1932

Abstract

Given the many cell types and molecular components of the human immune system, along with vast variations across individuals, how should we go about developing causal and predictive explanations of immunity? A central strategy in human studies is to leverage natural variation to find relationships among variables, including DNA variants, epigenetic states, immune phenotypes, clinical descriptors, and others. Here, we focus on how natural variation is used to find patterns, infer principles, and develop predictive models for two areas: () immune cell activation—how single-cell profiling boosts our ability to discover immune cell types and states—and () antigen presentation and recognition—how models can be generated to predict presentation of antigens on MHC molecules and their detection by T cell receptors. These are two examples of a shift in how we find the drivers and targets of immunity, especially in the human system in the context of health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042617-053035
2018-04-26
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/immunol/36/1/annurev-immunol-042617-053035.html?itemId=/content/journals/10.1146/annurev-immunol-042617-053035&mimeType=html&fmt=ahah

Literature Cited

  1. Brodin P, Davis MM. 1.  2017. Human immune system variation. Nat. Rev. Immunol. 17:21–29 [Google Scholar]
  2. Davis MM, Tato CM, Furman D. 2.  2017. Systems immunology: just getting started. Nat. Immunol. 18:725–32 [Google Scholar]
  3. Hayday AC, Peakman M. 3.  2008. The habitual, diverse and surmountable obstacles to human immunology research. Nat. Immunol. 9:575–80 [Google Scholar]
  4. Davis MM. 4.  2008. A prescription for human immunology. Immunity 29:835–38 [Google Scholar]
  5. Germain RN, Schwartzberg PL. 5.  2011. The human condition: an immunological perspective. Nat. Immunol. 12:369–72 [Google Scholar]
  6. Steinman RM, Mellman I. 6.  2004. Immunotherapy: bewitched, bothered, and bewildered no more. Science 305:197–200 [Google Scholar]
  7. von Herrath MG, Nepom GT. 7.  2005. Lost in translation: barriers to implementing clinical immunotherapeutics for autoimmunity. J. Exp. Med. 202:1159–62 [Google Scholar]
  8. Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G. 8.  et al. 2008. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 205:3119–31 [Google Scholar]
  9. Pulendran B. 9.  2009. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat. Rev. Immunol. 9:741–47 [Google Scholar]
  10. Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI. 10.  et al. 2009. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10:116–25 [Google Scholar]
  11. Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S. 11.  et al. 2011. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12:786–95 [Google Scholar]
  12. Tsang JS, Schwartzberg PL, Kotliarov Y, Biancotto A, Xie Z. 12.  et al. 2014. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 157:499–513 [Google Scholar]
  13. Nakaya HI, Hagan T, Duraisingham SS, Lee EK, Kwissa M. 13.  et al. 2015. Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures. Immunity 43:1186–98 [Google Scholar]
  14. Andres-Terre M, McGuire HM, Pouliot Y, Bongen E, Sweeney TE. 14.  et al. 2015. Integrated, multi-cohort analysis identifies conserved transcriptional signatures across multiple respiratory viruses. Immunity 43:1199–211 [Google Scholar]
  15. Haralambieva IH, Ovsyannikova IG, Kennedy RB, Zimmermann MT, Grill DE. 15.  et al. 2016. Transcriptional signatures of influenza A/H1N1-specific IgG memory-like B cell response in older individuals. Vaccine 34:3993–4002 [Google Scholar]
  16. Ovsyannikova IG, Salk HM, Kennedy RB, Haralambieva IH, Zimmermann MT. 16.  et al. 2016. Gene signatures associated with adaptive humoral immunity following seasonal influenza A/H1N1 vaccination. Genes Immun 17:371–79 [Google Scholar]
  17. Sobolev O, Binda E, O'Farrell S, Lorenc A, Pradines J. 17.  et al. 2016. Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nat. Immunol. 17:204–13 [Google Scholar]
  18. Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S. 18.  et al. 2016. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387:2312–22 [Google Scholar]
  19. Sweeney TE, Braviak L, Tato CM, Khatri P. 19.  2016. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir. Med. 4:213–24 [Google Scholar]
  20. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA. 20.  et al. 2003. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. PNAS 100:2610–15 [Google Scholar]
  21. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J. 21.  et al. 2016. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165:1548–50 [Google Scholar]
  22. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C. 22.  et al. 2008. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 29:150–64 [Google Scholar]
  23. McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. 23.  2015. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523:612–16 [Google Scholar]
  24. Carr EJ, Dooley J, Garcia-Perez JE, Lagou V, Lee JC. 24.  et al. 2016. The cellular composition of the human immune system is shaped by age and cohabitation. Nat. Immunol. 17:461–68 [Google Scholar]
