Foundation Case T 0080/05 Eur. Patent Off. Boards Appeal Haar, Ger: https://www.epo.org/law-practice/case-law-appeals/recent/t050080eu1.html
    [Google Scholar]
  53. 53.
    Eur. Patent Off. Boards Appeal 2008. Mutation/University of Utah Research Foundation Case T 0666/06 Eur. Patent Off. Boards Appeal Haar, Ger: https://www.epo.org/law-practice/case-law-appeals/recent/t050666eu1.html
    [Google Scholar]
  54. 54.
    Eur. Union 1998. Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection of biotechnological inventions. Off. J. Eur. Communities 30: 7.98:L 213–21
    [Google Scholar]
  55. 55.
    Feldman MP, Colaianni A, Liu CK 2007. Lessons from the commercialization of the Cohen-Boyer patents: the Stanford University licensing program. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices A Krattiger, RT Mahoney, L Nelsen, JA Thomson, AB Bennett, et al 1797–808 Oxford, UK/Davis, CA/Rio de Janeiro/Ithaca, NY: Cent. Manag. Intellect. Prop Health Res. Dev./Public Intellect. Prop. Resour. Agric./Oswaldo Cruz Found./bioDev.-Int. Inst .
    [Google Scholar]
  56. 56.
    Felmy A, transl. 2018. Receptor tyrosine kinase: decision of the Federal Supreme Court (Bundesgerichtshof) 19 January 2016 – Case No. X ZR 141/13. Int. Rev. Intellect. Prop. Compet. Law 49:221–30
    [Google Scholar]
  57. 57.
    Felmy A, transl. 2018. Receptor tyrosine kinase II: decision of the Federal Supreme Court (Bundesgerichtshof) 27 September 2016 – Case No. X ZR 124/15. Int. Rev. Intellect. Prop. Compet. Law 49:231–36
    [Google Scholar]
  58. 58.
    Gaisser S, Hopkins MM, Liddell K, Zika E, Ibarreta D 2009. The phantom menace of gene patents. Nature 458:407–8
    [Google Scholar]
  59. 59.
    Gervais D. 2018. The TRIPS Agreement: Drafting History and Analysis London: Sweet and Maxwell. , 5th ed..
    [Google Scholar]
  60. 60.
    Gold ER, Carbone J. 2010. Myriad Genetics: in the eye of the policy storm. Genet. Med. 12:Suppl. 4532–70
    [Google Scholar]
  61. 61.
    Gold ER, Gallochat A. 2001. The European Biotech Directive: past as prologue. Eur. J. Law 7:331–66
    [Google Scholar]
  62. 62.
    Gov. Pub. Off., Dep. Commer., US Patent Trademark Off 1999. Revised interim utility examination guidelines; request for comments 64 Fed. Reg. 71440
    [Google Scholar]
  63. 63.
    Gov. Pub. Off., Dep. Commer., US Patent Trademark Off 2001. Guidelines for examination of patent applications under the 35 U.S.C. § 112, ¶ 1 “written description” requirement 66 Fed. Reg. 1099, 1104
    [Google Scholar]
  64. 64.
    Gov. Pub. Off., Dep. Commer., US Patent Trademark Off 2001. Utility examination guidelines 66 Fed. Reg. 1092
    [Google Scholar]
  65. 65.
    Gov. Pub. Off., Dep. Commer., US Patent Trademark Off 2019. 2019 revised patent subject matter eligibility guidance 84 Fed. Reg. 40
    [Google Scholar]
  66. 66.
    Graff GD, Phillips D, Lei Z, Oh S, Nottenburg C, Pardey PG 2013. Not quite a myriad of gene patents. Nat. Biotechnol. 31:404–10
    [Google Scholar]
  67. 67.
    Guo H. 2007. IP management at Chinese universities. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices A Krattiger, RT Mahoney, L Nelsen, JA Thomson, AB Bennett et al.1673–82 Oxford, UK/Davis, CA/Rio de Janeiro/Ithaca, NY: Cent. Manag. Intellect. Prop Health Res. Dev./Public Intellect. Prop. Resour. Agric./Oswaldo Cruz Found./bioDev.-Int. Inst .
    [Google Scholar]
  68. 68.
    Heller MA, Eisenberg RS. 1998. Can patents deter innovation? The anticommons in biomedical research. Science 280:698–701
    [Google Scholar]
  69. 69.
    Huys I, Berthels N, Matthijs G, Van Overwalle G 2009. Legal uncertainty in the area of genetic diagnostic testing. Nat. Biotechnol. 27:903–9
    [Google Scholar]
  70. 70.
