1932

Abstract

IgE-mediated allergy is a hypersensitivity disease affecting more than 25% of the population. The structures of the most common allergens have been revealed through molecular cloning technology in the past two decades. On the basis of this knowledge of the sequences and three-dimensional structures of culprit allergens, investigators can now analyze the immune recognition of allergens and the mechanisms of allergic inflammation in allergic patients. Allergy vaccines have been constructed that are able to selectively target the aberrant immune responses in allergic patients via different pathways of the immune system. Here we review various types of allergy vaccines that have been developed based on allergen structures, results from their clinical application in allergic patients, and future strategies for allergen-specific immunotherapy and allergy prophylaxis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-030409-101218
2009-04-23
2025-05-18
Loading full text...

Full text loading...

/deliver/fulltext/immunol/28/1/annurev-immunol-030409-101218.html?itemId=/content/journals/10.1146/annurev-immunol-030409-101218&mimeType=html&fmt=ahah

Literature Cited

  1. Kay A. 1.  2008. Allergy and Allergic Diseases Oxford: Blackwell Sci. [Google Scholar]
  2. Kulig M, Bergmann R, Klettke U, Wahn V, Tacke U, Wahn U. 2.  1999. Natural course of sensitization to food and inhalant allergens during the first 6 years of life. J. Allergy Clin. Immunol. 103:1173–79 [Google Scholar]
  3. Niederberger V, Niggemann B, Kraft D, Spitzauer S, Valenta R. 3.  2002. Evolution of IgM, IgE and IgG(1–4) antibody responses in early childhood monitored with recombinant allergen components: implications for class switch mechanisms. Eur. J. Immunol. 32:576–84 [Google Scholar]
  4. Sporik R, Holgate ST, Platts-Mills TA, Cogswell JJ. 4.  1990. Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. A prospective study. N. Engl. J. Med. 323:502–7 [Google Scholar]
  5. Platts-Mills T, Vaughan J, Squillace S, Woodfolk J, Sporik R. 5.  2001. Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet 357:752–56 [Google Scholar]
  6. Braun-Fahrländer C, Riedler J, Herz U, Eder W, Waser M. 6.  et al. 2002. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 347:869–77 [Google Scholar]
  7. Romagnani S. 7.  1994. Lymphokine production by human T cells in disease states. Annu. Rev. Immunol. 12:227–57 [Google Scholar]
  8. Stern DA, Riedler J, Nowak D, Braun-Fahrländer C, Swoboda I. 8.  et al. 2007. Exposure to a farming environment has allergen-specific protective effects on TH2-dependent isotype switching in response to common inhalants. J. Allergy Clin. Immunol. 119:351–58 [Google Scholar]
  9. Snapper CM, Paul WE. 9.  1987. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–47 [Google Scholar]
  10. Brown MA, Pierce JH, Watson CJ, Falco J, Ihle JN, Paul WE. 10.  1987. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell 50:809–18 [Google Scholar]
  11. Ishizaka K, Ishizaka T, Hornbrook MM. 11.  1966. Physico-chemical properties of human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of reaginic activity. J. Immunol. 97:75–85 [Google Scholar]
  12. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N. 12.  et al. 2003. The biology of IGE and the basis of allergic disease. Annu. Rev. Immunol. 21:579–628 [Google Scholar]
  13. Bischoff SC. 13.  2007. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat. Rev. Immunol. 7:93–104 [Google Scholar]
  14. Mudde GC, Van Reijsen FC, Boland GJ, de Gast GC, Bruijnzeel PL, Bruijnzeel-Koomen CA. 14.  1990. Allergen presentation by epidermal Langerhans' cells from patients with atopic dermatitis is mediated by IgE. Immunology 69:335–41 [Google Scholar]
  15. van der Heijden FL, Joost van Neerven RJ, van Katwijk M, Bos JD, Kapsenberg ML. 15.  1993. Serum-IgE-facilitated allergen presentation in atopic disease. J. Immunol. 150:3643–50 [Google Scholar]
  16. Naclerio RM, Adkinson NF Jr, Moylan B, Baroody FM, Proud D. 16.  et al. 1997. Nasal provocation with allergen induces a secondary serum IgE antibody response. J. Allergy Clin. Immunol. 100:505–10 [Google Scholar]
  17. Chakir J, Laviolette M, Turcotte H, Boutet M, Boulet LP. 17.  2000. Cytokine expression in the lower airways of nonasthmatic subjects with allergic rhinitis: influence of natural allergen exposure. J. Allergy Clin. Immunol. 106:904–10 [Google Scholar]
  18. Niederberger V, Ring J, Rakoski J, Jager S, Spitzauer S. 18.  et al. 2007. Antigens drive memory IgE responses in human allergy via the nasal mucosa. Int. Arch. Allergy Immunol. 142:133–44 [Google Scholar]
  19. Noon L. 19.  1911. Prophylactic inoculation against hay fever. Lancet 1:1572–73 [Google Scholar]
  20. Larché M, Akdis CA, Valenta R. 20.  2006. Immunological mechanisms of allergen-specific immunotherapy. Nat. Rev. Immunol. 6:761–71 [Google Scholar]
  21. Cooke RA, Barnard JH, Hebald S, Stull A. 21.  1935. Serological evidence of immunity with coexisting sensitization in a type of human allergy. J. Exp. Med. 62:733–50 [Google Scholar]
  22. Loveless MH. 22.  1940. Immunological studies of pollinosis. I. The presence of two antibodies related to the same pollen antigen in the serum of treated hay-fever patients. J. Immunol. 38:25–50 [Google Scholar]
  23. Valenta R, Ball T, Focke M, Linhart B, Mothes N. 23.  et al. 2004. Immunotherapy of allergic disease. Adv. Immunol. 82:105–53 [Google Scholar]
  24. Bousquet J, Lockey R, Malling HJ. 24.  1998. Allergen immunotherapy: therapeutic vaccines for allergic diseases. A WHO position paper. J. Allergy Clin. Immunol. 102:558–62 [Google Scholar]
  25. Durham SR, Walker SM, Varga EM, Jacobson MR, O'Brien F. 25.  et al. 1999. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. 341:468–75 [Google Scholar]
  26. Möller C, Dreborg S, Ferdousi HA, Halken S, Høst A. 26.  et al. 2002. Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT-study). J. Allergy Clin. Immunol. 109:251–56 [Google Scholar]
  27. Johnson P, Marsh DG. 27.  1965. ‘Isoallergens’ from rye grass pollen. Nature 206:935–37 [Google Scholar]
  28. Berrens L. 28.  1971. The chemistry of atopic allergens. Monogr. Allergy 7:1–298 [Google Scholar]
  29. Chapman MD, Platts-Mills TA. 29.  1980. Purification and characterization of the major allergen from Dermatophagoides pteronyssinus-antigen P1. J. Immunol. 125:587–92 [Google Scholar]
  30. Sehon AH, Kraft D, Kunkel G. 30.  1990. Epitopes of Atopic Allergens Brussels: UCB Inst. Allergy [Google Scholar]
  31. Fang KS, Vitale M, Fehlner P, King TP. 31.  1988. cDNA cloning and primary structure of a white-face hornet venom allergen, antigen 5. Proc. Natl. Acad. Sci. USA 85:895–99 [Google Scholar]
  32. Chua KY, Stewart GA, Thomas WR, Simpson RJ, Dilworth RJ. 32.  et al. 1988. Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1. Homology with cysteine proteases. J. Exp. Med. 167:175–82 [Google Scholar]
