1932

Abstract

Congenital heart disease (CHD) can affect up to 1% of live births, and despite abundant evidence of a genetic etiology, the genetic landscape of CHD is still not well understood. A large-scale mouse chemical mutagenesis screen for mutations causing CHD yielded a preponderance of cilia-related genes, pointing to a central role for cilia in CHD pathogenesis. The genes uncovered by the screen included genes that regulate ciliogenesis and cilia-transduced cell signaling as well as many that mediate endocytic trafficking, a cell process critical for both ciliogenesis and cell signaling. The clinical relevance of these findings is supported by whole-exome sequencing analysis of CHD patients that showed enrichment for pathogenic variants in ciliome genes. Surprisingly, among the ciliome CHD genes recovered were many that encoded direct protein–protein interactors. Assembly of the CHD genes into a protein–protein interaction network yielded a tight interactome that suggested this protein–protein interaction may have functional importance and that its disruption could contribute to the pathogenesis of CHD. In light of these and other findings, we propose that an interactome enriched for ciliome genes may provide the genomic context for the complex genetics of CHD and its often-observed incomplete penetrance and variable expressivity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121222-105345
2024-08-27
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/genom/25/1/annurev-genom-121222-105345.html?itemId=/content/journals/10.1146/annurev-genom-121222-105345&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bernabé-Rubio M, Alonso MA. 2017.. Routes and machinery of primary cilium biogenesis. . Cell. Mol. Life Sci. 74::407795
    [Crossref] [Google Scholar]
  2. 2.
    Czarnecki PG, Gabriel GC, Manning DK, Sergeev M, Lemke K, et al. 2015.. ANKS6 is the critical activator of NEK8 kinase in embryonic situs determination and organ patterning. . Nat. Commun. 6::6023
    [Crossref] [Google Scholar]
  3. 3.
    Dau C, Fliegauf M, Omran H, Schlensog M, Dahl E, et al. 2016.. The atypical cadherin Dachsous1 localizes to the base of the ciliary apparatus in airway epithelia. . Biochem. Biophys. Res. Commun. 473::117784
    [Crossref] [Google Scholar]
  4. 4.
    Donoso M, Cancino J, Lee J, Van Kerkhof P, Retamal C, et al. 2009.. Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. . Mol. Biol. Cell 20::48197
    [Crossref] [Google Scholar]
  5. 5.
    Downing KF, Nembhard WN, Rose CE, Andrews JG, Goudie A, et al. 2023.. Survival from birth until young adulthood among individuals with congenital heart defects: CH STRONG. . Circulation 148::57588
    [Crossref] [Google Scholar]
  6. 6.
    Durst R, Sauls K, Peal DS, Devlaming A, Toomer K, et al. 2015.. Mutations in DCHS1 cause mitral valve prolapse. . Nature 525::10913
    [Crossref] [Google Scholar]
  7. 7.
    Ferencz C, Boughman JA, Neill CA, Brenner JI, Perry LW, Baltimore-Washington Infant Study Group. 1989.. Congenital cardiovascular malformations: questions on inheritance. . J. Am. Coll. Cardiol. 14::75663
    [Crossref] [Google Scholar]
  8. 8.
    Fulmer D, Toomer K, Guo L, Moore K, Glover J, et al. 2019.. Defects in the exocyst-cilia machinery cause bicuspid aortic valve disease and aortic stenosis. . Circulation 140::133141
    [Crossref] [Google Scholar]
  9. 9.
    Gabriel GC, Pazour GJ, Lo CW. 2018.. Congenital heart defects and ciliopathies associated with renal phenotypes. . Front. Pediatr. 6::175
    [Crossref] [Google Scholar]
  10. 10.
    Gabriel GC, Yagi H, Tan T, Bais A, Glennon BJ, et al. 2023.. Pathogenic mechanisms underlying adverse neurodevelopmental outcome in congenital heart disease. . bioRxiv 2023.11.05.565716. https://doi.org/10.1101/2023.11.05.565716
  11. 11.
    Ganapathiraju MK, Thahir M, Handen A, Sarkar SN, Sweet RA, et al. 2016.. Schizophrenia interactome with 504 novel protein–protein interactions. . npj Schizophr. 2::16012
    [Crossref] [Google Scholar]
  12. 12.
    Geddes GC, Stamm K, Mitchell M, Mussatto KA, Tomita-Mitchell A. 2017.. Ciliopathy variant burden and developmental delay in children with hypoplastic left heart syndrome. . Genet. Med. 19::71114
    [Crossref] [Google Scholar]
  13. 13.
    Gerhardt C, Leu T, Lier JM, Rüther U. 2016.. The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. . Cilia 5::14
    [Crossref] [Google Scholar]
  14. 14.