  25. De Jong S, Neeleman M, Luykx JJ, ten Berg MJ, Strengman E. 25.  et al. 2014. Seasonal changes in gene expression represent cell-type composition in whole blood. Hum. Mol. Genet. 23:2721–28 [Google Scholar]
  26. Dopico XC, Evangelou M, Ferreira RC, Guo H, Pekalski ML. 26.  et al. 2015. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 6:7000 [Google Scholar]
  27. Furman D, Chang J, Lartigue L, Bolen CR, Haddad F. 27.  et al. 2017. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat. Med. 23:174–84 [Google Scholar]
  28. Hajdu SI. 28.  2003. A note from history: the discovery of blood cells. Ann. Clin. Lab. Sci. 33:237–38 [Google Scholar]
  29. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C. 29.  et al.; Hum. Cell Atlas Meet. Particip. 2017. The Human Cell Atlas. eLife 6:e27041 https://doi.org/10.1101/121202 [Crossref] [Google Scholar]
  30. Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C. 30.  et al. 2017. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14:381–87 [Google Scholar]
  31. Spitzer MH, Nolan GP. 31.  2016. Mass cytometry: single cells, many features. Cell 165:780–91 [Google Scholar]
  32. Crosetto N, Bienko M, van Oudenaarden A. 32.  2015. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16:57–66 [Google Scholar]
  33. Wagner A, Regev A, Yosef N. 33.  2016. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34:1145–60 [Google Scholar]
  34. Tanay A, Regev A. 34.  2017. Scaling single-cell genomics from phenomenology to mechanism. Nature 541:331–38 [Google Scholar]
  35. Prakadan SM, Shalek AK, Weitz DA. 35.  2017. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. 18:345–61 [Google Scholar]
  36. Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. 36.  2016. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol 17:72 [Google Scholar]
  37. Schwartzman O, Tanay A. 37.  2015. Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet. 16:716–26 [Google Scholar]
  38. Cuvier O, Fierz B. 38.  2017. Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat. Rev. Genet. 18:457–72 [Google Scholar]
  39. Gawad C, Koh W, Quake SR. 39.  2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:175–88 [Google Scholar]
  40. Woodworth MB, Girskis KM, Walsh CA. 40.  2017. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18:230–44 [Google Scholar]
  41. Wang Y, Navin NE. 41.  2015. Advances and applications of single-cell sequencing technologies. Mol. Cell 58:598–609 [Google Scholar]
  42. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A. 42.  et al. 2017. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65:631–43.e4 [Google Scholar]
  43. Trapnell C. 43.  2015. Defining cell types and states with single-cell genomics. Genome Res 25:1491–98 [Google Scholar]
  44. Grun D, van Oudenaarden A. 44.  2015. Design and analysis of single-cell sequencing experiments. Cell 163:799–810 [Google Scholar]
  45. Macaulay IC, Ponting CP, Voet T. 45.  2017. Single-cell multiomics: multiple measurements from single cells. Trends Genet 33:155–68 [Google Scholar]
  46. Bock C, Farlik M, Sheffield NC. 46.  2016. Multi-omics of single cells: strategies and applications. Trends Biotechnol 34:605–8 [Google Scholar]
  47. Peterson VM, Zhang KX, Kumar N, Wong J, Li L. 47.  et al. 2017. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35:10936–39 [Google Scholar]
  48. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK. 48.  et al. 2017. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14:9865–68 [Google Scholar]
  49. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. 49.  2015. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33:3285–89 [Google Scholar]
  50. Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q. 50.  et al. 2016. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat. Methods 13:10833–36 [Google Scholar]
  51. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P. 51.  et al. 2013. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38:187–97 [Google Scholar]
  52. Thome JJ, Yudanin N, Ohmura Y, Kubota M, Grinshpun B. 52.  et al. 2014. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159:814–28 [Google Scholar]
  53. Thome JJ, Farber DL. 53.  2015. Emerging concepts in tissue-resident T cells: lessons from humans. Trends Immunol 36:428–35 [Google Scholar]
  54. Thome JJ, Bickham KL, Ohmura Y, Kubota M, Matsuoka N. 54.  et al. 2016. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22:72–77 [Google Scholar]
  55. Granot T, Senda T, Carpenter DJ, Matsuoka N, Weiner J. 55.  et al. 2017. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46:504–15 [Google Scholar]
  56. Saeys Y, Gassen SV, Lambrecht BN. 56.  2016. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 16:449–62 [Google Scholar]
  57. Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO. 57.  et al. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–96 [Google Scholar]
  58. Becher B, Schlitzer A, Chen J, Mair F, Sumatoh HR. 58.  et al. 2014. High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 15:1181–89 [Google Scholar]
  59. Sen N, Mukherjee G, Sen A, Bendall SC, Sung P. 59.  et al. 2014. Single-cell mass cytometry analysis of human tonsil T cell remodeling by varicella zoster virus. Cell Rep 8:633–45 [Google Scholar]
  60. Bendall SC, Davis KL, Amir ED, Tadmor MD, Simonds EF. 60.  et al. 2014. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:714–25 [Google Scholar]