  33. Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D. 33.  et al. 1989. The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J. 8:1935–38 [Google Scholar]
  34. Valenta R, Kraft D. 34.  2001. Recombinant allergen molecules: tools to study effector cell activation. Immunol. Rev. 179:119–27 [Google Scholar]
  35. Valenta R. 35.  2008. Biochemistry of allergens, recombinant allergens. Allergy and Allergic Diseases AB Kay, A Kaplan, J Bousquet, P Holt 898–912 Oxford: Blackwell, 2nd. ed. [Google Scholar]
  36. Mari A. 36.  2005. Importance of databases in experimental and clinical allergology. Int. Arch. Allergy Immunol. 138:88–96 [Google Scholar]
  37. Yssel H, Johnson KE, Schneider PV, Wideman J, Terr A. 37.  et al. 1992. T cell activation-inducing epitopes of the house dust mite allergen Der p I. Proliferation and lymphokine production patterns by Der p I-specific CD4+ T cell clones. J. Immunol. 148:738–45 [Google Scholar]
  38. Ebner C, Schenk S, Szépfalusi Z, Hoffmann K, Ferreira F. 38.  et al. 1993. Multiple T cell specificities for Bet v I, the major birch pollen allergen, within single individuals. Studies using specific T cell clones and overlapping peptides. Eur. J. Immunol. 23:1523–27 [Google Scholar]
  39. van Neerven RJ, van de Pol MM, Wierenga EA, Aalberse RC, Jansen HM, Kapsenberg ML. 39.  1994. Peptide specificity and HLA restriction do not dictate lymphokine production by allergen-specific T-lymphocyte clones. Immunology 82:351–56 [Google Scholar]
  40. O'Hehir RE, Eckels DD, Frew AJ, Kay AB, Lamb JR. 40.  1988. MHC class II restriction specificity of cloned human T lymphocytes reactive with Dermatophagoides farinae (house dust mite). Immunology 64:627–31 [Google Scholar]
  41. Sallusto F, Corinti S, Pini C, Biocca MM, Bruno G, Di Felice G. 41.  1996. Parietaria judaica-specific T-cell clones from atopic patients: heterogeneity in restriction, V beta usage, and cytokine profile. J. Allergy Clin. Immunol. 97:627–37 [Google Scholar]
  42. Sone T, Morikubo K, Miyahara M, Komiyama N, Shimizu K. 42.  et al. 1998. T cell epitopes in Japanese cedar (Cryptomeria japonica) pollen allergens: choice of major T cell epitopes in Cry j 1 and Cry j 2 toward design of the peptide-based immunotherapeutics for the management of Japanese cedar pollinosis. J. Immunol. 161:448–57 [Google Scholar]
  43. Würtzen P, Wissenbach M, Ipsen H, Bufe A, Arnved J, van Neerven RJ. 43.  1999. Highly heterogeneous Phl p 5-specific T cells from patients with allergic rhinitis differentially recognize recombinant Phl p 5 isoallergens. J. Allergy Clin. Immunol. 104:115–22 [Google Scholar]
  44. Huang SK, Yi M, Palmer E, Marsh DG. 44.  1995. A dominant T cell receptor beta-chain in response to a short ragweed allergen, Amb a 5. J. Immunol. 154:6157–62 [Google Scholar]
  45. Huang SK, Zwollo P, Marsh DG. 45.  1991. Class II major histocompatibility complex restriction of human T cell responses to short ragweed allergen, Amb a V. Eur. J. Immunol. 21:1469–73 [Google Scholar]
  46. Jahn-Schmid B, Fischer GF, Bohle B, Faé I, Gadermaier G. 46.  et al. 2005. Antigen presentation of the immunodominant T-cell epitope of the major mugwort pollen allergen, Art v 1, is associated with the expression of HLA-DRB1 *01. J. Allergy Clin. Immunol. 115:399–404 [Google Scholar]
  47. van Reijsen FC, Bruijnzeel-Koomen CA, de Weger RA, Mudde GC. 47.  1997. Retention of long-lived, allergen-specific T cells in atopic dermatitis skin—letter. J. Investig. Dermatol. 108:530 [Google Scholar]
  48. Bohle B, Schwihla H, Hu HZ, Friedl-Hajek R, Sowka S. 48.  et al. 1998. Long-lived Th2 clones specific for seasonal and perennial allergens can be detected in blood and skin by their TCR-hypervariable regions. J. Immunol. 160:2022–27 [Google Scholar]
  49. Wierenga EA, Snoek M, Bos JD, Jansen HM, Kapsenberg ML. 49.  1990. Comparison of diversity and function of house dust mite-specific T lymphocyte clones from atopic and non-atopic donors. Eur. J. Immunol. 20:1519–26 [Google Scholar]
  50. van Neerven RJ, van de Pol MM, van Milligen FJ, Jansen HM, Aalberse RC, Kapsenberg ML. 50.  1994. Characterization of cat dander-specific T lymphocytes from atopic patients. J. Immunol. 152:4203–10 [Google Scholar]
  51. Ebner C, Schenk S, Najafian N, Siemann U, Steiner R. 51.  et al. 1995. Nonallergic individuals recognize the same T cell epitopes of Bet v 1, the major birch pollen allergen, as atopic patients. J. Immunol. 154:1932–40 [Google Scholar]
  52. Van Overtvelt L, Wambre E, Maillère B, von Hofe E, Louise A. 52.  et al. 2008. Assessment of Bet v 1-specific CD4+ T cell responses in allergic and nonallergic individuals using MHC class II peptide tetramers. J. Immunol. 180:4514–22 [Google Scholar]
  53. Tordesillas L, Cuesta-Herranz J, Gonzalez-Muñoz M, Pacios LF, Compés E. 53.  et al. 2009. T-cell epitopes of the major peach allergen, Pru p 3: identification and differential T-cell response of peach-allergic and non-allergic subjects. Mol. Immunol. 46:722–28 [Google Scholar]
  54. Karlsson MR, Rugtveit J, Brandtzaeg P. 54.  2004. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J. Exp. Med. 199:1679–88 [Google Scholar]
  55. Akdis M, Verhagen J, Taylor A, Karamloo F, Karagiannidis C. 55.  et al. 2004. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J. Exp. Med. 199:1567–75 [Google Scholar]
  56. Shreffler WG, Wanich N, Moloney M, Nowak-Wegrzyn A, Sampson HA. 56.  2009. Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J. Allergy Clin. Immunol. 123:43–52 [Google Scholar]
  57. Bellinghausen I, Klostermann B, Knop J, Saloga J. 57.  2003. Human CD4+CD25+ T cells derived from the majority of atopic donors are able to suppress TH1 and TH2 cytokine production. J. Allergy Clin. Immunol. 111:862–68 [Google Scholar]
  58. Maggi L, Santarlasci V, Liotta F, Frosali F, Angeli R. 58.  et al. 2007. Demonstration of circulating allergen-specific CD4+CD25highFoxp3+ T-regulatory cells in both nonatopic and atopic individuals. J. Allergy Clin. Immunol. 120:429–36 [Google Scholar]
  59. Bellinghausen I, König B, Böttcher I, Knop J, Saloga J. 59.  2005. Regulatory activity of human CD4+CD25+ T cells depends on allergen concentration, type of allergen and atopy status of the donor. Immunology 116:103–11 [Google Scholar]
  60. Arnon R, van Regenmortel MHV. 60.  1992. Structural basis of antigen specificity and design of new vaccines. FASEB J. 6:3265–74 [Google Scholar]
  61. Greene WK, Cyster JG, Chua KY, O'Brien RM, Thomas WR. 61.  1991. IgE and IgG binding of peptides expressed from fragments of cDNA encoding the major house dust mite allergen Der p I. J. Immunol. 147:3768–73 [Google Scholar]
  62. van't Hof W, Driedijk PC, van den Berg M, Beck-Sickinger AG, Jung G, Aalberse RC. 62.  1991. Epitope mapping of the Dermatophagoides pteronyssinus house dust mite major allergen Der p II using overlapping synthetic peptides. Mol. Immunol. 28:1225–32 [Google Scholar]