    Goldmuntz E, Clark BJ, Mitchell LE, Jawad AF, Cuneo BF, et al. 1998.. Frequency of 22q11 deletions in patients with conotruncal defects. . J. Am. Coll. Cardiol. 32::49298
    [Crossref] [Google Scholar]
  15. 15.
    Gorden NT, Arts HH, Parisi MA, Coene KL, Letteboer SJ, et al. 2008.. CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. . Am. J. Hum. Genet. 83::55971
    [Crossref] [Google Scholar]
  16. 16.
    Guimier A, Gabriel GC, Bajolle F, Tsang M, Liu H, et al. 2015.. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates. . Nat. Genet. 47::126063
    [Crossref] [Google Scholar]
  17. 17.
    Habbig S, Bartram MP, Sägmüller JG, Griessmann A, Franke M, et al. 2012.. The ciliopathy disease protein NPHP9 promotes nuclear delivery and activation of the oncogenic transcriptional regulator TAZ. . Hum. Mol. Genet. 21::552838
    [Crossref] [Google Scholar]
  18. 18.
    Harrison MJ, Shapiro AJ, Kennedy MP. 2016.. Congenital heart disease and primary ciliary dyskinesia. . Paediatr. Respir. Rev. 18::2532
    [Google Scholar]
  19. 19.
    Hoff S, Halbritter J, Epting D, Frank V, Nguyen T-MT, et al. 2013.. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. . Nat. Genet. 45::95156
    [Crossref] [Google Scholar]
  20. 20.
    Hoffman JI, Kaplan S. 2002.. The incidence of congenital heart disease. . J. Am. Coll. Cardiol. 39::1890900
    [Crossref] [Google Scholar]
  21. 21.
    Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, et al. 2017.. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. . Nat. Genet. 49::1593601
    [Crossref] [Google Scholar]
  22. 22.
    Karp N, Grosse-Wortmann L, Bowdin S. 2012.. Severe aortic stenosis, bicuspid aortic valve and atrial septal defect in a child with Joubert Syndrome and Related Disorders (JSRD)—a case report and review of congenital heart defects reported in the human ciliopathies. . Eur. J. Med. Genet. 55::60510
    [Crossref] [Google Scholar]
  23. 23.
    Karunakaran KB, Chaparala S, Lo CW, Ganapathiraju MK. 2020.. Cilia interactome with predicted protein–protein interactions reveals connections to Alzheimer's disease, aging and other neuropsychiatric processes. . Sci. Rep. 10::25629
    [Crossref] [Google Scholar]
  24. 24.
    Karunakaran KB, Gabriel GC, Balakrishnan N, Lo CW, Ganapathiraju MK. 2022.. Novel protein–protein interactions highlighting the crosstalk between hypoplastic left heart syndrome, ciliopathies and neurodevelopmental delays. . Genes 13::627
    [Crossref] [Google Scholar]
  25. 25.
    Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, et al. 2001.. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. . Science 293::225659
    [Crossref] [Google Scholar]
  26. 26.
    Keshava Prasad T, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al. 2009.. Human protein reference database—2009 update. . Nucleic Acids Res. 37::D76772
    [Crossref] [Google Scholar]
  27. 27.
    Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. 2013.. Primary ciliary dyskinesia: recent advances in diagnostics, genetics, and characterization of clinical disease. . Am. J. Respir. Crit. Care Med. 188::91322
    [Crossref] [Google Scholar]
  28. 28.
    Koefoed K, Veland IR, Pedersen LB, Larsen LA, Christensen ST. 2014.. Cilia and coordination of signaling networks during heart development. . Organogenesis 10::10825
    [Crossref] [Google Scholar]
  29. 29.
    Kousi M, Söylemez O, Ozanturk A, Mourtzi N, Akle S, et al. 2020.. Evidence for secondary-variant genetic burden and non-random distribution across biological modules in a recessive ciliopathy. . Nat. Genet. 52::114550
    [Crossref] [Google Scholar]
  30. 30.
    Lara DA, Ethen MK, Canfield MA, Nembhard WN, Morris SA. 2017.. A population-based analysis of mortality in patients with Turner syndrome and hypoplastic left heart syndrome using the Texas Birth Defects Registry. . Congenit. Heart Dis. 12::10512
    [Crossref] [Google Scholar]
  31. 31.
    Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, et al. 2015.. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. . Nature 521::52024
    [Crossref] [Google Scholar]
  32. 32.
    Liu X, Francis R, Kim AJ, Ramirez R, Chen G, et al. 2014.. Interrogating congenital heart defects with noninvasive fetal echocardiography in a mouse forward genetic screen. . Circ. Cardiovasc. Imaging 7::3142
    [Crossref] [Google Scholar]
  33. 33.
    Liu X, Yagi H, Saeed S, Bais AS, Gabriel GC, et al. 2017.. The complex genetics of hypoplastic left heart syndrome. . Nat. Genet. 49::115259
    [Crossref] [Google Scholar]
  34. 34.
