1932

Abstract

Phosphoinositide 3-kinases (PI3Ks) control many important aspects of immune cell development, differentiation, and function. Mammals have eight PI3K catalytic subunits that are divided into three classes based on similarities in structure and function. Specific roles for the class I PI3Ks have been broadly investigated and are relatively well understood, as is the function of their corresponding phosphatases. More recently, specific roles for the class II and class III PI3Ks have emerged. Through vertebrate evolution and in parallel with the evolution of adaptive immunity, there has been a dramatic increase not only in the genes for PI3K subunits but also in genes for phosphatases that act on 3-phosphoinositides and in 3-phosphoinositide-binding proteins. Our understanding of the PI3Ks in immunity is guided by fundamental discoveries made in simpler model organisms as well as by appreciating new adaptations of this signaling module in mammals in general and in immune cells in particular.

Keyword(s): AktautophagyFoxomTORPI3Ksignaling
Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032712-095946
2013-03-21
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/31/1/annurev-immunol-032712-095946.html?itemId=/content/journals/10.1146/annurev-immunol-032712-095946&mimeType=html&fmt=ahah

Literature Cited

  1. Hawkins PT, Anderson KE, Davidson K, Stephens LR. 1.  2006. Signalling through class I PI3Ks in mammalian cells. Biochem. Soc. Trans. 34:647–62 [Google Scholar]
  2. Engelman JA, Luo J, Cantley LC. 2.  2006. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7:606–19 [Google Scholar]
  3. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. 3.  2010. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11:329–41 [Google Scholar]
  4. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. 4.  1997. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22:267–72 [Google Scholar]
  5. Backer JM. 5.  2008. The regulation and function of class III PI3Ks: novel roles for Vps34. Biochem. J. 410:1–17 [Google Scholar]
  6. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL. 6.  et al. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685–701 [Google Scholar]
  7. Ellson CD, Anderson KE, Morgan G, Chilvers ER, Lipp P. 7.  et al. 2001. Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr. Biol. 11:1631–35 [Google Scholar]
  8. Vieira O, Botelho R, Rameh L, Brachmann S, Matsuo T. 8.  et al. 2001. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155:19–25 [Google Scholar]
  9. Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A. 9.  et al. 1998. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:494–98 [Google Scholar]
  10. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD. 10.  et al. 1993. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91 [Google Scholar]
  11. Simonsen A, Wurmser AE, Emr SD, Stenmark H. 11.  2001. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13:485–92 [Google Scholar]
  12. Kihara A, Noda T, Ishihara N, Ohsumi Y. 12.  2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152:519–30 [Google Scholar]
  13. Stack JH, Herman PK, Schu PV, Emr SD. 13.  1993. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 12:2195–204 [Google Scholar]
  14. Obara K, Ohsumi Y. 14.  2011. PtdIns 3-kinase orchestrates autophagosome formation in yeast. J. Lipids 2011:498768 [Google Scholar]
  15. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY. 15.  et al. 2005. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. USA 102:14238–43 [Google Scholar]
  16. Jaber N, Dou Z, Chen JS, Catanzaro J, Jiang YP. 16.  et al. 2012. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl. Acad. Sci. USA 109:2003–8 [Google Scholar]
  17. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT. 17.  et al. 2010. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638–42 [Google Scholar]
  18. Zhou X, Takatoh J, Wang F. 18.  2011. The mammalian class 3 PI3K (PIK3C3) is required for early embryogenesis and cell proliferation. PLoS ONE 6:e16358 [Google Scholar]
  19. Willinger T, Flavell RA. 19.  2012. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc. Natl. Acad. Sci. USA 109:8670–75 [Google Scholar]
  20. McLeod IX, Zhou X, Li QJ, Wang F, He YW. 20.  2011. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Rα surface expression. J. Immunol. 187:5051–61 [Google Scholar]
  21. Anderson KE, Chessa TA, Davidson K, Henderson RB, Walker S. 21.  et al. 2010. PtdIns3P and Rac direct the assembly of the NADPH oxidase on a novel, pre-phagosomal compartment during FcR-mediated phagocytosis in primary mouse neutrophils. Blood 116:4978–89 [Google Scholar]
  22. Kanai F, Liu H, Field SJ, Akbary H, Matsuo T. 22.  et al. 2001. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat. Cell Biol. 3:675–78 [Google Scholar]
  23. Ellson CD, Gobert-Gosse S, Anderson KE, Davidson K, Erdjument-Bromage H. 23.  et al. 2001. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat. Cell Biol. 3:679–82 [Google Scholar]
  24. Ellson C, Davidson K, Anderson K, Stephens LR, Hawkins PT. 24.  2006. PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO J. 25:4468–78 [Google Scholar]
  25. Berger SB, Romero X, Ma C, Wang G, Faubion WA. 25.  et al. 2010. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat. Immunol. 11:920–27 [Google Scholar]
  26. Ma C, Wang N, Detre C, Wang G, O'Keeffe M. 26.  et al. 2012. Receptor signaling lymphocyte-activation molecule family 1 (Slamf1) regulates membrane fusion and NADPH oxidase 2 (NOX2) activity by recruiting a Beclin-1/Vps34/ultraviolet radiation resistance-associated gene (UVRAG) complex. J. Biol. Chem. 287:18359–65 [Google Scholar]