  63. Ball T, Vrtala S, Sperr WR, Valent P, Susani M. 63.  et al. 1994. Isolation of an immunodominant IgE hapten from an epitope expression cDNA library. Dissection of the allergic effector reaction. J. Biol. Chem. 269:28323–28 [Google Scholar]
  64. van Milligen FJ, van't Hof W, van den Berg M, Aalberse RC. 64.  1994. IgE epitopes on the cat (Felis domesticus) major allergen Fel d I: a study with overlapping synthetic peptides. J. Allergy Clin. Immunol. 93:34–43 [Google Scholar]
  65. Seiberler S, Scheiner O, Kraft D, Lonsdale D, Valenta R. 65.  1994. Characterization of a birch pollen allergen, Bet v III, representing a novel class of Ca2+ binding proteins: specific expression in mature pollen and dependence of patients' IgE binding on protein-bound Ca2+. EMBO J. 13:3481–86 [Google Scholar]
  66. Engel E, Richter K, Obermeyer G, Briza P, Kungl AJ. 66.  et al. 1997. Immunological and biological properties of Bet v 4, a novel birch pollen allergen with two EF-hand calcium-binding domains. J. Biol. Chem. 272:28630–37 [Google Scholar]
  67. Westritschnig K, Focke M, Verdino P, Goessler W, Keller W. 67.  et al. 2004. Generation of an allergy vaccine by disruption of the three-dimensional structure of the cross-reactive calcium-binding allergen, Phl p 7. J. Immunol. 172:5684–92 [Google Scholar]
  68. Vrtala S, Hirtenlehner K, Vangelista L, Pastore A, Eichler HG. 68.  et al. 1997. Conversion of the major birch pollen allergen, Bet v 1, into two nonanaphylactic T cell epitope-containing fragments: candidates for a novel form of specific immunotherapy. J. Clin. Investig. 99:1673–81 [Google Scholar]
  69. Gieras A, Focke-Tejkl M, Ball T, Verdino P, Hartl A. 69.  et al. 2007. Molecular determinants of allergen-induced effector cell degranulation. J. Allergy Clin. Immunol. 119:384–90 [Google Scholar]
  70. Christensen LH, Holm J, Lund G, Riise E, Lund K. 70.  2008. Several distinct properties of the IgE repertoire determine effector cell degranulation in response to allergen challenge. J. Allergy Clin. Immunol. 122:298–304 [Google Scholar]
  71. Niemi M, Jylhä S, Laukkanen ML, Söderlund H, Mäkinen-Kiljunen S. 71.  et al. 2007. Molecular interactions between a recombinant IgE antibody and the beta-lactoglobulin allergen. Structure 15:1413–21 [Google Scholar]
  72. Padavattan S, Flicker S, Schirmer T, Madritsch C, Randow S. 72.  et al. 2009. High-affinity IgE recognition of a conformational epitope of the major respiratory allergen Phl p 2 as revealed by X-ray crystallography. J. Immunol. 182:2141–51 [Google Scholar]
  73. Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC. 73.  1997. The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure 5:33–45 [Google Scholar]
  74. Flicker S, Vrtala S, Steinberger P, Vangelista L, Bufe A. 74.  et al. 2000. A human monoclonal IgE antibody defines a highly allergenic fragment of the major timothy grass pollen allergen, Phl p 5: molecular, immunological, and structural characterization of the epitope-containing domain. J. Immunol. 165:3849–59 [Google Scholar]
  75. Flicker S, Steinberger P, Ball T, Krauth MT, Verdino P. 75.  et al. 2006. Spatial clustering of the IgE epitopes on the major timothy grass pollen allergen Phl p 1: importance for allergenic activity. J. Allergy Clin. Immunol. 117:1336–43 [Google Scholar]
  76. van Neerven RJ, Knol EF, Ejrnaes A, Würtzen PA. 76.  2006. IgE-mediated allergen presentation and blocking antibodies: regulation of T-cell activation in allergy. Int. Arch. Allergy Immunol. 141:119–29 [Google Scholar]
  77. Wachholz PA, Durham SR. 77.  2004. Mechanisms of immunotherapy: IgG revisited. Curr. Opin. Allergy Clin. Immunol. 4:313–18 [Google Scholar]
  78. Flicker S, Valenta R. 78.  2003. Renaissance of the blocking antibody concept in type I allergy. Int. Arch. Allergy Immunol. 132:13–24 [Google Scholar]
  79. Visco V, Dolecek C, Denépoux S, Le Mao J, Guret C. 79.  et al. 1996. Human IgG monoclonal antibodies that modulate the binding of specific IgE to birch pollen Bet v 1. J. Immunol. 157:956–62 [Google Scholar]
  80. Denépoux S, Eibensteiner PB, Steinberger P, Vrtala S, Visco V. 80.  et al. 2000. Molecular characterization of human IgG monoclonal antibodies specific for the major birch pollen allergen Bet v 1. Anti-allergen IgG can enhance the anaphylactic reaction. FEBS Lett. 465:39–46 [Google Scholar]
  81. Daeron M, Malbec O, Latour S, Arock M, Fridman WH. 81.  1995. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J. Clin. Investig. 95:577–85 [Google Scholar]
  82. Saxon A, Zhu D, Zhang K, Allen LC, Kepley CL. 82.  2004. Genetically engineered negative signaling molecules in the immunomodulation of allergic diseases. Curr. Opin. Allergy Clin. Immunol. 4:563–68 [Google Scholar]
  83. Ejrnaes AM, Svenson M, Lund G, Larsen JN, Jacobi H. 83.  2006. Inhibition of rBet v 1-induced basophil histamine release with specific immunotherapy-induced serum immunoglobulin G: no evidence that FcγRIIB signalling is important. Clin. Exp. Allergy 36:273–82 [Google Scholar]
  84. Sellge G, Laffer S, Mierke C, Vrtala S, Hoffmann MW. 84.  et al. 2005. Development of an in vitro system for the study of allergens and allergen-specific immunoglobulin E and immunoglobulin G: Fcε receptor I supercross-linking is a possible new mechanism of immunoglobulin G-dependent enhancement of type I allergic reactions. Clin. Exp. Allergy 35:774–81 [Google Scholar]
  85. Aghayan-Ugurluoglu R, Ball T, Vrtala S, Schweiger C, Kraft D, Valenta R. 85.  2000. Dissociation of allergen-specific IgE and IgA responses in sera and tears of pollen-allergic patients: a study performed with purified recombinant pollen allergens. J. Allergy Clin. Immunol. 105:803–13 [Google Scholar]
  86. Ball T, Fuchs T, Sperr WR, Valent P, Vangelista L. 86.  et al. 1999. B cell epitopes of the major timothy grass pollen allergen, Phl p 1, revealed by gene fragmentation as candidates for immunotherapy. FASEB J. 13:1277–90 [Google Scholar]
  87. Horst A, Hunzelmann N, Arce S, Herber M, Manz RA. 87.  et al. 2002. Detection and characterization of plasma cells in peripheral blood: correlation of IgE+ plasma cell frequency with IgE serum titre. Clin. Exp. Immunol. 130:370–78 [Google Scholar]
  88. Steinberger P, Kraft D, Valenta R. 88.  1996. Construction of a combinatorial IgE library from an allergic patient. Isolation and characterization of human IgE Fabs with specificity for the major timothy grass pollen allergen, Phl p 5. J. Biol. Chem. 271:10967–72 [Google Scholar]
  89. van der Stoep N, van der Linden J, Logtenberg T. 89.  1993. Molecular evolution of the human immunoglobulin E response: high incidence of shared mutations and clonal relatedness among epsilon VH5 transcripts from three unrelated patients with atopic dermatitis. J. Exp. Med. 177:99–107 [Google Scholar]
