1932

Abstract

Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16 in humans and Ly6Chi in mice), intermediate (CD14+CD16+ in humans and Ly6C+Treml4+ in mice), and nonclassical (CD14CD16+ in humans and Ly6Clo in mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042617-053119
2019-04-26
2024-09-18
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042617-053119.html?itemId=/content/journals/10.1146/annurev-immunol-042617-053119&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Murray EGD, Webb RA, Swann MBR 1926. A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacteriummonocytogenes (n.sp.). J. Pathol. Bacteriol. 29:440
    [Google Scholar]
  2. 2.
    Ebert RH, Florey HW 1939. The extravascular development of the monocyte observed in vivo. Br. J. Exp. Pathol. 20:4342–56
    [Google Scholar]
  3. 3.
    Lewis MR, Lewis WH 1925. The transformation of white blood cells. JAMA 84:11798
    [Google Scholar]
  4. 4.
    van Furth R 1968. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128:3415–35
    [Google Scholar]
  5. 5.
    van Furth R 1970. The kinetics of promonocytes and monocytes in the bone marrow. J. Exp. Med. 132:4813–28
    [Google Scholar]
  6. 6.
    van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL 1972. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46:6845–52
    [Google Scholar]
  7. 7.
    Barrett S, Garratty E, Garratty G 1979. Cell surface heterogeneity of human blood neutrophils and monocytes. Br. J. Haematol. 43:4575–88
    [Google Scholar]
  8. 8.
    Spiegelberg HL, Melewicz FM 1980. Fc receptors specific for IgE on subpopulations of human lymphocytes and monocytes. Clin. Immunol. Immunopathol. 15:3424–33
    [Google Scholar]
  9. 9.
    Fanger MW, Shen L, Pugh J, Bernier GM 1980. Subpopulations of human peripheral granulocyes and monocytes express receptors for IgA. PNAS 77:63640–44
    [Google Scholar]
  10. 10.
    Steinmann G, Broxmeyer HE, de Harven E, Moore MA 1982. Immuno-electron microscopic tracing of lactoferrin, a regulator of myelopoiesis, into a subpopulation of human peripheral blood monocytes. Br. J. Haematol. 50:175–84
    [Google Scholar]
  11. 11.
    Norris DA, Morris RM, Sanderson RJ, Kohler PF 1979. Isolation of functional subsets of human peripheral blood monocytes. J. Immunol. 123:1166–72
    [Google Scholar]
  12. 12.
    Figdor CG, Bont WS, Touw I, de Roos J, Roosnek EE, de Vries JE 1982. Isolation of functionally different human monocytes by counterflow centrifugation elutriation. Blood 60:146–53
    [Google Scholar]
  13. 13.
    Akiyama Y, Miller PJ, Thurman GB, Neubauer RH, Oliver C et al. 1983. Characterization of a human blood monocyte subset with low peroxidase activity. J. Clin. Investig. 72:31093–105
    [Google Scholar]
  14. 14.
    Yasaka T, Mantich NM, Boxer LA, Baehner RL 1981. Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: differing functional capacities of human monocyte subsets. J. Immunol. 127:41515–18
    [Google Scholar]
  15. 15.
    Kávai M, Bodolay E, Szöllösi J 1982. Characterization of human monocyte subpopulations by flow cytometry. Immunology 47:2255–62
    [Google Scholar]
  16. 16.
    Passlick B, Flieger D, Ziegler-Heitbrock HW 1989. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74:72527–34
    [Google Scholar]
  17. 17.
    Palframan RT, Jung S, Cheng G, Weninger W, Luo Y et al. 2001. Inflammatory chemokine transport and presentation in HEV. J. Exp. Med. 194:91361–74
    [Google Scholar]
  18. 18.
    Geissmann F, Jung S, Littman DR 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:171–82
    [Google Scholar]
  19. 19.
    Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O et al. 2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:5838666–70
    [Google Scholar]
  20. 20.
    Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M et al. 2010. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115:3e10–19
    [Google Scholar]
  21. 21.
    Cros J, Cagnard N, Woollard K, Patey N, Zhang S-Y et al. 2010. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33:3375–86
    [Google Scholar]
  22. 22.
    Briseño CG, Haldar M, Kretzer NM, Wu X, Theisen DJ et al. 2016. Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep 15:112462–74
    [Google Scholar]
  23. 23.