  27. Ktistakis NT, Manifava M, Schoenfelder P, Rotondo S. 27.  2012. How phosphoinositide 3-phosphate controls growth downstream of amino acids and autophagy downstream of amino acid withdrawal. Biochem. Soc. Trans. 40:37–43 [Google Scholar]
  28. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G. 28.  et al. 2012. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 8:445–544 [Google Scholar]
  29. Levine B, Mizushima N, Virgin HW. 29.  2011. Autophagy in immunity and inflammation. Nature 469:323–35 [Google Scholar]
  30. Yordy B, Iwasaki A. 30.  2011. Autophagy in the control and pathogenesis of viral infection. Curr. Opin. Virol. 1:196–203 [Google Scholar]
  31. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. 31.  2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398–401 [Google Scholar]
  32. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D. 32.  et al. 2005. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593–96 [Google Scholar]
  33. Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH. 33.  et al. 2010. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32:227–39 [Google Scholar]
  34. He MX, McLeod IX, Jia W, He YW. 34.  2012. Macroautophagy in T lymphocyte development and function. Front. Immunol. 3:22 [Google Scholar]
  35. Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S. 35.  et al. 2010. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6:506–22 [Google Scholar]
  36. Falasca M, Maffucci T. 36.  2012. Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem. J. 443:587–601 [Google Scholar]
  37. Harris DP, Vogel P, Wims M, Moberg K, Humphries J. 37.  et al. 2011. Requirement for class II phosphoinositide 3-kinase C2α in maintenance of glomerular structure and function. Mol. Cell. Biol. 31:63–80 [Google Scholar]
  38. Harada K, Truong AB, Cai T, Khavari PA. 38.  2005. The class II phosphoinositide 3-kinase C2β is not essential for epidermal differentiation. Mol. Cell. Biol. 25:11122–30 [Google Scholar]
  39. Anderson KE, Boyle KB, Davidson K, Chessa TA, Kulkarni S. 39.  et al. 2008. CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of Escherichia coli or Staphylococcus aureus is regulated by class III but not class I or II PI3Ks. Blood 112:5202–11 [Google Scholar]
  40. Srivastava S, Di L, Zhdanova O, Li Z, Vardhana S. 40.  et al. 2009. The class II phosphatidylinositol 3 kinase C2β is required for the activation of the K+ channel KCa3.1 and CD4 T-cells. Mol. Biol. Cell 20:3783–91 [Google Scholar]
  41. Srivastava S, Choudhury P, Li Z, Liu G, Nadkarni V. 41.  et al. 2006. Phosphatidylinositol 3-phosphate indirectly activates KCa3.1 via 14 amino acids in the carboxy terminus of KCa3.1. Mol. Biol. Cell 17:146–54 [Google Scholar]
  42. Srivastava S, Ko K, Choudhury P, Li Z, Johnson AK. 42.  et al. 2006. Phosphatidylinositol-3 phosphatase myotubularin-related protein 6 negatively regulates CD4 T cells. Mol. Cell. Biol. 26:5595–602 [Google Scholar]
  43. Srivastava S, Li Z, Lin L, Liu G, Ko K. 43.  et al. 2005. The phosphatidylinositol 3-phosphate phosphatase myotubularin-related protein 6 (MTMR6) is a negative regulator of the Ca2+-activated K+ channel KCa3.1. Mol. Cell. Biol. 25:3630–38 [Google Scholar]
  44. Feske S, Skolnik EY, Prakriya M. 44.  2012. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 12:532–47 [Google Scholar]
  45. Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ. 45.  et al. 1997. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390:187–92 [Google Scholar]
  46. Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH. 46.  2009. Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem. J. 419:1–13 [Google Scholar]
  47. Ikonomov OC, Sbrissa D, Delvecchio K, Xie Y, Jin JP. 47.  et al. 2011. The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve−/− embryos but normality of PIKfyve+/− mice. J. Biol. Chem. 286:13404–13 [Google Scholar]
  48. Kerr MC, Wang JT, Castro NA, Hamilton NA, Town L. 48.  et al. 2010. Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella. EMBO J. 29:1331–47 [Google Scholar]
  49. Hnia K, Vaccari I, Bolino A, Laporte J. 49.  2012. Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol. Med. 18:317–27 [Google Scholar]
  50. Robinson FL, Dixon JE. 50.  2006. Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol. 16:403–12 [Google Scholar]
  51. Velichkova M, Juan J, Kadandale P, Jean S, Ribeiro I. 51.  et al. 2010. Drosophila Mtm and class II PI3K coregulate a PI(3)P pool with cortical and endolysosomal functions. J. Cell Biol. 190:407–25 [Google Scholar]
  52. Fruman DA. 52.  2010. Regulatory subunits of class IA PI3K. Curr. Top. Microbiol. Immunol. 346:225–44 [Google Scholar]
  53. Castellano E, Downward J. 53.  2011. RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2:261–74 [Google Scholar]
  54. Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S. 54.  et al. 2002. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297:1031–34 [Google Scholar]
  55. Ramadani F, Bolland DJ, Garcon F, Emery JL, Vanhaesebroeck B. 55.  et al. 2010. The PI3K isoforms p110α and p110δ are essential for pre-B cell receptor signaling and B cell development. Sci. Signal. 3:ra60 [Google Scholar]
  56. Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B. 56.  2010. Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc. Natl. Acad. Sci. USA 107:11381–86 [Google Scholar]