  90. Snow RE, Chapman CJ, Frew AJ, Holgate ST, Stevenson FK. 90.  1995. Analysis of Ig VH region genes encoding IgE antibodies in splenic B lymphocytes of a patient with asthma. J. Immunol. 154:5576–81 [Google Scholar]
  91. Coker HA, Harries HE, Banfield GK, Carr VA, Durham SR. 91.  et al. 2005. Biased use of VH5 IgE-positive B cells in the nasal mucosa in allergic rhinitis. J. Allergy Clin. Immunol. 116:445–52 [Google Scholar]
  92. Eibensteiner P, Spitzauer S, Steinberger P, Kraft D, Valenta R. 92.  2000. Immunoglobulin E antibodies of atopic individuals exhibit a broad usage of VH-gene families. Immunology 101:112–19 [Google Scholar]
  93. Davies JM, O'Hehir RE. 93.  2004. VH gene usage in immunoglobulin E responses of seasonal rhinitis patients allergic to grass pollen is oligoclonal and antigen driven. Clin. Exp. Allergy 34:429–36 [Google Scholar]
  94. Lim A, Luderschmidt S, Weidinger A, Schnopp C, Ring J. 94.  et al. 2007. The IgE repertoire in PBMCs of atopic patients is characterized by individual rearrangements without variable region of the heavy immunoglobulin chain bias. J. Allergy Clin. Immunol. 120:696–706 [Google Scholar]
  95. Andréasson U, Flicker S, Lindstedt M, Valenta R, Greiff L. 95.  et al. 2006. The human IgE-encoding transcriptome to assess antibody repertoires and repertoire evolution. J. Mol. Biol. 362:212–27 [Google Scholar]
  96. Yamaguchi M, Sayama K, Yano K, Lantz CS, Noben-Trauth N. 96.  et al. 1999. IgE enhances Fcε receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fcε receptor I expression and mediator release. J. Immunol. 162:5455–65 [Google Scholar]
  97. Asai K, Kitaura J, Kawakami Y, Yamagata N, Tsai M. 97.  et al. 2001. Regulation of mast cell survival by IgE. Immunity 14:791–800 [Google Scholar]
  98. Kalesnikoff J, Huber M, Lam V, Damen JE, Zhang J. 98.  et al. 2001. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14:801–11 [Google Scholar]
  99. Katoh N, Kraft S, Wessendorf JH, Bieber T. 99.  2000. The high-affinity IgE receptor (FcεRI) blocks apoptosis in normal human monocytes. J. Clin. Investig. 105:183–90 [Google Scholar]
  100. Linhart B, Bigenzahn S, Hartl A, Lupinek C, Thalhamer J. 100.  et al. 2007. Costimulation blockade inhibits allergic sensitization but does not affect established allergy in a murine model of grass pollen allergy. J. Immunol. 178:3924–31 [Google Scholar]
  101. Mothes N, Heinzkill M, Drachenberg KJ, Sperr WR, Krauth MT. 101.  et al. 2003. Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin. Exp. Allergy 33:1198–208 [Google Scholar]
  102. Niederberger V, Horak F, Vrtala S, Spitzauer S, Krauth MT. 102.  et al. 2004. Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc. Natl. Acad. Sci. USA 101:14677–82 [Google Scholar]
  103. Creticos PS, Schroeder JT, Hamilton RG, Balcer-Whaley SL, Khattignavong AP. 103.  et al. Immune Tolerance Network Group 2006. Immunotherapy with a ragweed-Toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl. J. Med. 355:1445–55 [Google Scholar]
  104. Ferreira F, Hirtenlehner K, Jilek A, Godnik-Cvar J, Breiteneder H. 104.  et al. 1996. Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J. Exp. Med. 183:599–609 [Google Scholar]
  105. Focke M, Linhart B, Hartl A, Wiedermann U, Sperr WR. 105.  et al. 2004. Non-anaphylactic surface-exposed peptides of the major birch pollen allergen, Bet v 1, for preventive vaccination. Clin. Exp. Allergy 34:1525–33 [Google Scholar]
  106. Focke M, Mahler V, Ball T, Sperr WR, Majlesi Y. 106.  et al. 2001. Nonanaphylactic synthetic peptides derived from B cell epitopes of the major grass pollen allergen, Phl p 1, for allergy vaccination. FASEB J. 15:2042–44 [Google Scholar]
  107. van Neerven RJ, Ebner C, Yssel H, Kapsenberg ML, Lamb JR. 107.  1996. T-cell responses to allergens: epitope-specificity and clinical relevance. Immunol. Today 17:526–32 [Google Scholar]
  108. Larché M. 108.  2007. Update on the current status of peptide immunotherapy. J. Allergy Clin. Immunol. 119:906–9 [Google Scholar]
  109. Haselden BM, Kay AB, Larché M. 109.  1999. Immunoglobulin E-independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J. Exp. Med. 189:1885–94 [Google Scholar]
  110. Campana R, Mothes N, Rauter I, Vrtala S, Reininger R. 110.  et al. 2008. Non-IgE-mediated chronic allergic skin inflammation revealed with rBet v 1 fragments. J. Allergy Clin. Immunol. 121:528–30 [Google Scholar]
  111. Valenta R. 111.  2002. The future of antigen-specific immunotherapy of allergy. Nat. Rev. Immunol. 2:446–53 [Google Scholar]
  112. Focke M, Swoboda I, Marth K, Valenta R. 112.  2009. Developments in allergen-specific immunotherapy: from allergen extracts to allergy vaccines bypassing allergen-specific IgE and T cell reactivity. Clin. Exp. Allergy. In press [Google Scholar]
  113. Siskind GW, Paul WE, Benacerraf B. 113.  1966. Studies on the effect of the carrier molecule on antihapten antibody synthesis. I. Effect of carrier on the nature of the antibody synthesized. J. Exp. Med. 123:673–88 [Google Scholar]
  114. Edlmayr J, Niespodziana K, Linhart B, Focke-Tejkl M, Westritschnig K. 114.  et al. 2009. A combination vaccine for allergy and rhinovirus infections based on rhinovirus-derived surface protein VP1 and a nonallergenic peptide of the major timothy grass pollen allergen Phl p 1. J. Immunol. 182:6298–306 [Google Scholar]
  115. Maurer D, Fiebiger S, Ebner C, Reininger B, Fischer GF. 115.  et al. 1996. Peripheral blood dendritic cells express FcεRI as a complex composed of FcεRIα- and FcεRIγ-chains and can use this receptor for IgE-mediated allergen presentation. J. Immunol. 157:607–16 [Google Scholar]
  116. Grewe M, Gyufko K, Schöpf E, Krutmann J. 116.  1994. Lesional expression of interferon-γ in atopic eczema. Lancet 343:25–26 [Google Scholar]
  117. Werfel T, Morita A, Grewe M, Renz H, Wahn U. 117.  et al. 1996. Allergen specificity of skin-infiltrating T cells is not restricted to a type-2 cytokine pattern in chronic skin lesions of atopic dermatitis. J. Investig. Dermatol. 107:871–76 [Google Scholar]
  118. Hoffmann-Sommergruber K, Ferreira ED, Ebner C, Barisani T, Korninger L. 118.  et al. 1996. Detection of allergen-specific IgE in tears of grass pollen-allergic patients with allergic rhinoconjunctivitis. Clin. Exp. Allergy 26:79–87 [Google Scholar]
  119. Westritschnig K, Horak F, Swoboda I, Balic N, Spitzauer S. 119.  et al. 2008. Different allergenic activity of grass pollen allergens revealed by skin testing. Eur. J. Clin. Investig. 38:260–67 [Google Scholar]
  120. Valenta R, Duchene M, Pettenburger K, Sillaber C, Valent P. 120.  et al. 1991. Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253:557–60 [Google Scholar]
  121. Valenta R, Duchene M, Ebner C, Valent P, Sillaber C. 121.  et al. 1992. Profilins constitute a novel family of functional plant pan-allergens. J. Exp. Med. 175:377–85 [Google Scholar]