  61. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N. 61.  et al. 2013. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 5:208ra145 [Google Scholar]
  62. Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA. 62.  et al. 2015. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci. Transl. Med. 7:297ra115 [Google Scholar]
  63. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. 63.  2012. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36:142–52 [Google Scholar]
  64. Wong MT, Chen J, Narayanan S, Lin W, Anicete R. 64.  et al. 2015. Mapping the diversity of follicular helper T cells in human blood and tonsils using high-dimensional mass cytometry analysis. Cell Rep 11:1822–33 [Google Scholar]
  65. Wong MT, Ong DE, Lim FS, Teng KW, McGovern N. 65.  et al. 2016. A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 45:442–56 [Google Scholar]
  66. Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D. 66.  et al. 2016. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45:669–84 [Google Scholar]
  67. Simoni Y, Fehlings M, Kloverpris HN, McGovern N, Koo SL. 67.  et al. 2017. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46:148–61 [Google Scholar]
  68. van Unen V, Li N, Molendijk I, Temurhan M, Hollt T. 68.  et al. 2016. Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 44:1227–39 [Google Scholar]
  69. Spitzer MH, Gherardini PF, Fragiadakis GK, Bhattacharya N, Yuan RT. 69.  et al. 2015. An interactive reference framework for modeling a dynamic immune system. Science 349:1259425 [Google Scholar]
  70. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D. 70.  et al. 2017. Systemic immunity is required for effective cancer immunotherapy. Cell 168:487–502.e15 [Google Scholar]
  71. Roederer M, Quaye L, Mangino M, Beddall MH, Mahnke Y. 71.  et al. 2015. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell 161:387–403 [Google Scholar]
  72. Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ. 72.  et al. 2015. Variation in the human immune system is largely driven by non-heritable influences. Cell 160:37–47 [Google Scholar]
  73. Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM. 73.  et al. 2016. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34:637–45 [Google Scholar]
  74. Proserpio V, Mahata B. 74.  2016. Single-cell technologies to study the immune system. Immunology 147:133–40 [Google Scholar]
  75. Neu KE, Tang Q, Wilson PC, Khan AA. 75.  2017. Single-cell genomics: approaches and utility in immunology. Trends Immunol 38:140–49 [Google Scholar]
  76. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F. 76.  et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–79 [Google Scholar]
  77. Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HR, Schreuder J. 77.  et al. 2015. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16:718–28 [Google Scholar]
  78. Mass E, Ballesteros I, Farlik M, Halbritter F, Gunther P. 78.  et al. 2016. Specification of tissue-resident macrophages during organogenesis. Science 353:aaf4238 [Google Scholar]
  79. Mildner A, Schonheit J, Giladi A, David E, Lara-Astiaso D. 79.  et al. 2017. Genomic characterization of murine monocytes reveals C/EBPβ transcription factor dependence of Ly6C cells. Immunity 46:849–62.e7 [Google Scholar]
  80. Engel I, Seumois G, Chavez L, Samaniego-Castruita D, White B. 80.  et al. 2016. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat. Immunol. 17:728–39 [Google Scholar]
  81. Kakaradov B, Arsenio J, Widjaja CE, He Z, Aigner S. 81.  et al. 2017. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol. 18:422–32 [Google Scholar]
  82. Pace L, Goudot C, Zueva E, Gueguen P, Burgdorf N. 82.  et al. 2018. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 359:6372177–86. [Google Scholar]
  83. Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A. 83.  et al. 2016. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166:1231–46.e13 [Google Scholar]
  84. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A. 84.  et al. 2016. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353:aad8670 [Google Scholar]
  85. Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM. 85.  et al. 2016. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48:1193–203 [Google Scholar]
  86. Buenrostro JD, Corces R, Wu B, Schep AN, Lareau C. 86.  et al. 2017. Single-cell epigenomics maps the continuous regulatory landscape of human hematopoietic differentiation. bioRxiv109843 https://doi.org/10.1101/109843 [Crossref] [Google Scholar]
  87. Drissen R, Buza-Vidas N, Woll P, Thongjuea S, Gambardella A. 87.  et al. 2016. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17:666–76 [Google Scholar]
  88. Yu Y, Tsang JC, Wang C, Clare S, Wang J. 88.  et al. 2016. Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature 539:102–6 [Google Scholar]
  89. Björklund ÅK, Forkel M, Picelli S, Konya V, Theorell J. 89.  et al. 2016. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17:451–60 [Google Scholar]
  90. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K. 90.  et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:eaah4573 [Google Scholar]