  57. Kulkarni S, Sitaru C, Jakus Z, Anderson KE, Damoulakis G. 57.  et al. 2011. PI3Kβ plays a critical role in neutrophil activation by immune complexes. Sci. Signal. 4:ra23 [Google Scholar]
  58. Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L. 58.  et al. 2000. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287:1049–53 [Google Scholar]
  59. Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL. 59.  et al. 2000. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287:1040–46 [Google Scholar]
  60. Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV. 60.  et al. 2000. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287:1046–49 [Google Scholar]
  61. Jou ST, Carpino N, Takahashi Y, Piekorz R, Chao JR. 61.  et al. 2002. Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol. Cell. Biol. 22:8580–91 [Google Scholar]
  62. Clayton E, Bardi G, Bell SE, Chantry D, Downes CP. 62.  et al. 2002. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196:753–63 [Google Scholar]
  63. Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE. 63.  2003. Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol. 170:2647–54 [Google Scholar]
  64. Camps M, Ruckle T, Ji H, Ardissone V, Rintelen F. 64.  et al. 2005. Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med. 11:936–43 [Google Scholar]
  65. Andrews S, Stephens LR, Hawkins PT. 65.  2007. PI3K class IB pathway. Sci. STKE 2007:cm2 [Google Scholar]
  66. Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F. 66.  et al. 2008. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ. Proc. Natl. Acad. Sci. USA. 105:8292–97 [Google Scholar]
  67. Ciraolo E, Iezzi M, Marone R, Marengo S, Curcio C. 67.  et al. 2008. Phosphoinositide 3-kinase p110β activity: key role in metabolism and mammary gland cancer but not development. Sci. Signal. 1:ra3 [Google Scholar]
  68. Jia S, Liu Z, Zhang S, Liu P, Zhang L. 68.  et al. 2008. Essential roles of PI(3)K-p110β in cell growth, metabolism and tumorigenesis. Nature 454:776–79 [Google Scholar]
  69. Dbouk HA, Vadas O, Shymanets A, Burke JE, Salamon RS. 69.  et al. 2012. G protein-coupled receptor-mediated activation of p110β by Gβγ is required for cellular transformation and invasiveness. Sci. Signal. 5:ra89 [Google Scholar]
  70. Saudemont A, Garcon F, Yadi H, Roche-Molina M, Kim N. 70.  et al. 2009. p110γ and p110δ isoforms of phosphoinositide 3-kinase differentially regulate natural killer cell migration in health and disease. Proc. Natl. Acad. Sci. USA 106:5795–800 [Google Scholar]
  71. Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B. 71.  et al. 2004. Cutting edge: differential roles for phosphoinositide 3-kinases, p110γ and p110δ, in lymphocyte chemotaxis and homing. J. Immunol. 173:2236–40 [Google Scholar]
  72. Samuels Y, Waldman T. 72.  2010. Oncogenic mutations of PIK3CA in human cancers. Curr. Top. Microbiol. Immunol. 347:21–41 [Google Scholar]
  73. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J. 73.  et al. 2004. High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554 [Google Scholar]
  74. Vadas O, Burke JE, Zhang X, Berndt A, Williams RL. 74.  2011. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Sci. Signal. 4:re2 [Google Scholar]
  75. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY. 75.  et al. 2011. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39:D945–50 http://www.sanger.ac.uk/cosmic [Google Scholar]
  76. Gabelli SB, Huang CH, Mandelker D, Schmidt-Kittler O, Vogelstein B. 76.  et al. 2010. Structural effects of oncogenic PI3Kα mutations. Curr. Top. Microbiol. Immunol. 347:43–53 [Google Scholar]
  77. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE. 77.  et al. 2007. The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations. Science 318:1744–48 [Google Scholar]
  78. Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M. 78.  et al. 2007. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317:239–42 [Google Scholar]
  79. Yu J, Wjasow C, Backer JM. 79.  1998. Regulation of the p85/p110α phosphatidylinositol 3′-kinase. Distinct roles for the N-terminal and C-terminal SH2 domains. J. Biol. Chem. 273:30199–203 [Google Scholar]
  80. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA. 80.  et al. 1998. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol. Cell. Biol. 18:1379–87 [Google Scholar]
  81. Burke JE, Vadas O, Berndt A, Finegan T, Perisic O. 81.  et al. 2011. Dynamics of the phosphoinositide 3-kinase p110δ interaction with p85α and membranes reveals aspects of regulation distinct from p110α. Structure 19:1127–37 [Google Scholar]
  82. Zhao L, Vogt PK. 82.  2008. Helical domain and kinase domain mutations in p110α of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc. Natl. Acad. Sci. USA 105:2652–57 [Google Scholar]
  83. Sun M, Hillmann P, Hofmann BT, Hart JR, Vogt PK. 83.  2010. Cancer-derived mutations in the regulatory subunit p85α of phosphoinositide 3-kinase function through the catalytic subunit p110α. Proc. Natl. Acad. Sci. USA. 107:15547–52 [Google Scholar]
  84. Wu H, Shekar SC, Flinn RJ, El-Sibai M, Jaiswal BS. 84.  et al. 2009. Regulation of class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110α and are disrupted in oncogenic p85 mutants. Proc. Natl. Acad. Sci. USA 106:20258–63 [Google Scholar]
  85. Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH. 85.  et al. 2007. Binding of Ras to phosphoinositide 3-kinase p110α is required for Ras-driven tumorigenesis in mice. Cell 129:957–68 [Google Scholar]