  122. Reese G, Ayuso R, Lehrer SB. 122.  1999. Tropomyosin: an invertebrate pan-allergen. Int. Arch. Allergy Immunol. 119:247–58 [Google Scholar]
  123. Valenta R, Hayek B, Seiberler S, Bugajska-Schretter A, Niederberger V. 123.  et al. 1998. Calcium-binding allergens: from plants to man. Int. Arch. Allergy Immunol. 117:160–66 [Google Scholar]
  124. Hiller R, Laffer S, Harwanegg C, Huber M, Schmidt WM. 124.  et al. 2002. Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J. 16:414–16 [Google Scholar]
  125. Harwanegg C, Laffer S, Hiller R, Mueller MW, Kraft D. 125.  et al. 2003. Microarrayed recombinant allergens for diagnosis of allergy. Clin. Exp. Allergy 33:7–13 [Google Scholar]
  126. Valenta R, Niederberger V. 126.  2007. Recombinant allergens for immunotherapy. J. Allergy Clin. Immunol. 119:826–30 [Google Scholar]
  127. Purohit A, Laffer S, Metz-Favre C, Verot A, Kricek F. 127.  et al. 2005. Poor association between allergen-specific serum immunoglobulin E levels, skin sensitivity and basophil degranulation: a study with recombinant birch pollen allergen Bet v 1 and an immunoglobulin E detection system measuring immunoglobulin E capable of binding to FceRI. Clin. Exp. Allergy 35:186–92 [Google Scholar]
  128. van Ree R. 128.  2002. Carbohydrate epitopes and their relevance for the diagnosis and treatment of allergic diseases. Int. Arch. Allergy Immunol. 129:189–97 [Google Scholar]
  129. Mari A, Ooievaar-de Heer P, Scala E, Giani M, Pirrotta L, Zuidmeer L. 129.  et al. 2008. Evaluation by double-blind placebo-controlled oral challenge of the clinical relevance of IgE antibodies against plant glycans. Allergy 63:891–96 [Google Scholar]
  130. Valenta R, Mittermann I, Werfel T, Garn H, Renz H. 130.  2009. Linking allergy to autoimmune disease. Trends Immunol. 30:109–16 [Google Scholar]
  131. Hewitt CR, Brown AP, Hart BJ, Pritchard DI. 131.  1995. A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases. J. Exp. Med. 182:1537–44 [Google Scholar]
  132. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC. 132.  et al. 1999. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J. Clin. Investig. 104:123–33 [Google Scholar]
  133. Vrtala S, Akdis CA, Budak F, Akdis M, Blaser K. 133.  et al. 2000. T cell epitope-containing hypoallergenic recombinant fragments of the major birch pollen allergen, Bet v 1, induce blocking antibodies. J. Immunol. 165:6653–59 [Google Scholar]
  134. Korematsu S, Tanaka Y, Hosoi S, Koyanagi S, Yokota T. 134.  et al. 2000. C8/119S mutation of major mite allergen Derf-2 leads to degenerate secondary structure and molecular polymerization and induces potent and exclusive Th1 cell differentiation. J. Immunol. 165:2895–902 [Google Scholar]
  135. Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G. 135.  et al. 2006. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J. Immunol. 177:3677–85 [Google Scholar]
  136. Wallner BP, Gefter ML. 136.  1996. Peptide therapy for treatment of allergic diseases. Clin. Immunol. Immunopathol. 80:105–9 [Google Scholar]
  137. Lamb JR, Skidmore BJ, Green N, Chiller JM, Feldmann M. 137.  1983. Induction of tolerance in influenza virus-immune T lymphocyte clones with synthetic peptides of influenza hemagglutinin. J. Exp. Med. 157:1434–47 [Google Scholar]
  138. Briner TJ, Kuo MC, Keating KM, Rogers BL, Greenstein JL. 138.  1993. Peripheral T-cell tolerance induced in naive and primed mice by subcutaneous injection of peptides from the major cat allergen Fel d I. Proc. Natl. Acad. Sci. USA 90:7608–12 [Google Scholar]
  139. Norman PS, Ohman JL Jr, Long AA, Creticos PS, Gefter MA. 139.  et al. 1996. Treatment of cat allergy with T-cell reactive peptides. Am. J. Respir. Crit. Care Med. 154:1623–28 [Google Scholar]
  140. Simons FE, Imada M, Li Y, Watson WT, HayGlass KT. 140.  1996. Fel d 1 peptides: effect on skin tests and cytokine synthesis in cat-allergic human subjects. Int. Immunol. 8:1937–45 [Google Scholar]
  141. Pene J, Desroches A, Paradis L, Lebel B, Farce M. 141.  et al. 1998. Immunotherapy with Fel d 1 peptides decreases IL-4 release by peripheral blood T cells of patients allergic to cats. J. Allergy Clin. Immunol. 102:571–78 [Google Scholar]
  142. Müller U, Akdis CA, Fricker M, Akdis M, Blesken T. 142.  et al. 1998. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J. Allergy Clin. Immunol. 101:747–54 [Google Scholar]
  143. Maguire P, Nicodemus C, Robinson D, Aaronson D, Umetsu DT. 143.  1999. The safety and efficacy of ALLERVAX CAT in cat allergic patients. Clin. Immunol. 93:222–31 [Google Scholar]
  144. Haselden BM, Larche M, Meng Q, Shirley K, Dworski R. 144.  et al. 2001. Late asthmatic reactions provoked by intradermal injection of T-cell peptide epitopes are not associated with bronchial mucosal infiltration of eosinophils or T(H)2-type cells or with elevated concentrations of histamine or eicosanoids in bronchoalveolar fluid. J. Allergy Clin. Immunol. 108:394–401 [Google Scholar]
  145. Oldfield WL, Kay AB, Larche M. 145.  2001. Allergen-derived T cell peptide-induced late asthmatic reactions precede the induction of antigen-specific hyporesponsiveness in atopic allergic asthmatic subjects. J. Immunol. 167:1734–39 [Google Scholar]
  146. Oldfield WL, Larche M, Kay AB. 146.  2002. Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomised controlled trial. Lancet 360:47–53 [Google Scholar]
  147. Fellrath JM, Kettner A, Dufour N, Frigerio C, Schneeberger D. 147.  et al. 2003. Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial. J. Allergy Clin. Immunol. 111:854–61 [Google Scholar]
  148. Ali FR, Oldfield WL, Higashi N, Larche M, Kay AB. 148.  2004. Late asthmatic reactions induced by inhalation of allergen-derived T cell peptides. Am. J. Respir. Crit. Care Med. 169:20–26 [Google Scholar]
  149. Smith TR, Alexander C, Kay AB, Larche M, Robinson DS. 149.  2004. Cat allergen peptide immunotherapy reduces CD4+ T cell responses to cat allergen but does not alter suppression by CD4+ CD25+ T cells: a double-blind placebo-controlled study. Allergy 59:1097–101 [Google Scholar]
  150. Verhoef A, Alexander C, Kay AB, Larché M. 150.  2005. T cell epitope immunotherapy induces a CD4+ T cell population with regulatory activity. PLoS Med. 2:e78 [Google Scholar]
  151. Alexander C, Ying S, Kay AB, Larché M. 151.  2005. Fel d 1-derived T cell peptide therapy induces recruitment of CD4+ CD25+; CD4+ interferon-γ+ T helper type 1 cells to sites of allergen-induced late-phase skin reactions in cat-allergic subjects. Clin. Exp. Allergy 35:52–58 [Google Scholar]
  152. Alexander C, Tarzi M, Larche M, Kay AB. 152.  2005. The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy 60:1269–74 [Google Scholar]
  153. Tarzi M, Klunker S, Texier C, Verhoef A, Stapel SO. 153.  et al. 2006. Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy. Clin. Exp. Allergy 36:465–74 [Google Scholar]