  91. See P, Dutertre CA, Chen J, Gunther P, McGovern N. 91.  et al. 2017. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356:eaag3009 [Google Scholar]
  92. Breton G, Zheng S, Valieris R, Tojal da Silva I, Satija R, Nussenzweig MC. 92.  2016. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J. Exp. Med. 213:2861–70 [Google Scholar]
  93. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW. 93.  et al. 2017. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8:14049 [Google Scholar]
  94. Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O'Rourke P. 94.  et al. 2018. Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci. Immunol. 3:eaan8664 [Google Scholar]
  95. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. 95.  2013. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10:1096–98 [Google Scholar]
  96. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. 96.  2014. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9:171–81 [Google Scholar]
  97. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A. 97.  et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–201 [Google Scholar]
  98. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K. 98.  et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14 [Google Scholar]
  99. Gierahn TM, Wadsworth MH 2nd, Hughes TK, Bryson BD, Butler A. 99.  et al. 2017. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14:395–98 [Google Scholar]
  100. Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R. 100.  et al. 2016. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst 3:346–60.e4 [Google Scholar]
  101. Muraro MJ, Dharmadhikari G, Grun D, Groen N, Dielen T. 101.  et al. 2016. A single-cell transcriptome atlas of the human pancreas. Cell Syst 3:385–94.e3 [Google Scholar]
  102. Wang YJ, Schug J, Won KJ, Liu C, Naji A. 102.  et al. 2016. Single-cell transcriptomics of the human endocrine pancreas. Diabetes 65:3028–38 [Google Scholar]
  103. Li J, Klughammer J, Farlik M, Penz T, Spittler A. 103.  et al. 2016. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep 17:178–87 [Google Scholar]
  104. Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F. 104.  et al. 2006. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55:3335–43 [Google Scholar]
  105. Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ. 105.  et al. 2007. Disruption of leptin receptor expression in the pancreas directly affects β cell growth and function in mice. J. Clin. Investig. 117:2860–68 [Google Scholar]
  106. Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D. 106.  et al. 2017. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–56 [Google Scholar]
  107. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. 107.  2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33:495–502 [Google Scholar]
  108. Achim K, Pettit JB, Saraiva LR, Gavriouchkina D, Larsson T. 108.  et al. 2015. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33:503–9 [Google Scholar]
  109. Medaglia C, Giladi A, Stoler-Barak L, De Giovanni M, Salame TM. 109.  et al. 2017. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358:63701622–26 [Google Scholar]
  110. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL. 110.  et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:61771360–63 [Google Scholar]
  111. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. 111.  2015. RNA imaging: spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:6233aaa6090 [Google Scholar]
  112. Eng CL, Shah S, Thomassie J, Cai L. 112.  2017. Profiling the transcriptome with RNA SPOTs. Nat. Methods 14:121153–55 [Google Scholar]
  113. Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L. 113.  et al. 2018. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36:189–94 [Google Scholar]
  114. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT. 114.  et al. 2013. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–40 [Google Scholar]
  115. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D. 115.  et al. 2014. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363–69 [Google Scholar]
  116. Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV. 116.  et al. 2015. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163:1400–12 [Google Scholar]
  117. Wang C, Yosef N, Gaublomme J, Wu C, Lee Y. 117.  et al. 2015. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163:1413–27 [Google Scholar]
  118. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A. 118.  et al. 2015. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33:155–60 [Google Scholar]
  119. Stegle O, Teichmann SA, Marioni JC. 119.  2015. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16:133–45 [Google Scholar]
  120. Yuan GC, Cai L, Elowitz M, Enver T, Fan G. 120.  et al. 2017. Challenges and emerging directions in single-cell analysis. Genome Biol 18:84 [Google Scholar]
  121. Proserpio V, Piccolo A, Haim-Vilmovsky L, Kar G, Lönnberg T. 121.  et al. 2016. Single-cell analysis of CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biol 17:103 Erratum. 2016 Genome Biol 17:133 [Google Scholar]
  122. Martinez-Jimenez CP, Eling N, Chen HC, Vallejos CA, Kolodziejczyk AA. 122.  et al. 2017. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355:1433–36 [Google Scholar]