  86. Kang S, Denley A, Vanhaesebroeck B, Vogt PK. 86.  2006. Oncogenic transformation induced by the p110β, -γ, and -δ isoforms of class I phosphoinositide 3-kinase. Proc. Natl. Acad. Sci. USA 103:1289–94 [Google Scholar]
  87. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH. 87.  et al. 1997. P110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl. Acad. Sci. USA 94:4330–35 [Google Scholar]
  88. Rodriguez-Viciana P, Sabatier C, McCormick F. 88.  2004. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol. Cell. Biol. 24:4943–54 [Google Scholar]
  89. Delgado P, Cubelos B, Calleja E, Martinez-Martin N, Cipres A. 89.  et al. 2009. Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nat. Immunol. 10:880–88 [Google Scholar]
  90. Zhang X, Vadas O, Perisic O, Anderson KE, Clark J. 90.  et al. 2011. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol. Cell 41:567–78 [Google Scholar]
  91. Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S. 91.  et al. 2006. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366–70 [Google Scholar]
  92. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD. 92.  et al. 2006. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125:733–47 [Google Scholar]
  93. Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ. 93.  et al. 2008. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453:662–66 [Google Scholar]
  94. Zhao JJ, Cheng H, Jia S, Wang L, Gjoerup OV. 94.  et al. 2006. The p110α isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation. Proc. Natl. Acad. Sci. USA 103:16296–300 [Google Scholar]
  95. Janas ML, Hodson D, Stamataki Z, Hill S, Welch K. 95.  et al. 2008. The effect of deleting p110δ on the phenotype and function of PTEN-deficient B cells. J. Immunol. 180:739–46 [Google Scholar]
  96. Bilancio A, Okkenhaug K, Camps M, Emery JL, Ruckle T. 96.  et al. 2006. Key role of the p110δ isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110δ function in B cells. Blood 107:642–50 [Google Scholar]
  97. Okkenhaug K, Ali K, Vanhaesebroeck B. 97.  2007. Antigen receptor signalling: a distinctive role for the p110δ isoform of PI3K. Trends Immunol. 28:80–87 [Google Scholar]
  98. Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B. 98.  2007. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc. Natl. Acad. Sci. USA 104:7809–14 [Google Scholar]
  99. Berndt A, Miller S, Williams O, Le DD, Houseman BT. 99.  et al. 2010. The p110δ structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat. Chem. Biol. 6:117–24 [Google Scholar]
  100. Tuveson DA, Carter RH, Soltoff SP, Fearon DT. 100.  1993. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 260:986–89 [Google Scholar]
  101. Leslie NR, Dixon MJ, Schenning M, Gray A, Batty IH. 101.  2012. Distinct inactivation of PI3K signalling by PTEN and 5-phosphatases. Adv. Enzyme Regul. 52:205–13 [Google Scholar]
  102. Ward SG, Blunt MD. 102.  2012. Pharmacological targeting of phosphoinositide lipid kinases and phosphatases in the immune system: success, disappointment and new opportunities. Front. Immunol. 3:226 [Google Scholar]
  103. Rameh LE, Arvidsson A, Carraway KL 3rd, Couvillon AD, Rathbun G. 103.  et al. 1997. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J. Biol. Chem. 272:22059–66 [Google Scholar]
  104. Franke TF, Kaplan DR, Cantley LC, Toker A. 104.  1997. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–68 [Google Scholar]
  105. Lemmon MA, Ferguson KM. 105.  2000. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350:Pt. 11–18 [Google Scholar]
  106. Pauls SD, Lafarge ST, Landego I, Zhang T-t, Marshall AJ. 106.  2012. The phosphoinositide 3-kinase signalling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions. Front. Immunol. 3:224 [Google Scholar]
  107. Newton RH, Turka LA. 107.  2012. Regulation of T cell homeostasis and responses by Pten. Front. Immunol. 3:151 [Google Scholar]
  108. Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T. 108.  et al. 2001. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14:523–34 [Google Scholar]
  109. Buckler JL, Walsh PT, Porrett PM, Choi Y, Turka LA. 109.  2006. Cutting edge: T cell requirement for CD28 costimulation is due to negative regulation of TCR signals by PTEN. J. Immunol. 177:4262–66 [Google Scholar]
  110. Soond DR, Garcon F, Patton DT, Rolf J, Turner M. 110.  et al. 2012. Pten loss in CD4 T cells enhances their helper function but does not lead to autoimmunity or lymphoma. J. Immunol. 188:5935–43 [Google Scholar]
  111. Omori SA, Cato MH, Anzelon-Mills A, Puri KD, Shapiro-Shelef M. 111.  et al. 2006. Regulation of class-switch recombination and plasma cell differentiation by phosphatidylinositol 3-kinase signaling. Immunity 25:245–57 [Google Scholar]
  112. Browne CD, Del Nagro CJ, Cato MH, Dengler HS, Rickert RC. 112.  2009. Suppression of phosphatidylinositol 3,4,5-trisphosphate production is a key determinant of B cell anergy. Immunity 31:749–60 [Google Scholar]
  113. Suzuki A, Kaisho T, Ohishi M, Tsukio-Yamaguchi M, Tsubata T. 113.  et al. 2003. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J. Exp. Med. 197:657–67 [Google Scholar]
  114. Kerr WG. 114.  2011. Inhibitor and activator: dual functions for SHIP in immunity and cancer. Ann. N. Y. Acad. Sci. 1217:1–17 [Google Scholar]
  115. Miletic AV, Anzelon-Mills AN, Mills DM, Omori SA, Pedersen IM. 115.  et al. 2010. Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases. J. Exp. Med. 207:2407–20 [Google Scholar]
  116. Fedele CG, Ooms LM, Ho M, Vieusseux J, O'Toole SA. 116.  et al. 2010. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc. Natl. Acad. Sci. USA 107:22231–36 [Google Scholar]