  154. Faith A, Akdis CA, Akdis M, Joss A, Wymann D, Blaser K. 154.  1999. An altered peptide ligand specifically inhibits Th2 cytokine synthesis by abrogating TCR signaling. J. Immunol. 162:1836–42 [Google Scholar]
  155. Valenta R, Vrtala S, Focke-Tejkl M, Bugajska S, Ball T. 155.  et al. 1999. Genetically engineered and synthetic allergen derivatives: candidates for vaccination against type I allergy. Biol. Chem. 380:815–24 [Google Scholar]
  156. Linhart B, Valenta R. 156.  2005. Molecular design of allergy vaccines. Curr. Opin. Immunol. 17:646–55 [Google Scholar]
  157. Ferreira F, Briza P, Infuhr D, Schmidt G, Wallner M. 157.  et al. 2006. Modified recombinant allergens for safer immunotherapy. Inflamm. Allergy Drug Targets 5:5–14 [Google Scholar]
  158. Wallner M, Stocklinger A, Thalhamer T, Bohle B, Vogel L. 158.  et al. 2007. Allergy multivaccines created by DNA shuffling of tree pollen allergens. J. Allergy Clin. Immunol. 120:374–80 [Google Scholar]
  159. Gafvelin G, Parmley S, Neimert-Andersson T, Blank U, Eriksson TL. 159.  et al. 2007. Hypoallergens for allergen-specific immunotherapy by directed molecular evolution of mite group 2 allergens. J. Biol. Chem. 282:3778–87 [Google Scholar]
  160. Westritschnig K, Linhart B, Focke-Tejkl M, Pavkov T, Keller W. 160.  et al. 2007. A hypoallergenic vaccine obtained by tail-to-head restructuring of timothy grass pollen profilin, Phl p 12, for the treatment of cross-sensitization to profilin. J. Immunol. 179:7624–34 [Google Scholar]
  161. Mothes-Luksch N, Stumvoll S, Linhart B, Focke M, Krauth MT. 161.  et al. 2008. Disruption of allergenic activity of the major grass pollen allergen Phl p 2 by reassembly as a mosaic protein. J. Immunol. 181:4864–73 [Google Scholar]
  162. Kahlert H, Suck R, Weber B, Nandy A, Wald M. 162.  et al. 2008. Characterization of a hypoallergenic recombinant Bet v 1 variant as a candidate for allergen-specific immunotherapy. Int. Arch. Allergy Immunol. 145:193–206 [Google Scholar]
  163. Vrtala S, Focke-Tejkl M, Swoboda I, Kraft D, Valenta R. 163.  2004. Strategies for converting allergens into hypoallergenic vaccine candidates. Methods 32:313–20 [Google Scholar]
  164. Klimek L, Bachert C, Doemer C, Meyer H, Narkus A. 164.  2005. Specific immunotherapy with recombinant birch pollen allergen rBet v 1-FV is clinically efficacious. Allergy Clin. Immunol. Int. 2005:Suppl. 115 [Google Scholar]
  165. Rak S. 165.  2009. Clinical results with a hypoallergenic recombinant birch pollen allergen derivative Presented at 27th Congr., EAACI 2009, Warsaw, June 6–10 [Google Scholar]
  166. Reisinger J, Horak F, Pauli G, van Hage M, Cromwell O. 166.  et al. 2005. Allergen-specific nasal IgG antibodies induced by vaccination with genetically modified allergens are associated with reduced nasal allergen sensitivity. J. Allergy Clin. Immunol. 116:347–54 [Google Scholar]
  167. Pree I, Reisinger J, Focke M, Vrtala S, Pauli G. 167.  et al. 2007. Analysis of epitope-specific immune responses induced by vaccination with structurally folded and unfolded recombinant Bet v 1 allergen derivatives in man. J. Immunol. 179:5309–16 [Google Scholar]
  168. Purohit A, Niederberger V, Kronqvist M, Horak F, Gronneberg R. 168.  et al. 2008. Clinical effects of immunotherapy with genetically modified recombinant birch pollen Bet v 1 derivatives. Clin. Exp. Allergy 38:1514–25 [Google Scholar]
  169. Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL. 169.  et al. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–49 [Google Scholar]
  170. Weiss R, Scheiblhofer S, Gabler M, Ferreira F, Leitner WW, Thalhamer J. 170.  2006. Is genetic vaccination against allergy possible?. Int. Arch. Allergy Immunol. 139:332–45 [Google Scholar]
  171. Raz E, Tighe H, Sato Y, Corr M, Dudler JA. 171.  et al. 1996. Preferential induction of a Th1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc. Natl. Acad. Sci. USA 93:5141–45 [Google Scholar]
  172. Hsu CH, Chua KY, Tao MH, Lai YL, Wu HD. 172.  et al. 1996. Immunoprophylaxis of allergen-induced immunoglobulin E synthesis and airway hyperresponsiveness in vivo by genetic immunization. Nat. Med. 2:540–44 [Google Scholar]
  173. Weiss R, Scheiblhofer S, Freund J, Ferreira F, Livey I, Thalhamer J. 173.  2002. Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 20:3148–54 [Google Scholar]
  174. Roy K, Mao HQ, Huang SK, Leong KW. 174.  1999. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5:387–91 [Google Scholar]
  175. Toda M, Sato H, Takebe Y, Taniguchi Y, Saito S. 175.  et al. 2000. Inhibition of immunoglobulin E response to Japanese cedar pollen allergen (Cry j 1) in mice by DNA immunization: different outcomes dependent on the plasmid DNA inoculation method. Immunology 99:179–86 [Google Scholar]
  176. Slater JE, Paupore E, Zhang YT, Colberg-Poley AM. 176.  1998. The latex allergen Hev b 5 transcript is widely distributed after subcutaneous injection in BALB/c mice of its DNA vaccine. J. Allergy Clin. Immunol. 102:469–75 [Google Scholar]
  177. Bauer R, Scheiblhofer S, Kern K, Gruber C, Stepanoska T. 177.  et al. 2006. Generation of hypoallergenic DNA vaccines by forced ubiquitination: preventive and therapeutic effects in a mouse model of allergy. J. Allergy Clin. Immunol. 118:269–76 [Google Scholar]
  178. Hochreiter R, Stepanoska T, Ferreira F, Valenta R, Vrtala S. 178.  et al. 2003. Prevention of allergen-specific IgE production and suppression of an established Th2-type response by immunization with DNA encoding hypoallergenic allergen derivatives of Bet v 1, the major birch-pollen allergen. Eur. J. Immunol. 33:1667–76 [Google Scholar]
  179. Chapman MD, Ferreira F, Villalba M, Cromwell O, Bryan D. 179.  et al. 2008. The European Union CREATE project: a model for international standardization of allergy diagnostics and vaccines. J. Allergy Clin. Immunol. 122:882–89 [Google Scholar]
  180. Niederberger V, Pauli G, Gronlund H, Froschl R, Rumpold H. 180.  et al. 1998. Recombinant birch pollen allergens (rBet v 1 and rBet v 2) contain most of the IgE epitopes present in birch, alder, hornbeam, hazel, and oak pollen: a quantitative IgE inhibition study with sera from different populations. J. Allergy Clin. Immunol. 102:579–91 [Google Scholar]
  181. Gronlund H, Bergman T, Sandstrom K, Alvelius G, Reininger R. 181.  et al. 2003. Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli. J. Biol. Chem. 278:40144–51 [Google Scholar]
  182. Westritschnig K, Horak F, Swoboda I, Balic N, Spitzauer S. 182.  et al. 2008. Different allergenic activity of grass pollen allergens revealed by skin testing. Eur. J. Clin. Investig. 38:260–67 [Google Scholar]
  183. Weghofer M, Thomas WR, Kronqvist M, Mari A, Purohit A. 183.  et al. 2008. Variability of IgE reactivity profiles among European mite allergic patients. Eur. J. Clin. Investig. 38:959–65 [Google Scholar]