  123. Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I. 123.  et al. 2017. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci. Immunol. 2:eaal2192 [Google Scholar]
  124. Stubbington MJT, Lönnberg T, Proserpio V, Clare S, Speak AO. 124.  et al. 2016. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13:329–32 [Google Scholar]
  125. Han A, Glanville J, Hansmann L, Davis MM. 125.  2014. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32:684–92 [Google Scholar]
  126. Afik S, Yates KB, Bi K, Darko S, Godec J. 126.  et al. 2017. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res 45:e148 [Google Scholar]
  127. McDaniel JR, DeKosky BJ, Tanno H, Ellington AD, Georgiou G. 127.  2016. Ultra-high-throughput sequencing of the immune receptor repertoire from millions of lymphocytes. Nat. Protoc. 11:429–42 [Google Scholar]
  128. Redmond D, Poran A, Elemento O. 128.  2016. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med 8:180 [Google Scholar]
  129. Ner-Gaon H, Melchior A, Golan N, Ben-Haim Y, Shay T. 129.  2017. JingleBells: a repository of immune-related single-cell RNA–sequencing datasets. J. Immunol. 198:3375–79 [Google Scholar]
  130. Yosef N, Regev A. 130.  2016. Writ large: genomic dissection of the effect of cellular environment on immune response. Science 354:64–68 [Google Scholar]
  131. Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A. 131.  et al. 2015. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162:675–86 [Google Scholar]
  132. Dixit A, Parnas O, Li B, Chen J, Fulco CP. 132.  et al. 2016. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:1853–66.e17 [Google Scholar]
  133. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H. 133.  et al. 2016. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167:1883–96.e15 [Google Scholar]
  134. Adamson B, Norman TM, Jost M, Cho MY, Nunez JK. 134.  et al. 2016. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167:1867–82.e21 [Google Scholar]
  135. Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P. 135.  et al. 2017. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14:297–301 [Google Scholar]
  136. Lane K, Van Valen D, DeFelice MM, Macklin DN, Kudo T. 136.  et al. 2017. Measuring signaling and RNA-Seq in the same cell links gene expression to dynamic patterns of NF-κB activation. Cell Syst 4:458–69.e5 [Google Scholar]
  137. Junkin M, Kaestli AJ, Cheng Z, Jordi C, Albayrak C. 137.  et al. 2016. High-content quantification of single-cell immune dynamics. Cell Rep 15:411–22 [Google Scholar]
  138. Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB. 138.  et al. 2015. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. Cell 162:1309–21 [Google Scholar]
  139. Saliba AE, Li L, Westermann AJ, Appenzeller S, Stapels DA. 139.  et al. 2016. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. . Nat. Microbiol. 2:16206 [Google Scholar]
  140. Wills QF, Mellado-Gomez E, Nolan R, Warner D, Sharma E. 140.  et al. 2017. The nature and nurture of cell heterogeneity: accounting for macrophage gene-environment interactions with single-cell RNA-Seq. BMC Genom 18:53 [Google Scholar]
  141. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R. 141.  et al. 2017. A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169:1276–90.e17 [Google Scholar]
  142. Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS. 142.  et al. 2016. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166:1500–11.e9 [Google Scholar]
  143. Ikebuchi R, Teraguchi S, Vandenbon A, Honda T, Shand FH. 143.  et al. 2016. A rare subset of skin-tropic regulatory T cells expressing Il10/Gzmb inhibits the cutaneous immune response. Sci. Rep. 6:35002 [Google Scholar]
  144. Rahman K, Vengrenyuk Y, Ramsey SA, Vila NR, Girgis NM. 144.  et al. 2017. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J. Clin. Investig. 127:2904–15 [Google Scholar]
  145. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D. 145.  et al. 2016. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–96 [Google Scholar]
  146. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM. 146.  et al. 2014. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–401 [Google Scholar]
  147. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP. 147.  et al. 2016. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539:309–13 [Google Scholar]
  148. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C. 148.  et al. 2017. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355:eaai8478 [Google Scholar]
  149. Li H, Courtois ET, Sengupta D, Tan Y, Chen KH. 149.  et al. 2017. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49:708–18 [Google Scholar]
  150. Chung W, Eum HH, Lee HO, Lee KM, Lee HB. 150.  et al. 2017. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8:15081 [Google Scholar]
  151. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y. 151.  et al. 2017. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169:1342–56.e16 [Google Scholar]
  152. Kim KT, Lee HW, Lee HO, Song HJ, Jeong DE. 152.  et al. 2016. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol 17:80 [Google Scholar]
  153. Winterhoff BJ, Maile M, Mitra AK, Sebe A, Bazzaro M. 153.  et al. 2017. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells. Gynecol. Oncol. 144:598–606 [Google Scholar]