    Illumina, Inc. v. Premaitha Health Plc EWHC 2930 2017.)
  71. 71.
    In re Deuel 51 F.3d 1552 (Fed. Cir 1995.)
  72. 72.
    In re Fisher 421 F.3d 1365 (Fed. Cir 2005.)
  73. 73.
    In re Kubin 561 F.3d 1351 (Fed. Cir 2009.)
  74. 74.
    In re Wands 858 F.2d 731 (Fed. Cir 1988.)
  75. 75.
    Jaenichen H, Pitz J. 2015. Research/experimental use in the European Union: Patents do not block the progress of science. Cold Spring Harb. Perspect. Med. 5:a020941
    [Google Scholar]
  76. 76.
    Jensen K, Murray F. 2005. Intellectual property landscape of the human genome. Science 310:239–40
    [Google Scholar]
  77. 77.
    Judgment of the Court of Justice EU, 9 October 2001, Case C-377/98, Kingdom of the Netherlands, applicant, supported by Italian Republic, and by Kingdom of Norway, interveners v. European Parliament and Council of the European Union, defendants, supported by Commission of the European Communities intervener (Court Justice Eur. Union 2001)
  78. 78.
    KSR v. Teleflex 550 US 398 2007.)
  79. 79.
    Laboratory Corporation of America Holdings v. Metabolite Laboratories, Inc. 548 US 124 2006.)
  80. 80.
    Lemley MA. 2015. Faith-based IP. UCLA Law Rev 62:1328–46
    [Google Scholar]
  81. 81.
    Leonard DGB. 2002. Medical practice and gene patents: a personal perspective. Acad. Med. 77:1388–91
    [Google Scholar]
  82. 82.
    Li W. 2018. Analyzing the protection scope limit for biosequence patent claims in China. Nat. Biotechnol. 36:811–13
    [Google Scholar]
  83. 83.
    Li W, Cai L. 2014. The scope of patent protection for gene technology in China. Nat. Biotechnol. 32:1001–3
    [Google Scholar]
  84. 84.
    Liddicoat J, Whitton T, Nicol D 2015. Are the gene patent storm clouds dissipating? A global snapshot. Nat. Biotechnol. 33:347–52
    [Google Scholar]
  85. 85.
    Madey v. Duke University 307 F.3d 1351 (Fed Cir 2002.)
  86. 86.
    Maher L. 1992. The patent environment: domestic and European community frameworks for biotechnology. Jurimetrics 33:67–132
    [Google Scholar]
  87. 87.
    Matthijs G. 2007. DNA diagnostics in practice. Gene Patents and Public Health G Van Overwalle 27–44 Brussels: Bruylant
    [Google Scholar]
  88. 88.
    Matthijs G, Huys I, Van Overwalle G, Stoppa-Lyonnet D 2013. The European BRCA patent oppositions and appeals: coloring inside the lines. Nat. Biotechnol. 31:704–10
    [Google Scholar]
  89. 89.
    Mayo Collaborative Services v. Prometheus Laboratories, Inc. 566 US 66 2012.)
  90. 90.
    Meat and Livestock Australia Ltd. v. Cargill, Inc. FCA 51 2018.)
  91. 91.
    Merz JF, Kriss AG, Leonard DGB, Cho MK 2002. Diagnostic testing fails the test. Nature 415:577–79
    [Google Scholar]
  92. 92.
    Micro Chemicals Ltd. et al. v. Smith Kline & French Inter-American Corporation, SCR 506 1972.)
  93. 93.
    Mossof A. 2011. The rise and fall of the first American patent thicket: the sewing machine war of the 1850s. Ariz. Law Rev. 53:165–211
    [Google Scholar]
  94. 94.
    Mueller JM. 1997. The evolving application of the written description requirement to biotechnological inventions. Berkeley Technol. Law J. 13:615–32
    [Google Scholar]
  95. 95.
    National Development and Research Corporation v. Commissioner of Patents 102 CLR 252 1959.)
  96. 96.
    Nicol D. 2005. Balancing innovation and access to healthcare through the patent system—an Australian perspective. Community Genet 8:228–34
    [Google Scholar]
  97. 97.
    Nicol D. 2017. Gene patents. Tensions and Traumas in Health Law I Freckleton, K Petersen 401–14 Sydney: Fed. Press
    [Google Scholar]
  98. 98.
    Nicol D, Liddicoat J. 2013. Do patents impede the provision of genetic tests in Australia?. Aust. Health Rev. 37:281–85
    [Google Scholar]
  99. 99.