    Liu Y-X, Li W-J, Zhang R-K, Sun S-N, Fan Z-C. 2023.. Unraveling the intricate cargo-BBSome coupling mechanism at the ciliary tip. . PNAS 120::e2218819120
    [Crossref] [Google Scholar]
  35. 35.
    Lumiaho A, Ikäheimo R, Miettinen R, Niemitukia L, Laitinen T, et al. 2001.. Mitral valve prolapse and mitral regurgitation are common in patients with polycystic kidney disease type 1. . Am. J. Kidney Dis. 38::120816
    [Crossref] [Google Scholar]
  36. 36.
    Marino BS, Lipkin PH, Newburger JW, Peacock G, Gerdes M, et al. 2012.. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. . Circulation 126::114372
    [Crossref] [Google Scholar]
  37. 37.
    Martín-Salazar JE, Valverde D. 2022.. CPLANE complex and ciliopathies. . Biomolecules 12::847
    [Crossref] [Google Scholar]
  38. 38.
    Moons P, Bovijn L, Budts W, Belmans A, Gewillig M. 2010.. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. . Circulation 122::226472
    [Crossref] [Google Scholar]
  39. 39.
    Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, et al. 2000.. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. . Nat. Genet. 25::44043
    [Crossref] [Google Scholar]
  40. 40.
    Olson AJ, Krentz AD, Finta KM, Okorie UC, Haws RM. 2019.. Thoraco-abdominal abnormalities in Bardet-Biedl syndrome: situs inversus and heterotaxy. . J. Pediatr. 204::3137
    [Crossref] [Google Scholar]
  41. 41.
    Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, et al. 2019.. The BioGRID interaction database: 2019 update. . Nucleic Acids Res. 47::D52941
    [Crossref] [Google Scholar]
  42. 42.
    Perea-Romero I, Solarat C, Blanco-Kelly F, Sanchez-Navarro I, Bea-Mascato B, et al. 2022.. Allelic overload and its clinical modifier effect in Bardet-Biedl syndrome. . npj Genom. Med. 7::41
    [Crossref] [Google Scholar]
  43. 43.
    Phelps IG, Dempsey JC, Grout ME, Isabella CR, Tully HM, et al. 2018.. Interpreting the clinical significance of combined variants in multiple recessive disease genes: systematic investigation of Joubert syndrome yields little support for oligogenicity. . Genet. Med. 20::22333
    [Crossref] [Google Scholar]
  44. 44.
    Reiter JF, Leroux MR. 2017.. Genes and molecular pathways underpinning ciliopathies. . Nat. Rev. Mol. Cell Biol. 18::53347
    [Crossref] [Google Scholar]
  45. 45.
    Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. 2008.. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. . J. Pediatr. 153::80713
    [Crossref] [Google Scholar]
  46. 46.
    Stagner EE, Bouvrette DJ, Cheng J, Bryda EC. 2009.. The polycystic kidney disease-related proteins Bicc1 and SamCystin interact. . Biochem. Biophys. Res. Commun. 383::1621
    [Crossref] [Google Scholar]
  47. 47.
    Teekakirikul P, Zhu W, Xu X, Young CB, Tan T, et al. 2022.. Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability. . Cell Rep. Med. 3::100501
    [Crossref] [Google Scholar]
  48. 48.
    Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, et al. 2019.. Primary cilia defects causing mitral valve prolapse. . Sci. Transl. Med. 11::eaax0290
    [Crossref] [Google Scholar]
  49. 49.
    Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, et al. 2016.. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. . Nat. Genet. 48::64856
    [Crossref] [Google Scholar]
  50. 50.
    Tutar E, Ekici F, Atalay S, Nacar N. 2005.. The prevalence of bicuspid aortic valve in newborns by echocardiographic screening. . Am. Heart J. 150::51315
    [Crossref] [Google Scholar]
  51. 51.
    Wallmeier J, Nielsen KG, Kuehni CE, Lucas JS, Leigh MW, et al. 2020.. Motile ciliopathies. . Nat. Rev. Dis. Primers 6::77
    [Crossref] [Google Scholar]
  52. 52.
    Watkins WS, Hernandez EJ, Wesolowski S, Bisgrove BW, Sunderland RT, et al. 2019.. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. . Nat. Commun. 10::4722
    [Crossref] [Google Scholar]
  53. 53.
    Weijerman ME, van Furth AM, van der Mooren MD, van Weissenbruch MM, Rammeloo L, et al. 2010.. Prevalence of congenital heart defects and persistent pulmonary hypertension of the neonate with Down syndrome. . Eur. J. Pediatr. 169::119599
    [Crossref] [Google Scholar]
  54. 54.
    Yu X, Ng CP, Habacher H, Roy S. 2008.. Foxj1 transcription factors are master regulators of the motile ciliogenic program. . Nat. Genet. 40::144553
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genom-121222-105345
Loading
/content/journals/10.1146/annurev-genom-121222-105345
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error