  117. Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D. 117.  et al. 2009. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16:115–25 [Google Scholar]
  118. Lemmon MA. 118.  2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9:99–111 [Google Scholar]
  119. Prisco A, Vanes L, Ruf S, Trigueros C, Tybulewicz VL. 119.  2005. Lineage-specific requirement for the PH domain of Vav1 in the activation of CD4+ but not CD8+ T cells. Immunity 23:263–74 [Google Scholar]
  120. Rapley J, Tybulewicz VL, Rittinger K. 120.  2008. Crucial structural role for the PH and C1 domains of the Vav1 exchange factor. EMBO Rep. 9:655–61 [Google Scholar]
  121. Park WS, Heo WD, Whalen JH, O'Rourke NA, Bryan HM. 121.  et al. 2008. Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Mol. Cell 30:381–92 [Google Scholar]
  122. Krugmann S, Anderson KE, Ridley SH, Risso N, McGregor A. 122.  et al. 2002. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell 9:95–108 [Google Scholar]
  123. Hedrick SM. 123.  2009. The cunning little vixen: Foxo and the cycle of life and death. Nat. Immunol. 10:1057–63 [Google Scholar]
  124. Powell JD, Pollizzi KN, Heikamp EB, Horton MR. 124.  2012. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30:39–68 [Google Scholar]
  125. Finlay D, Cantrell DA. 125.  2011. Metabolism, migration and memory in cytotoxic T cells. Nat. Rev. Immunol. 11:109–17 [Google Scholar]
  126. Fruman DA, Limon JJ. 126.  2012. Akt and mTOR in B cell activation and differentiation. Front. Immunol. 3:228 [Google Scholar]
  127. Manning BD, Cantley LC. 127.  2007. AKT/PKB signaling: navigating downstream. Cell 129:1261–74 [Google Scholar]
  128. Chin YR, Toker A. 128.  2011. Akt isoform-specific signaling in breast cancer: uncovering an anti-migratory role for palladin. Cell Adhes. Migr. 5:211–14 [Google Scholar]
  129. Calamito M, Juntilla MM, Thomas M, Northrup DL, Rathmell J. 129.  et al. 2010. Akt1 and Akt2 promote peripheral B-cell maturation and survival. Blood 115:4043–50 [Google Scholar]
  130. Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ. 130.  et al. 2010. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115:4030–38 [Google Scholar]
  131. Juntilla MM, Wofford JA, Birnbaum MJ, Rathmell JC, Koretzky GA. 131.  2007. Akt1 and Akt2 are required for αβ thymocyte survival and differentiation. Proc. Natl. Acad. Sci. USA 104:12105–10 [Google Scholar]
  132. Fayard E, Gill J, Paolino M, Hynx D, Hollander GA. 132.  et al. 2007. Deletion of PKBα/Akt1 affects thymic development. PLoS ONE 2:e992 [Google Scholar]
  133. Mao C, Tili EG, Dose M, Haks MC, Bear SE. 133.  et al. 2007. Unequal contribution of Akt isoforms in the double-negative to double-positive thymocyte transition. J. Immunol. 178:5443–53 [Google Scholar]
  134. Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM. 134.  et al. 2011. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34:224–36 [Google Scholar]
  135. Amin RH, Schlissel MS. 135.  2008. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9:613–22 [Google Scholar]
  136. Dengler HS, Baracho GV, Omori SA, Bruckner S, Arden KC. 136.  et al. 2008. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat. Immunol. 9:1388–98 [Google Scholar]
  137. Fabre S, Carrette F, Chen J, Lang V, Semichon M. 137.  et al. 2008. FOXO1 regulates L-selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J. Immunol. 181:2980–89 [Google Scholar]
  138. Yusuf I, Kharas MG, Chen J, Peralta RQ, Maruniak A. 138.  et al. 2008. KLF4 is a FOXO target gene that suppresses B cell proliferation. Int. Immunol. 20:671–81 [Google Scholar]
  139. Dejean AS, Beisner DR, Ch'en IL, Kerdiles YM, Babour A. 139.  et al. 2009. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat. Immunol. 10:504–13 [Google Scholar]
  140. Kerdiles YM, Beisner DR, Tinoco R, Dejean AS, Castrillon DH. 140.  et al. 2009. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10:176–84 [Google Scholar]
  141. Ouyang W, Beckett O, Flavell RA, Li MO. 141.  2009. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30:358–71 [Google Scholar]
  142. Merkenschlager M, von Boehmer H. 142.  2010. PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. J. Exp. Med. 207:1347–50 [Google Scholar]
  143. Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA. 143.  et al. 2010. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 11:618–27 [Google Scholar]
  144. Yang JY, Chang CJ, Xia W, Wang Y, Wong KK. 144.  et al. 2010. Activation of FOXO3a is sufficient to reverse mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor chemoresistance in human cancer. Cancer Res. 70:4709–18 [Google Scholar]
  145. Alkhatib A, Werner M, Hug E, Herzog S, Eschbach C. 145.  et al. 2012. FoxO1 induces Ikaros splicing to promote immunoglobulin gene recombination. J. Exp. Med. 209:395–406 [Google Scholar]
  146. Graham JR, Hendershott MC, Terragni J, Cooper GM. 146.  2010. mRNA degradation plays a significant role in the program of gene expression regulated by phosphatidylinositol 3-kinase signaling. Mol. Cell. Biol. 30:5295–305 [Google Scholar]
  147. Turner M, Hodson D. 147.  2012. Regulation of lymphocyte development and function by RNA-binding proteins. Curr. Opin. Immunol. 24:160–65 [Google Scholar]
  148. Laplante M, Sabatini DM. 148.  2012. mTOR signaling in growth control and disease. Cell 149:274–93 [Google Scholar]
  149. Shaw RJ, Cantley LC. 149.  2006. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–30 [Google Scholar]