    Nicol D, Nielsen J. 2003. Patents and medical biotechnology: an empirical analysis of issues facing the Australian industry Occas. Pap. 6 Cent. Law Genet., Univ. Tasman. Hobart, Aust:.
    [Google Scholar]
  100. 100.
    Nielsen J, Nicol D 2019. The Myriad litigation and genetic diagnostic testing in Australia. Eur. Intellect. Prop. Rev 41:3163–70
    [Google Scholar]
  101. 101.
    Olivier J, Goh A. 2001. Free trade and protection of intellectual property rights: Can we have one without the other? Res. Pap. Ser. 730 HEC Paris Paris:
    [Google Scholar]
  102. 102.
    Paradise J. 2004. European opposition to exclusive control over predictive breast cancer testing and the inherent implications for US patent law and public policy: a case study of the Myriad Genetics’ BRCA patent controversy. Food Drug Law J 59:133–54
    [Google Scholar]
  103. 103.
    Paris Convention for the Protection of Industrial Property 828 U.N.T.S. 305 1883.)
  104. 104.
    Patent Cooperation Treaty 1160 U.N.T.S. 231 1970.)
  105. 105.
    Piper T, Gold RE. 2008. Practices, policies and possibilities in licensing in human genetics Rep., Innov. Partnersh https://www.dropbox.com/s/oqa2byhnt4n72rx/Piper%20and%20Gold%2C%20Practices_Policies_and_Possibilities_in.pdf?dl=0]
    [Google Scholar]
  106. 106.
    Rai AK, Eisenberg RS. 2003. Bayh-Dole reform and the progress of biomedicine. Am. Sci. 91:52–59
    [Google Scholar]
  107. 107.
    Receptor Tyrosine Kinase X ZR 141/13 (Bundesgerichtshof 2016)
  108. 108.
    Regents of the University of California v. Eli Lilly & Co. 119 F.3d 1559 (Fed. Cir 1997.)
  109. 109.
    Sampat B, Williams HL. 2018. How do patents affect follow-on innovation? Evidence from the human genome NBER Work. Pap. 21666. http://www.nber.org/papers/w21666
    [Google Scholar]
  110. 110.
    Schacht WH. 2012. The Bayh-Dole Act: selected issues in patent policy and the commercialization of technology Rep. 7-5700 Congr. Res. Serv Washington, DC: https://fas.org/sgp/crs/misc/RL32076.pdf
    [Google Scholar]
  111. 111.
    Schwartz RM, Minssen T. 2015. Life after Myriad: the uncertain future of patenting of biomedical innovation and personalised medicine in an international context. Intellect. Prop. Q 3:189–241
    [Google Scholar]
  112. 112.
    Scotchmer S. 1991. Standing on the shoulders of giants: cumulative research and the patent law. J. Econ. Perspect. 5:29–41
    [Google Scholar]
  113. 113.
    Secr. Advis. Comm. Genet. Health Soc 2010. Gene patents and licensing practices and their impact on patient access to genetic tests Rep., Dep. Health Hum. Serv Washington, DC:
    [Google Scholar]
  114. 114.
    Sequenom, Inc. v. Ariosa Diagnostics, Inc. 136 S. Ct. 2511 2016.)
  115. 115.
    Shapiro C. 2001. Navigating the patent thicket: cross licenses, patent pools, and standard-setting. Innovation Policy and the Economy, Vol. 1 AB Jaffe, J Lerner, S Stern 119–50 Cambridge, MA: MIT Press
    [Google Scholar]
  116. 116.
    Shaver L. 2012. Illuminating innovation: from patent racing to patent war. Wash. Lee Law Rev. 69:1891–947
    [Google Scholar]
  117. 117.
    Sherkow JS. 2014. The natural complexity of patent eligibility. Iowa Law Rev 99:1137–96
    [Google Scholar]
  118. 118.
    Sherkow JS, Greely HT. 2015. The history of patenting genetic material. Annu. Rev. Genet. 49:161–82
    [Google Scholar]
  119. 119.
    Skolnick MH, Goldgar DE, Miki Y, Swenson J, Kamb A et al. 1998. 17q-linked breast and ovarian cancer susceptibility gene US Patent 5,710,001
    [Google Scholar]
  120. 120.
    Skolnick MH, Goldgar DE, Miki Y, Swenson J, Kamb A et al. 1998. 17q-linked breast and ovarian cancer susceptibility gene US Patent 5,747,282
    [Google Scholar]
  121. 121.