  154. Wang L, Fan J, Francis JM, Georghiou G, Hergert S. 154.  et al. 2017. Integrated single-cell genetic and transcriptional analysis suggests novel drivers of chronic lymphocytic leukemia. Genome Res 27:1300–11 [Google Scholar]
  155. Ebinger S, Ozdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C. 155.  et al. 2016. Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell 30:849–62 [Google Scholar]
  156. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A. 156.  et al. 2017. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14:483–86 [Google Scholar]
  157. Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A. 157.  et al. 2014. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11:417–22 [Google Scholar]
  158. Schapiro D, Jackson HW, Raghuraman S, Zanotelli VRT, Fischer JRR. 158.  et al. 2017. Systematic analysis of cell phenotypes and cellular social networks in tissues using the multiplexed image cytometry analysis toolbox (miCAT). bioRxiv109207 https://doi.org/10.1101/109207 [Crossref] [Google Scholar]
  159. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED. 159.  et al. 2015. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162:184–97 [Google Scholar]
  160. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N. 160.  et al. 2017. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–65.e17 [Google Scholar]
  161. Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D. 161.  et al. 2017. An immune atlas of clear cell renal cell carcinoma. Cell 169:736–49.e18 [Google Scholar]
  162. Litzenburger UM, Buenrostro JD, Wu B, Shen Y, Sheffield NC. 162.  et al. 2017. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol 18:15 [Google Scholar]
  163. Ryan JF, Hovde R, Glanville J, Lyu SC, Ji X. 163.  et al. 2016. Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets. PNAS 113:E1286–95 [Google Scholar]
  164. Gaudilliere B, Fragiadakis GK, Bruggner RV, Nicolau M, Finck R. 164.  et al. 2014. Clinical recovery from surgery correlates with single-cell immune signatures. Sci. Transl. Med. 6:255ra131 [Google Scholar]
  165. Cerosaletti K, Barahmand-Pour-Whitman F, Yang J, DeBerg HA, Dufort MJ. 165.  et al. 2017. Single-cell RNA sequencing reveals expanded clones of islet antigen-reactive CD4+ T cells in peripheral blood of subjects with type 1 diabetes. J. Immunol. 199:323–35 [Google Scholar]
  166. Xin Y, Kim J, Okamoto H, Ni M, Wei Y. 166.  et al. 2016. RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 24:608–15 [Google Scholar]
  167. Segerstolpe A, Palasantza A, Eliasson P, Andersson EM, Andreasson AC. 167.  et al. 2016. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24:593–607 [Google Scholar]
  168. Lawlor N, George J, Bolisetty M, Kursawe R, Sun L. 168.  et al. 2017. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res 27:208–22 [Google Scholar]
  169. Der E, Ranabothu S, Suryawanshi H, Akat KM, Clancy R. 169.  et al. 2017. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2:93009 [Google Scholar]
  170. O'Gorman WE, Kong DS, Balboni IM, Rudra P, Bolen CR. 170.  et al. 2017. Mass cytometry identifies a distinct monocyte cytokine signature shared by clinically heterogeneous pediatric SLE patients. J. Autoimmun. 81:74–89 [Google Scholar]
  171. Mizoguchi F, Slowikowski K, Wei K, Marshall JL, Rao DA. 171.  et al. 2018. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9:789 [Google Scholar]
  172. Stephenson W, Donlin LT, Butler A, Rozo C, Rashidfarrokhi A. 172.  et al. 2017. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low cost microfluidic instrumentation. bioRxiv140848 https://doi.org/10.1101/140848 [Crossref] [Google Scholar]
  173. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J. 173.  et al. 2017. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547:217–21 [Google Scholar]
  174. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P. 174.  et al. 2017. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–26 [Google Scholar]
  175. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J. 175.  et al. 2015. Cancer immunotherapy: A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:803–8 [Google Scholar]
  176. Rock KL, Farfan-Arribas DJ, Shen L. 176.  2010. Proteases in MHC class I presentation and cross-presentation. J. Immunol. 184:9–15 [Google Scholar]
  177. Van den Eynde BJ, Morel S. 177.  2001. Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr. Opin. Immunol. 13:147–53 [Google Scholar]
  178. Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP. 178.  et al. 2001. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194:1–12 [Google Scholar]
  179. de Verteuil D, Muratore-Schroeder TL, Granados DP, Fortier MH, Hardy MP. 179.  et al. 2010. Deletion of immunoproteasome subunits imprints on the transcriptome and has a broad impact on peptides presented by major histocompatibility complex I molecules. Mol. Cell Proteom. 9:2034–47 [Google Scholar]
  180. Kincaid EZ, Che JW, York I, Escobar H, Reyes-Vargas E. 180.  et al. 2011. Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nat. Immunol. 13:129–35 [Google Scholar]
  181. Sesma L, Alvarez I, Marcilla M, Paradela A, Lopez de Castro JA. 181.  2003. Species-specific differences in proteasomal processing and tapasin-mediated loading influence peptide presentation by HLA-B27 in murine cells. J. Biol. Chem. 278:46461–72 [Google Scholar]