  184. Focke M, Marth K, Flicker S, Valenta R. 184.  2008. Heterogeneity of commercial timothy grass pollen extracts. Clin. Exp. Allergy 38:1400–8 [Google Scholar]
  185. King TP, Jim SY, Monsalve RI, Kagey-Sobotka A, Lichtenstein LM, Spangfort MD. 185.  2001. Recombinant allergens with reduced allergenicity but retaining immunogenicity of the natural allergens: hybrids of yellow jacket and paper wasp venom allergen antigen 5s. J. Immunol. 166:6057–65 [Google Scholar]
  186. Linhart B, Jahn-Schmid B, Verdino P, Keller W, Ebner C. 186.  et al. 2002. Combination vaccines for the treatment of grass pollen allergy consisting of genetically engineered hybrid molecules with increased immunogenicity. FASEB J. 16:1301–3 [Google Scholar]
  187. Linhart B, Hartl A, Jahn-Schmid B, Verdino P, Keller W. 187.  et al. 2005. A hybrid molecule resembling the epitope spectrum of grass pollen for allergy vaccination. J. Allergy Clin. Immunol. 115:1010–16 [Google Scholar]
  188. Linhart B, Mothes-Luksch N, Vrtala S, Kneidinger M, Valent P, Valenta R. 188.  2008. A hypoallergenic hybrid molecule with increased immunogenicity consisting of derivatives of the major grass pollen allergens, Phl p 2 and Phl p 6. Biol. Chem. 389:925–33 [Google Scholar]
  189. Jutel M, Jaeger L, Suck R, Meyer H, Fiebig H, Cromwell O. 189.  2005. Allergen-specific immunotherapy with recombinant grass pollen allergens. J. Allergy Clin. Immunol. 116:608–13 [Google Scholar]
  190. Pauli G, Larsen TH, Rak S, Horak F, Pastorello E. 190.  et al. 2008. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. J. Allergy Clin. Immunol. 122:951–60 [Google Scholar]
  191. Bracy JL, Sachs DH, Iacomini J. 191.  1998. Inhibition of xenoreactive natural antibody production by retroviral gene therapy. Science 281:1845–47 [Google Scholar]
  192. Steptoe RJ, Ritchie JM, Harrison LC. 192.  2003. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes. J. Clin. Investig. 111:1357–63 [Google Scholar]
  193. Alderuccio F, Murphy K, Toh BH. 193.  2003. Stem cells engineered to express self-antigen to treat autoimmunity. Trends Immunol. 24:176–80 [Google Scholar]
  194. Baranyi U, Linhart B, Pilat N, Gattringer M, Bagley J. 194.  et al. 2008. Tolerization of a type I allergic immune response through transplantation of genetically modified hematopoietic stem cells. J. Immunol. 180:8168–75 [Google Scholar]
  195. Host A, Jacobsen HP, Halken S, Holmenlund D. 195.  1995. The natural history of cow's milk protein allergy/intolerance. Eur. J. Clin. Nutr. 49:Suppl. 1S13–18 [Google Scholar]
  196. David MF. 196.  1977. Prevention of homocytotropic antibody formation and anaphylactic sensitization by prefeeding antigen. J. Allergy Clin. Immunol. 60:180–87 [Google Scholar]
  197. Holt PG, Vines J, Britten D. 197.  1988. Sublingual allergen administration. I. Selective suppression of IgE production in rats by high allergen doses. Clin. Allergy 18:229–34 [Google Scholar]
  198. Zemann B, Schwaerzler C, Griot-Wenk M, Nefzger M, Mayer P. 198.  et al. 2003. Oral administration of specific antigens to allergy-prone infant dogs induces IL-10 and TGF-β expression and prevents allergy in adult life. J. Allergy Clin. Immunol. 111:1069–75 [Google Scholar]
  199. Wiedermann U, Jahn-Schmid B, Bohle B, Repa A, Renz H. 199.  et al. 1999. Suppression of antigen-specific T- and B-cell responses by intranasal or oral administration of recombinant bet v 1, the major birch pollen allergen, in a murine model of type I allergy. J. Allergy Clin. Immunol. 103:1202–10 [Google Scholar]
  200. Winkler B, Hufnagl K, Spittler A, Ploder M, Kallay E. 200.  et al. 2006. The role of Foxp3+ T cells in long-term efficacy of prophylactic and therapeutic mucosal tolerance induction in mice. Allergy 61:173–80 [Google Scholar]
  201. Wiedermann U, Herz U, Baier K, Vrtala S, Neuhaus-Steinmetz U. 201.  et al. 2001. Intranasal treatment with a recombinant hypoallergenic derivative of the major birch pollen allergen Bet v 1 prevents allergic sensitization and airway inflammation in mice. Int. Arch. Allergy Immunol. 126:68–77 [Google Scholar]
  202. Astori M, von Garnier C, Kettner A, Dufour N, Corradin G, Spertini F. 202.  2000. Inducing tolerance by intranasal administration of long peptides in naive and primed CBA/J mice. J. Immunol. 165:3497–505 [Google Scholar]
  203. Jarnicki AG, Tsuji T, Thomas WR. 203.  2001. Inhibition of mucosal and systemic T(h)2-type immune responses by intranasal peptides containing a dominant T cell epitope of the allergen Der p 1. Int. Immunol. 13:1223–31 [Google Scholar]
  204. Marazuela EG, Rodriguez R, Fernández-García H, García MS, Villalba M, Batanero E. 204.  2008. Intranasal immunization with a dominant T-cell epitope peptide of a major allergen of olive pollen prevents mice from sensitization to the whole allergen. Mol. Immunol. 45:438–45 [Google Scholar]
  205. Hufnagl K, Winkler B, Focke M, Valenta R, Scheiner O. 205.  et al. 2005. Intranasal tolerance induction with polypeptides derived from 3 noncross-reactive major aeroallergens prevents allergic polysensitization in mice. J. Allergy Clin. Immunol. 116:370–76 [Google Scholar]
  206. Durham SR, Yang WH, Pedersen MR, Johansen N, Rak S. 206.  2006. Sublingual immunotherapy with once-daily grass allergen tablets: a randomized controlled trial in seasonal allergic rhinoconjunctivitis. J. Allergy Clin. Immunol. 117:802–9 [Google Scholar]
  207. Muraro A, Dreborg S, Halken S, Host A, Niggemann B. 207.  et al. 2004. Dietary prevention of allergic diseases in infants and small children. Part I: immunologic background and criteria for hypoallergenicity. Pediatr. Allergy Immunol. 15:103–11 [Google Scholar]
  208. Takagi H, Hiroi T, Yang L, Takamura K, Ishimitsu R. 208.  et al. 2008. Efficient induction of oral tolerance by fusing cholera toxin B subunit with allergen-specific T-cell epitopes accumulated in rice seed. Vaccine 26:6027–30 [Google Scholar]
  209. Huibregtse IL, Snoeck V, de Creus A, Braat H, De Jong EC. 209.  et al. 2007. Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Gastroenterology 133:517–28 [Google Scholar]
  210. Segal DM, Taurog JD, Metzger H. 210.  1977. Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc. Natl. Acad. Sci. USA 74:2993–97 [Google Scholar]
  211. Malley A, Perlman F. 211.  1970. Timothy pollen fractions in treatment of hay fever. I. Clinical and immunological response to small and higher molecular weight fractions. J. Allergy 45:14–29 [Google Scholar]
  212. Malley A, Campbell DH, Heimlich EM. 212.  1964. Isolation and immunochemical properties of haptenic material from Timothy Pollen. J. Immunol. 93:420–25 [Google Scholar]
  213. Ganglberger E, Sponer B, Schöll I, Wiedermann U, Baumann S. 213.  et al. 2001. Monovalent fusion proteins of IgE mimotopes are safe for therapy of type I allergy. FASEB J 15:2524–26 [Google Scholar]