    Smith-Hughes S. 2011. Genentech: The Beginnings of Biotech Chicago: Univ. Chicago Press
    [Google Scholar]
  122. 122.
    Spear B. 2008. James Watt: the steam engine and the commercialization of patents. World Patent Inf 30:53–58
    [Google Scholar]
  123. 123.
    State Intellect. Prop. Off 2010. SIPO Guidelines for Patent Examination Beijing: Intellect. Prop. Publ. House
    [Google Scholar]
  124. 124.
    State Street Bank & Trust Co. v. Signature Financial Group, Inc. 149 F.3d 1368 (Fed. Cir 1998.)
  125. 125.
    Teva Canada Ltd. v. Novartis AG FC 141 2013.)
  126. 126.
    Tudor J. 2012. Compulsory licensing in the European Union. George Mason J. Int. Commer. Law 4:222–58
    [Google Scholar]
  127. 127.
    US Patent Trademark Off 2017. Patent eligible subject matter: report on views and recommendations from the public Rep., Dep. Commer Washington, DC: https://www.uspto.gov/sites/default/files/documents/101-Report_FINAL.pdf
    [Google Scholar]
  128. 128.
    US Patent Trademark Off 2018. Manual of Patent Examining Procedure Washington, DC: Dep. Commer. , 9th ed..
    [Google Scholar]
  129. 129.
    Van Overwalle G. 1999. Patent protection for plants: a comparison of American and European approaches. IDEA 39:143–94
    [Google Scholar]
  130. 130.
    Van Overwalle G. 2006. The implementation of the biotechnology directive in Belgium and its aftereffects: the introduction of a new research exemption and a compulsory license for public health. Int. Rev. Intellect. Prop. Comp. Law 37:889–920
    [Google Scholar]
  131. 131.
    Van Overwalle G. 2006. Universitaire octrooien op maat? Naar een evenwicht tussen publieke opdracht en privaat goed. Tussen Markt en Agora. Over het statuut van universitaire kennis B Pattyn, G Van Overwalle 181–214 Leuven, Belg: Peeters
    [Google Scholar]
  132. 132.
    Van Overwalle G. 2008. Biotechnology and patents: global standards, European approaches and national accents. Genetic Engineering and the World Trade System D Wüger, T Cottier 77–108 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  133. 133.
    Van Overwalle G. 2014. Governing genomic data: plea for an ‘open commons. .’ In Governing the Knowledge Commons B Frischmann, M Madison, K Strandburg 137–53 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  134. 134.
    Van Overwalle G. 2015. Gene patents and human rights. Intellectual Property Law and Human Rights PLC Torremans 871–914 Alphen aan den Rijn, Neth: Kluwer Law Int. , 3rd ed..
    [Google Scholar]
  135. 135.
    van Zimmeren E, Van Overwalle G 2014. A false sense of security offered by zero-price liability rules? Research exceptions in the US, Europe, and Japan in an open innovation context. Patent Law in Global Perspective R Okediji, M Bagly 379–417 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  136. 136.
    Vanda Pharmaceuticals, Inc. v. West-Ward Pharmaceuticals International Ltd. 887 F.3d 1117 (Fed. Cir 2018.)
  137. 137.
    Verbeure B, Matthijs G, Van Overwalle G 2005. Analysing DNA patents in relation with diagnostic genetic testing. Eur. J. Hum. Genet. 14:26–33
    [Google Scholar]
  138. 138.
    Walker J. 2015. Myriad Genetics fights off threats from rivals. Wall Street Journal May 3. http://www.wsj.com/articles/myriad-genetics-fights-off-threats-from-rivals-1430645582
    [Google Scholar]
  139. 139.
    Walsh JP, Arora A, Cohen WM 2003. Effects of research tool patenting and licensing in biomedical innovation. Patents in the Knowledge-Based Economy WM Cohen, SA Merrill 285–340 Washington, DC: Natl. Acad. Press
    [Google Scholar]
  140. 140.
    Wellcome Trust 1996. Summary of principles agreed at the international strategy meeting on human genome sequencing http://www.casimir.org.uk/storyfiles/64.0.summary_of_bermuda_principles.pdf
    [Google Scholar]
  141. 141.
    Williams-Jones B. 2002. History of a gene patent: tracing the development and application of commercial BRCA testing. Health Law J 10:121–44
    [Google Scholar]
  142. 142.
    World Trade Organ 2018. Trade-related aspects of intellectual property rights. World Trade Organization https://www.wto.org/english/tratop_e/trips_e/trips_e.htm
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083118-015112
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error