  182. Lazaro S, Gamarra D, Del Val M. 182.  2015. Proteolytic enzymes involved in MHC class I antigen processing: a guerrilla army that partners with the proteasome. Mol. Immunol. 68:72–76 [Google Scholar]
  183. Neefjes J, Jongsma ML, Paul P, Bakke O. 183.  2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11:823–36 [Google Scholar]
  184. Lundegaard C, Hoof I, Lund O, Nielsen M. 184.  2010. State of the art and challenges in sequence based T-cell epitope prediction. Immunome Res 6:Suppl. 2S3 [Google Scholar]
  185. Nielsen M, Lundegaard C, Lund O, Kesmir C. 185.  2005. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57:33–41 [Google Scholar]
  186. Saxova P, Buus S, Brunak S, Kesmir C. 186.  2003. Predicting proteasomal cleavage sites: a comparison of available methods. Int. Immunol. 15:781–87 [Google Scholar]
  187. Calis JJ, Reinink P, Keller C, Kloetzel PM, Kesmir C. 187.  2015. Role of peptide processing predictions in T cell epitope identification: contribution of different prediction programs. Immunogenetics 67:85–93 [Google Scholar]
  188. Holzhutter HG, Frommel C, Kloetzel PM. 188.  1999. A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20 S proteasome. J. Mol. Biol. 286:1251–65 [Google Scholar]
  189. Holzhutter HG, Kloetzel PM. 189.  2000. A kinetic model of vertebrate 20S proteasome accounting for the generation of major proteolytic fragments from oligomeric peptide substrates. Biophys. J. 79:1196–205 [Google Scholar]
  190. Ginodi I, Vider-Shalit T, Tsaban L, Louzoun Y. 190.  2008. Precise score for the prediction of peptides cleaved by the proteasome. Bioinformatics 24:477–83 [Google Scholar]
  191. Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W. 191.  et al. 2017. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46:315–26 [Google Scholar]
  192. Hanada K, Yewdell JW, Yang JC. 192.  2004. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427:252–56 [Google Scholar]
  193. Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G. 193.  et al. 2004. An antigenic peptide produced by peptide splicing in the proteasome. Science 304:587–90 [Google Scholar]
  194. Warren EH, Vigneron NJ, Gavin MA, Coulie PG, Stroobant V. 194.  et al. 2006. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313:1444–47 [Google Scholar]
  195. Dalet A, Vigneron N, Stroobant V, Hanada K, Van den Eynde BJ. 195.  2010. Splicing of distant peptide fragments occurs in the proteasome by transpeptidation and produces the spliced antigenic peptide derived from fibroblast growth factor-5. J. Immunol. 184:3016–24 [Google Scholar]
  196. Berkers CR, de Jong A, Schuurman KG, Linnemann C, Meiring HD. 196.  et al. 2015. Definition of proteasomal peptide splicing rules for high-efficiency spliced peptide presentation by MHC class I molecules. J. Immunol. 195:4085–95 [Google Scholar]
  197. Liepe J, Marino F, Sidney J, Jeko A, Bunting DE. 197.  et al. 2016. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354:354–58 [Google Scholar]
  198. Platteel AC, Liepe J, Textoris-Taube K, Keller C, Henklein P. 198.  et al. 2017. Multi-level strategy for identifying proteasome-catalyzed spliced epitopes targeted by CD8+ T cells during bacterial infection. Cell Rep 20:51242–53 [Google Scholar]
  199. Oliveira CC, van Hall T. 199.  2015. Alternative antigen processing for MHC class I: Multiple roads lead to Rome. Front. Immunol. 6:298 [Google Scholar]
  200. Neefjes JJ, Momburg F, Hammerling GJ. 200.  1993. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261:769–71 [Google Scholar]
  201. van Endert PM, Riganelli D, Greco G, Fleischhauer K, Sidney J. 201.  et al. 1995. The peptide-binding motif for the human transporter associated with antigen processing. J. Exp. Med. 182:1883–95 [Google Scholar]
  202. Uebel S, Kraas W, Kienle S, Wiesmuller KH, Jung G, Tampe R. 202.  1997. Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. PNAS 94:8976–81 [Google Scholar]
  203. Peters B, Bulik S, Tampe R, van Endert PM, Holzhutter HG. 203.  2003. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J. Immunol. 171:1741–49 [Google Scholar]
  204. Bhasin M, Raghava GP. 204.  2004. Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci 13:596–607 [Google Scholar]
  205. Lam TH, Mamitsuka H, Ren EC, Tong JC. 205.  2010. TAP Hunter: a SVM-based system for predicting TAP ligands using local description of amino acid sequence. Immunome Res 6:Suppl. 1S6 [Google Scholar]
  206. Zhang GL, Petrovsky N, Kwoh CK, August JT, Brusic V. 206.  2006. PRED(TAP): a system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res 2:3 [Google Scholar]
  207. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG. 207.  2015. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 43:D423–31 [Google Scholar]
  208. Gfeller D, Bassani-Sternberg M, Schmidt J, Luescher IF. 208.  2016. Current tools for predicting cancer-specific T cell immunity. Oncoimmunology 5:e1177691 [Google Scholar]
  209. Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H. 209.  et al. 1992. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261–63 [Google Scholar]
  210. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. 210.  2015. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol. Cell Proteom. 14:658–73 [Google Scholar]