    Menezes S, Melandri D, Anselmi G, Perchet T, Loschko J et al. 2016. The heterogeneity of Ly6Chi monocytes controls their differentiation into iNOS+ macrophages or monocyte-derived dendritic cells. Immunity 45:61205–18
    [Google Scholar]
  24. 24.
    Greer AM, Wu N, Putnam AL, Woodruff PG, Wolters P et al. 2014. Serum IgE clearance is facilitated by human FcεRI internalization. J. Clin. Investig. 124:31187–98
    [Google Scholar]
  25. 25.
    Cheng YX, Foster B, Holland SM, Klion AD, Nutman TB et al. 2006. CD2 identifies a monocyte subpopulation with immunoglobulin E-dependent, high-level expression of FcεRI. Clin. Exp. Allergy. 36:111436–45
    [Google Scholar]
  26. 26.
    Melewicz FM, Zeiger RS, Mellon MH, O'Connor RD, Spiegelberg HL 1981. Increased peripheral blood monocytes with Fc receptors for IgE in patients with severe allergic disorders. J. Immunol. 126:41592–95
    [Google Scholar]
  27. 27.
    Dehlink E, Baker AH, Yen E, Nurko S, Fiebiger E 2010. Relationships between levels of serum IgE, cell-bound IgE, and IgE-receptors on peripheral blood cells in a pediatric population. PLOS ONE 5:8e12204
    [Google Scholar]
  28. 28.
    Di Pucchio T, Lapenta C, Santini SM, Logozzi M, Parlato S, Belardelli F 2003. CD2+/CD14+ monocytes rapidly differentiate into CD83+ dendritic cells. Eur. J. Immunol. 33:2358–67
    [Google Scholar]
  29. 29.
    Takamizawa M, Rivas A, Fagnoni F, Benike C, Kosek J et al. 1997. Dendritic cells that process and present nominal antigens to naive T lymphocytes are derived from CD2+ precursors. J. Immunol. 158:52134–42
    [Google Scholar]
  30. 30.
    Wang B, Rieger A, Kilgus O, Ochiai K, Maurer D et al. 1992. Epidermal Langerhans cells from normal human skin bind monomeric IgE via Fc epsilon RI. J. Exp. Med. 175:51353–65
    [Google Scholar]
  31. 31.
    Allam J-P, Niederhagen B, Bücheler M, Appel T, Betten H et al. 2006. Comparative analysis of nasal and oral mucosa dendritic cells. Allergy 61:2166–72
    [Google Scholar]
  32. 32.
    Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:6335eaah4573
    [Google Scholar]
  33. 33.
    Mancardi DA, Iannascoli B, Hoos S, England P, Daëron M, Bruhns P 2008. FcγRIV is a mouse IgE receptor that resembles macrophage FcεRI in humans and promotes IgE-induced lung inflammation. J. Clin. Investig. 118:113738–50
    [Google Scholar]
  34. 34.
    Takizawa F, Adamczewski M, Kinet JP 1992. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII. J. Exp. Med. 176:2469–75
    [Google Scholar]
  35. 35.
    Thomas GD, Hamers AAJ, Nakao C, Marcovecchio P, Taylor AM et al. 2017. Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry. Arterioscler. Thromb. Vasc. Biol. 37:1548–58
    [Google Scholar]
  36. 36.
    Fogg DK 2006. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:575783–87
    [Google Scholar]
  37. 37.
    Auffray C, Fogg DK, Narni-Mancinelli E, Senechal B, Trouillet C et al. 2009. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J. Exp. Med. 206:3595–606
    [Google Scholar]
  38. 38.
    Hettinger J, Richards DM, Hansson J, Barra MM, Joschko A-C et al. 2013. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol. 14:8821–30
    [Google Scholar]
  39. 39.
    Dai X-M, Ryan GR, Hapel AJ, Dominguez MG, Russell RG et al. 2002. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:1111–20
    [Google Scholar]
  40. 40.
    Kawamura S, Onai N, Miya F, Sato T, Tsunoda T et al. 2017. Identification of a human clonogenic progenitor with strict monocyte differentiation potential: a counterpart of mouse cMoPs. Immunity 46:5835–48.e4
    [Google Scholar]
  41. 41.