  214. Suphioglu C, Schäppi G, Kenrick J, Levy D, Davies JM, O'Hehir RE. 214.  2001. A novel grass pollen allergen mimotope identified by phage display peptide library inhibits allergen-human IgE antibody interaction. FEBS Lett. 502:46–52 [Google Scholar]
  215. Lee WY, Sehon AH. 215.  1977. Abrogation of reaginic antibodies with modified allergens. Nature 267:618–19 [Google Scholar]
  216. Sato Y, Roman M, Tighe H, Lee D, Corr M. 216.  et al. 1996. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273:352–54 [Google Scholar]
  217. Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV. 217.  1997. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J. Exp. Med. 186:1623–31 [Google Scholar]
  218. Tighe H, Takabayashi K, Schwartz D, Van Nest G, Tuck S. 218.  et al. 2000. Conjugation of immuno-stimulatory DNA to the short ragweed allergen Amb a 1 enhances its immunogenicity and reduces its allergenicity. J. Allergy Clin. Immunol. 106:124–34 [Google Scholar]
  219. Tulic MK, Fiset PO, Christodoulopoulos P, Vaillancourt P, Desrosiers M. 219.  et al. 2004. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin. Immunol. 113:235–41 [Google Scholar]
  220. Bohle B, Breitwieser A, Zwolfer B, Jahn-Schmid B, Sara M. 220.  et al. 2004. A novel approach to specific allergy treatment: the recombinant fusion protein of a bacterial cell surface (S-layer) protein and the major birch pollen allergen Bet v 1 (rSbsC-Bet v 1) combines reduced allergenicity with immunomodulating capacity. J. Immunol. 172:6642–48 [Google Scholar]
  221. Hulse KE, Reefer AJ, Engelhard VH, Satinover SM, Patrie JT. 221.  et al. 2008. Targeting Fel d 1 to FcγRI induces a novel variation of the T(H)2 response in subjects with cat allergy. J. Allergy Clin. Immunol. 121:756–62 [Google Scholar]
  222. Zhu D, Kepley CL, Zhang K, Terada T, Yamada T, Saxon A. 222.  2005. A chimeric human-cat fusion protein blocks cat-induced allergy. Nat. Med. 11:446–49 [Google Scholar]
  223. Martínez-Gómez JM, Johansen P, Rose H, Steiner M, Senti G. 223.  et al. 2009. Targeting the MHC class II pathway of antigen presentation enhances immunogenicity and safety of allergen immunotherapy. Allergy 64:172–78 [Google Scholar]
  224. Kündig TM, Senti G, Schnetzler G, Wolf C, Prinz Vavricka BM. 224.  et al. 2006. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J. Allergy Clin. Immunol. 117:1470–76 [Google Scholar]
  225. Valenta R, Duchene M, Vrtala S, Birkner T, Ebner C. 225.  et al. 1991. Recombinant allergens for immunoblot diagnosis of tree-pollen allergy. J. Allergy Clin. Immunol. 88:889–94 [Google Scholar]
  226. Valenta R, Vrtala S, Ebner C, Kraft D, Scheiner O. 226.  1992. Diagnosis of grass pollen allergy with recombinant timothy grass (Phleum pratense) pollen allergens. Int. Arch. Allergy Immunol. 97:287–94 [Google Scholar]
  227. Ebner C, Szepfalusi Z, Ferreira F, Jilek A, Valenta R. 227.  et al. 1993. Identification of multiple T cell epitopes on Bet v I, the major birch pollen allergen, using specific T cell clones and overlapping peptides. J. Immunol. 150:1047–54 [Google Scholar]
  228. Joost van Neerven R, van t'Hof W, Ringrose JH, Jansen HM, Aalberse RC. 228.  et al. 1993. T cell epitopes of house dust mite major allergen Der p II. J. Immunol. 151:2326–35 [Google Scholar]
  229. Sehon LZ, Mohapatra SS. 229.  1992. Induction of IgE antibodies in mice with recombinant grass pollen antigens. Immunology 76:158–63 [Google Scholar]
  230. Zhang L, Mohapatra SS. 230.  1993. Antigen- and isotype-specific immune responses to a recombinant antigen-allergen chimeric (RAAC) protein. J. Immunol. 151:791–99 [Google Scholar]
  231. Ferreira FD, Mayer P, Sperr WR, Valent P, Seiberler S. 231.  et al. 1996. Induction of IgE antibodies with predefined specificity in rhesus monkeys with recombinant birch pollen allergens, Bet v 1 and Bet v 2. J. Allergy Clin. Immunol. 97:95–103 [Google Scholar]
  232. Vrtala S, Mayer P, Ferreira F, Susani M, Sehon AH. 232.  et al. 1996. Induction of IgE antibodies in mice and rhesus monkeys with recombinant birch pollen allergens: different allergenicity of Bet v 1 and Bet v 2. J. Allergy Clin. Immunol. 98:913–21 [Google Scholar]
  233. Breiteneder H, Ferreira F, Hoffmann-Sommergruber K, Ebner C, Breitenbach M. 233.  et al. 1993. Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. Eur. J. Biochem. 212:355–62 [Google Scholar]
  234. Smith AM, Chapman MD. 234.  1996. Reduction in IgE binding to allergen variants generated by site-directed mutagenesis: contribution of disulfide bonds to the antigenic structure of the major house dust mite allergen Der p 2. Mol. Immunol. 33:399–405 [Google Scholar]
  235. Takai T, Yokota T, Yasue M, Nishiyama C, Yuuki T. 235.  et al. 1997. Engineering of the major house dust mite allergen Der f 2 for allergen-specific immunotherapy. Nat. Biotechnol. 15:754–58 [Google Scholar]
  236. Zeiler T, Taivainen A, Rytkonen M, Rautiainen J, Karjalainen H. 236.  et al. 1997. Recombinant allergen fragments as candidate preparations for allergen immunotherapy. J. Allergy Clin. Immunol. 100:721–27 [Google Scholar]
  237. Moser M, Crameri R, Brust E, Suter M, Menz G. 237.  1994. Diagnostic value of recombinant Aspergillus fumigatus allergen I/a for skin testing and serology. J. Allergy Clin. Immunol. 93:1–11 [Google Scholar]
  238. Menz G, Dolecek C, Schonheit-Kenn U, Ferreira F, Moser M. 238.  et al. 1996. Serological and skin-test diagnosis of birch pollen allergy with recombinant Bet v I, the major birch pollen allergen. Clin. Exp. Allergy 26:50–60 [Google Scholar]
  239. Pauli G, Oster JP, Deviller P, Heiss S, Bessot JC. 239.  et al. 1996. Skin testing with recombinant allergens rBet v 1 and birch profilin, rBet v 2: diagnostic value for birch pollen and associated allergies. J. Allergy Clin. Immunol. 97:1100–9 [Google Scholar]
  240. Gajhede M, Osmark P, Poulsen FM, Ipsen H, Larsen JN. 240.  et al. 1996. X-ray and NMR structure of Bet v 1, the origin of birch pollen allergy. Nat. Struct. Biol. 3:1040–45 [Google Scholar]
  241. van Hage-Hamsten M, Kronqvist M, Zetterstrom O, Johansson E, Niederberger V. 241.  et al. 1999. Skin test evaluation of genetically engineered hypoallergenic derivatives of the major birch pollen allergen, Bet v 1: results obtained with a mix of two recombinant Bet v 1 fragments and recombinant Bet v 1 trimer in a Swedish population before the birch pollen season. J. Allergy Clin. Immunol. 104:969–77 [Google Scholar]
  242. Pauli G, Purohit A, Oster JP, De Blay F, Vrtala S. 242.  et al. 2000. Comparison of genetically engineered hypoallergenic rBet v 1 derivatives with rBet v 1 wild-type by skin prick and intradermal testing: results obtained in a French population. Clin. Exp. Allergy 30:1076–84 [Google Scholar]
/content/journals/10.1146/annurev-immunol-030409-101218
Loading
/content/journals/10.1146/annurev-immunol-030409-101218
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error