  211. Bassani-Sternberg M, Braunlein E, Klar R, Engleitner T, Sinitcyn P. 211.  et al. 2016. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7:13404 [Google Scholar]
  212. Kessler JH, Melief CJ. 212.  2007. Identification of T-cell epitopes for cancer immunotherapy. Leukemia 21:1859–74 [Google Scholar]
  213. Kim Y, Sidney J, Buus S, Sette A, Nielsen M, Peters B. 213.  2014. Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions. BMC Bioinform 15:241 [Google Scholar]
  214. Trolle T, Metushi IG, Greenbaum JA, Kim Y, Sidney J. 214.  et al. 2015. Automated benchmarking of peptide-MHC class I binding predictions. Bioinformatics 31:2174–81 [Google Scholar]
  215. Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V. 215.  2008. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 9:8 [Google Scholar]
  216. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K. 216.  et al. 2003. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–17 [Google Scholar]
  217. Andreatta M, Nielsen M. 217.  2016. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32:511–17 [Google Scholar]
  218. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A. 218.  et al. 2009. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61:1–13 [Google Scholar]
  219. Nielsen M, Andreatta M. 219.  2016. NetMHCpan-3.0: improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8:33 [Google Scholar]
  220. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. 220.  2017. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199:93360–68 [Google Scholar]
  221. Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S. 221.  et al. 2005. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur. J. Immunol. 35:2295–303 [Google Scholar]
  222. Doytchinova IA, Guan P, Flower DR. 222.  2006. EpiJen: a server for multistep T cell epitope prediction. BMC Bioinform 7:131 [Google Scholar]
  223. Stranzl T, Larsen MV, Lundegaard C, Nielsen M. 223.  2010. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62:357–68 [Google Scholar]
  224. Pearson H, Daouda T, Granados DP, Durette C, Bonneil E. 224.  et al. 2016. MHC class I-associated peptides derive from selective regions of the human genome. J. Clin. Investig. 126:4690–701 [Google Scholar]
  225. Rudolph MG, Stanfield RL, Wilson IA. 225.  2006. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24:419–66 [Google Scholar]
  226. Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD. 226.  et al. 2013. Properties of MHC class I presented peptides that enhance immunogenicity. PLOS Comput. Biol. 9:e1003266 [Google Scholar]
  227. Chowell D, Krishna S, Becker PD, Cocita C, Shu J. 227.  et al. 2015. TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes. PNAS 112:E1754–62 [Google Scholar]
  228. Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD. 228.  et al. 2017. A neoantigens fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551:7681517–20 [Google Scholar]
  229. Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA. 229.  et al. 2017. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551:7681512–16 [Google Scholar]
  230. Birnbaum ME, Dong S, Garcia KC. 230.  2012. Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function. Immunol. Rev. 250:82–101 [Google Scholar]
  231. Newell EW, Davis MM. 231.  2014. Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat. Biotechnol. 32:149–57 [Google Scholar]
  232. Bentzen AK, Hadrup SR. 232.  2017. Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol. Immunother. 66:657–66 [Google Scholar]
  233. Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A. 233.  2017. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol 17:61 [Google Scholar]
  234. Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J. 234.  et al. 2014. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157:1073–87 [Google Scholar]
  235. Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL. 235.  et al. 2018. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172:549–63.e16 [Google Scholar]
  236. Stadinski BD, Shekhar K, Gomez-Tourino I, Jung J, Sasaki K. 236.  et al. 2016. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat. Immunol. 17:946–55 [Google Scholar]
  237. Chakraborty AK. 237.  2017. A perspective on the role of computational models in immunology. Annu. Rev. Immunol. 35:403–39 [Google Scholar]
  238. Chen G, Yang X, Ko A, Sun X, Gao M. 238.  et al. 2017. Sequence and structural analyses reveal distinct and highly diverse human CD8+ TCR repertoires to immunodominant viral antigens. Cell Rep 19:569–83 [Google Scholar]
  239. Glanville J, Huang H, Nau A, Hatton O, Wagar LE. 239.  et al. 2017. Identifying specificity groups in the T cell receptor repertoire. Nature 547:94–98 [Google Scholar]
  240. Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S. 240.  et al. 2017. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547:89–93 [Google Scholar]
  241. Adams JJ, Narayanan S, Liu B, Birnbaum ME, Kruse AC. 241.  et al. 2011. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35:681–93 [Google Scholar]
/content/journals/10.1146/annurev-immunol-042617-053035
Loading
/content/journals/10.1146/annurev-immunol-042617-053035
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error