  150. Salmond RJ, Emery J, Okkenhaug K, Zamoyska R. 150.  2009. MAPK, phosphatidylinositol 3-kinase, and mammalian target of rapamycin pathways converge at the level of ribosomal protein S6 phosphorylation to control metabolic signaling in CD8 T cells. J. Immunol. 183:7388–97 [Google Scholar]
  151. Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL. 151.  et al. 2012. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209:2441–53 [Google Scholar]
  152. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S. 152.  et al. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303 [Google Scholar]
  153. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC. 153.  et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–501 [Google Scholar]
  154. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA. 154.  et al. 2011. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–22 [Google Scholar]
  155. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM. 155.  et al. 2011. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–26 [Google Scholar]
  156. Shi LZ, Wang R, Huang G, Vogel P, Neale G. 156.  et al. 2011. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208:1367–76 [Google Scholar]
  157. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H. 157.  et al. 2011. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146:772–84 [Google Scholar]
  158. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP. 158.  et al. 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22:159–68 [Google Scholar]
  159. Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA. 159.  2012. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8+ T cell differentiation. Immunity 36:374–87 [Google Scholar]
  160. Berg LJ, Finkelstein LD, Lucas JA, Schwartzberg PL. 160.  2005. Tec family kinases in T lymphocyte development and function. Annu. Rev. Immunol. 23:549–600 [Google Scholar]
  161. Li Z, Wahl MI, Eguinoa A, Stephens LR, Hawkins PT. 161.  et al. 1997. Phosphatidylinositol 3-kinase-γ activates Bruton's tyrosine kinase in concert with Src family kinases. Proc. Natl. Acad. Sci. USA 94:13820–25 [Google Scholar]
  162. Suzuki H, Matsuda S, Terauchi Y, Fujiwara M, Ohteki T. 162.  et al. 2003. PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction. Nat. Immunol. 4:280–86 [Google Scholar]
  163. Matsuda S, Mikami Y, Ohtani M, Fujiwara M, Hirata Y. 163.  et al. 2009. Critical role of class IA PI3K for c-Rel expression in B lymphocytes. Blood 113:1037–44 [Google Scholar]
  164. Welch HC, Coadwell WJ, Stephens LR, Hawkins PT. 164.  2003. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett. 546:93–97 [Google Scholar]
  165. Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR. 165.  et al. 2002. P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell 108:809–21 [Google Scholar]
  166. Condliffe AM, Davidson K, Anderson KE, Ellson CD, Crabbe T. 166.  et al. 2005. Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106:1432–40 [Google Scholar]
  167. Lawson CD, Donald S, Anderson KE, Patton DT, Welch HC. 167.  2011. P-Rex1 and Vav1 cooperate in the regulation of formyl-methionyl-leucyl-phenylalanine-dependent neutrophil responses. J. Immunol. 186:1467–76 [Google Scholar]
  168. Saveliev A, Vanes L, Ksionda O, Rapley J, Smerdon SJ. 168.  et al. 2009. Function of the nucleotide exchange activity of Vav1 in T cell development and activation. Sci. Signal. 2:ra83 [Google Scholar]
  169. Costa C, Barberis L, Ambrogio C, Manazza AD, Patrucco E. 169.  et al. 2007. Negative feedback regulation of Rac in leukocytes from mice expressing a constitutively active phosphatidylinositol 3-kinase γ. Proc. Natl. Acad. Sci. USA 104:14354–59 [Google Scholar]
  170. Costa C, Germena G, Martin-Conte EL, Molineris I, Bosco E. 170.  et al. 2011. The RacGAP ArhGAP15 is a master negative regulator of neutrophil functions. Blood 118:1099–108 [Google Scholar]
  171. Craig HE, Coadwell J, Guillou H, Vermeren S. 171.  2010. ARAP3 binding to phosphatidylinositol-(3,4,5)-trisphosphate depends on N-terminal tandem PH domains and adjacent sequences. Cell Signal. 22:257–64 [Google Scholar]
  172. Gambardella L, Anderson KE, Nussbaum C, Segonds-Pichon A, Margarido T. 172.  et al. 2011. The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood 118:1087–98 [Google Scholar]
  173. So L, Fruman DA. 173.  2012. PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. Biochem. J. 442:465–81 [Google Scholar]
  174. Okkenhaug K, Fruman DA. 174.  2010. PI3Ks in lymphocyte signaling and development. Curr. Top. Microbiol. Immunol. 346:57–85 [Google Scholar]
  175. Fruman DA, Bismuth G. 175.  2009. Fine tuning the immune response with PI3K. Immunol. Rev. 228:253–72 [Google Scholar]
  176. Okkenhaug K, Vanhaesebroeck B. 176.  2003. PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol. 3:317–30 [Google Scholar]
  177. Deane JA, Fruman DA. 177.  2004. Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu. Rev. Immunol. 22:563–98 [Google Scholar]
  178. Koyasu S. 178.  2003. The role of PI3K in immune cells. Nat. Immunol. 4:313–19 [Google Scholar]
  179. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO. 179.  et al. 2006. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–82 [Google Scholar]
  180. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC. 180.  et al. 2006. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441:518–22 [Google Scholar]
  181. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH. 181.  et al. 2007. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–39 [Google Scholar]
  182. Herzog S, Reth M, Jumaa H. 182.  2009. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat. Rev. Immunol. 9:195–205 [Google Scholar]
  183. Corcoran AE, Smart FM, Cowling RJ, Crompton T, Owen MJ. 183.  et al. 1996. The interleukin-7 receptor α chain transmits distinct signals for proliferation and differentiation during B lymphopoiesis. EMBO J. 15:1924–32 [Google Scholar]
  184. Osborne LC, Duthie KA, Seo JH, Gascoyne RD, Abraham N. 184.  2010. Selective ablation of the YxxM motif of IL-7Rα suppresses lymphomagenesis but maintains lymphocyte development. Oncogene 29:3854–64 [Google Scholar]
  185. Marshall AJ, Fleming HE, Wu GE, Paige CJ. 185.  1998. Modulation of the IL-7 dose-response threshold during pro-B cell differentiation is dependent on pre-B cell receptor expression. J. Immunol. 161:6038–45 [Google Scholar]
  186. Herzog S, Hug E, Meixlsperger S, Paik JH, DePinho RA. 186.  et al. 2008. SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nat. Immunol. 9:623–31 [Google Scholar]
  187. Werner M, Hobeika E, Jumaa H. 187.  2010. Role of PI3K in the generation and survival of B cells. Immunol. Rev. 237:55–71 [Google Scholar]
  188. Llorian M, Stamataki Z, Hill S, Turner M, Martensson IL. 188.  2007. The PI3K p110δ is required for down-regulation of RAG expression in immature B cells. J. Immunol. 178:1981–85 [Google Scholar]
  189. Verkoczy L, Duong B, Skog P, Ait-Azzouzene D, Puri K. 189.  et al. 2007. Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. J. Immunol. 178:6332–41 [Google Scholar]
  190. Tze LE, Schram BR, Lam KP, Hogquist KA, Hippen KL. 190.  et al. 2005. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol. 3:e82 [Google Scholar]
  191. Lam KP, Kuhn R, Rajewsky K. 191.  1997. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90:1073–83 [Google Scholar]
  192. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. 192.  2004. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117:787–800 [Google Scholar]
  193. Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH. 193.  et al. 2009. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139:573–86 [Google Scholar]
  194. Garcon F, Patton DT, Emery JL, Hirsch E, Rottapel R. 194.  et al. 2008. CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood 111:1464–71 [Google Scholar]
  195. Durand CA, Hartvigsen K, Fogelstrand L, Kim S, Iritani S. 195.  et al. 2009. Phosphoinositide 3-kinase p110δ regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses. J. Immunol. 183:5673–84 [Google Scholar]
  196. Rolf J, Bell SE, Kovesdi D, Janas ML, Soond DR. 196.  et al. 2010. Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J. Immunol. 185:4042–52 [Google Scholar]
  197. Zhang TT, Makondo KJ, Marshall AJ. 197.  2012. p110δ phosphoinositide 3-kinase represses IgE switch by potentiating BCL6 expression. J. Immunol. 188:3700–8 [Google Scholar]
  198. Zhang TT, Okkenhaug K, Nashed BF, Puri KD, Knight ZA. 198.  et al. 2008. Genetic or pharmaceutical blockade of p110δ phosphoinositide 3-kinase enhances IgE production. J. Allergy Clin. Immunol. 122:811–19.e2 [Google Scholar]
  199. Khalil AM, Cambier JC, Shlomchik MJ. 199.  2012. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336:1178–81 [Google Scholar]
  200. Deane JA, Kharas MG, Oak JS, Stiles LN, Luo J. 200.  et al. 2007. T-cell function is partially maintained in the absence of class IA phosphoinositide 3-kinase signaling. Blood 109:2894–902 [Google Scholar]
  201. Janas ML, Turner M. 201.  2010. Stromal cell-derived factor 1α and CXCR4: newly defined requirements for efficient thymic β-selection. Trends Immunol. 31:370–76 [Google Scholar]
  202. Hagenbeek TJ, Naspetti M, Malergue F, Garcon F, Nunes JA. 202.  et al. 2004. The loss of PTEN allows TCR αβ lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J. Exp. Med. 200:883–94 [Google Scholar]
  203. Janas ML, Varano G, Gudmundsson K, Noda M, Nagasawa T. 203.  et al. 2010. Thymic development beyond β-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J. Exp. Med. 207:247–61 [Google Scholar]
  204. Webb LM, Vigorito E, Wymann MP, Hirsch E, Turner M. 204.  2005. Cutting edge: T cell development requires the combined activities of the p110γ and p110δ catalytic isoforms of phosphatidylinositol 3-kinase. J. Immunol. 175:2783–87 [Google Scholar]
  205. Ji H, Rintelen F, Waltzinger C, Bertschy Meier D, Bilancio A. 205.  et al. 2007. Inactivation of PI3Kγ and PI3Kδ distorts T-cell development and causes multiple organ inflammation. Blood 110:2940–47 [Google Scholar]
  206. Swat W, Montgrain V, Doggett TA, Douangpanya J, Puri K. 206.  et al. 2006. Essential role of PI3Kδ and PI3Kγ in thymocyte survival. Blood 107:2415–22 [Google Scholar]
  207. Kelly AP, Finlay DK, Hinton HJ, Clarke RG, Fiorini E. 207.  et al. 2007. Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J. 26:3441–50 [Google Scholar]
  208. Ciofani M, Zuniga-Pflucker JC. 208.  2005. Notch promotes survival of pre-T cells at the β-selection checkpoint by regulating cellular metabolism. Nat. Immunol. 6:881–88 [Google Scholar]
  209. Wong GW, Knowles GC, Mak TW, Ferrando AA, Zúñiga-Pflücker JC. 209.  2012. HES1 opposes a PTEN-dependent check on survival, differentiation and proliferation of TCRβ-selected mouse thymocytes. Blood 120:1439–48 [Google Scholar]
  210. Perumalsamy LR, Marcel N, Kulkarni S, Radtke F, Sarin A. 210.  2012. Distinct spatial and molecular features of Notch pathway assembly in regulatory T cells. Sci. Signal. 5:ra53 [Google Scholar]
  211. Juntilla MM, Koretzky GA. 211.  2008. Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol. Lett. 116:104–10 [Google Scholar]
  212. Hinton HJ, Alessi DR, Cantrell DA. 212.  2004. The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat. Immunol. 5:539–45 [Google Scholar]
  213. Finlay DK, Sinclair LV, Feijoo C, Waugh CM, Hagenbeek TJ. 213.  et al. 2009. Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. J. Exp. Med. 206:2441–54 [Google Scholar]
  214. Acuto O, Michel F. 214.  2003. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3:939–51 [Google Scholar]
  215. Holdorf AD, Green JM, Levin SD, Denny MF, Straus DB. 215.  et al. 1999. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J. Exp. Med. 190:375–84 [Google Scholar]
  216. Gigoux M, Shang J, Pak Y, Xu M, Choe J. 216.  et al. 2009. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc. Natl. Acad. Sci. USA 106:20371–76 [Google Scholar]
  217. Barber DF, Bartolome A, Hernandez C, Flores JM, Fernandez-Arias C. 217.  et al. 2006. Class IB-phosphatidylinositol 3-kinase (PI3K) deficiency ameliorates IA-PI3K-induced systemic lupus but not T cell invasion. J. Immunol. 176:589–93 [Google Scholar]
  218. Martin AL, Schwartz MD, Jameson SC, Shimizu Y. 218.  2008. Selective regulation of CD8 effector T cell migration by the p110γ isoform of phosphatidylinositol 3-kinase. J. Immunol. 180:2081–88 [Google Scholar]
  219. Thomas MS, Mitchell JS, DeNucci CC, Martin AL, Shimizu Y. 219.  2008. The p110γ isoform of phosphatidylinositol 3-kinase regulates migration of effector CD4 T lymphocytes into peripheral inflammatory sites. J. Leukoc. Biol. 84:814–23 [Google Scholar]
  220. Nombela-Arrieta C, Lacalle RA, Montoya MC, Kunisaki Y, Megias D. 220.  et al. 2004. Differential requirements for DOCK2 and phosphoinositide-3-kinase γ during T and B lymphocyte homing. Immunity 21:429–41 [Google Scholar]
  221. Okkenhaug K, Patton DT, Bilancio A, Garcon F, Rowan WC. 221.  et al. 2006. The p110δ isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J. Immunol. 177:5122–28 [Google Scholar]
  222. Soond DR, Bjorgo E, Moltu K, Dale VQ, Patton DT. 222.  et al. 2010. PI3K p110δ regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood 115:2203–13 [Google Scholar]
  223. Haylock-Jacobs S, Comerford I, Bunting M, Kara E, Townley S. 223.  et al. 2011. PI3Kδ drives the pathogenesis of experimental autoimmune encephalomyelitis by inhibiting effector T cell apoptosis and promoting Th17 differentiation. J. Autoimmun. 36:278–87 [Google Scholar]
  224. Nashed BF, Zhang T, Al-Alwan M, Srinivasan G, Halayko AJ. 224.  et al. 2007. Role of the phosphoinositide 3-kinase p110δ in generation of type 2 cytokine responses and allergic airway inflammation. Eur. J. Immunol. 37:416–24 [Google Scholar]
  225. Kurebayashi Y, Nagai S, Ikejiri A, Ohtani M, Ichiyama K. 225.  et al. 2012. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORγ. Cell Rep. 1:360–73 [Google Scholar]
  226. Rommel C, Camps M, Ji H. 226.  2007. PI3Kδ and PI3Kγ: partners in crime in inflammation in rheumatoid arthritis and beyond?. Nat. Rev. Immunol. 7:191–201 [Google Scholar]
  227. Banham-Hall E, Clatworthy MR, Okkenhaug K. 227.  2012. The therapeutic potential for PI3K inhibitors in autoimmune rheumatic diseases. Open Rheumatol. J. 6:245–58 [Google Scholar]
  228. Fukao T, Tanabe M, Terauchi Y, Ota T, Matsuda S. 228.  et al. 2002. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3:875–81 [Google Scholar]
  229. Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR. 229.  et al. 2006. Cutting edge: the phosphoinositide 3-kinase p110δ is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol. 177:6598–602 [Google Scholar]
  230. Soond DR, Slack EC, Garden OA, Patton DT, Okkenhaug K. 230.  2012. Does the PI3K pathway promote or antagonize regulatory T cell development and function?. Front. Immunol. 3:244 [Google Scholar]
  231. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M. 231.  et al. 2008. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 105:7797–802 [Google Scholar]
  232. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA. 232.  et al. 2009. mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–12 [Google Scholar]
  233. Li Q, Rao RR, Araki K, Pollizzi K, Odunsi K. 233.  et al. 2011. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 34:541–53 [Google Scholar]
  234. Rao RR, Li Q, Odunsi K, Shrikant PA. 234.  2010. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32:67–78 [Google Scholar]
  235. Liu D, Zhang T, Marshall AJ, Okkenhaug K, Vanhaesebroeck B. 235.  et al. 2009. The p110δ isoform of phosphatidylinositol 3-kinase controls susceptibility to Leishmania major by regulating expansion and tissue homing of regulatory T cells. J. Immunol. 183:1921–33 [Google Scholar]
  236. Gold MR, Puri KD. 236.  2012. Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatory diseases and B-cell malignancies. Front. Immunol. 3:256 [Google Scholar]
  237. Fruman DA, Rommel C. 237.  2011. PI3Kδ inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov. 1:562–72 [Google Scholar]
  238. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B. 238.  et al. 2011. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117:591–94 [Google Scholar]
  239. Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V. 239.  et al. 2012. Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell 21:459–72 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032712-095946
Loading
/content/journals/10.1146/annurev-immunol-032712-095946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error