    Kurotaki D, Osato N, Nishiyama A, Yamamoto M, Ban T et al. 2013. Essential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiation. Blood 121:101839–49
    [Google Scholar]
  42. 42.
    Kurotaki D, Yamamoto M, Nishiyama A, Uno K, Ban T et al. 2014. IRF8 inhibits C/EBPα activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nat. Commun. 5:4978
    [Google Scholar]
  43. 43.
    Sichien D, Scott CL, Martens L, Vanderkerken M, Van Gassen S et al. 2016. IRF8 transcription factor controls survival and function of terminally differentiated conventional and plasmacytoid dendritic cells, respectively. Immunity 45:3626–40
    [Google Scholar]
  44. 44.
    Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM et al. 2011. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C monocytes. Nat. Immunol. 12:8778–85
    [Google Scholar]
  45. 45.
    Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A et al. 2017. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214:1913–23
    [Google Scholar]
  46. 46.
    Yona S, Kim K-W, Wolf Y, Mildner A, Varol D et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:179–91
    [Google Scholar]
  47. 47.
    Varol C, Yona S, Jung S 2009. Origins and tissue-context-dependent fates of blood monocytes. Immunol. Cell Biol. 87:130–38
    [Google Scholar]
  48. 48.
    Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B et al. 2007. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204:171–80
    [Google Scholar]
  49. 49.
    Satoh T, Nakagawa K, Sugihara F, Kuwahara R, Ashihara M et al. 2017. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541:763596–101
    [Google Scholar]
  50. 50.
    Mildner A, Schönheit J, Giladi A, David E, Lara-Astiaso D et al. 2017. Genomic characterization of murine monocytes reveals C/EBPβ transcription factor dependence of Ly6C cells. Immunity 46:5849–62.e7
    [Google Scholar]
  51. 51.
    Thomas GD, Hanna RN, Vasudevan NT, Hamers AA, Romanoski CE et al. 2016. Deleting an Nr4a1 super-enhancer subdomain ablates Ly6Clow monocytes while preserving macrophage gene function. Immunity 45:5975–87
    [Google Scholar]
  52. 52.
    Serbina NV, Pamer EG 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7:3311–17
    [Google Scholar]
  53. 53.
    Debien E, Mayol K, Biajoux V, Daussy C, De Aguero MG et al. 2013. S1PR5 is pivotal for the homeostasis of patrolling monocytes. Eur. J. Immunol. 43:61667–75
    [Google Scholar]
  54. 54.
    Panek CA, Ramos MV, Mejias MP, Abrey-Recalde MJ, Fernandez-Brando RJ et al. 2015. Differential expression of the fractalkine chemokine receptor (CX3CR1) in human monocytes during differentiation. Cell. Mol. Immunol. 12:6669–80
    [Google Scholar]
  55. 55.
    Tanaka T, Bai Z, Srinoulprasert Y, Yang B, Hayasaka H, Miyasaka M 2005. Chemokines in tumor progression and metastasis. Cancer Sci 96:6317–22
    [Google Scholar]
  56. 56.
    Landsman L, Bar-On L, Zernecke A, Kim K-W, Krauthgamer R et al. 2009. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:4963–72
    [Google Scholar]
  57. 57.
    Sunderkotter C, Nikolic T, Dillon MJ, van Rooijen N, Stehling M et al. 2004. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 172:74410–17
    [Google Scholar]
  58. 58.
    Gamrekelashvili J, Giagnorio R, Jussofie J, Soehnlein O, Duchene J et al. 2016. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling. Nat. Commun. 7:12597
    [Google Scholar]
  59. 59.
    Lessard A-J, LeBel M, Egarnes B, Préfontaine P, Thériault P et al. 2017. Triggering of NOD2 receptor converts inflammatory Ly6C into Ly6C monocytes with patrolling properties. Cell Rep 20:81830–43
    [Google Scholar]
  60. 60.
    White GE, McNeill E, Channon KM, Greaves DR 2014. Fractalkine promotes human monocyte survival via a reduction in oxidative stress. Arterioscler. Thromb. Vasc. Biol. 34:122554–62
    [Google Scholar]
  61. 61.
    Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A et al. 2017. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J. Exp. Med. 214:4905–17
    [Google Scholar]
  62. 62.
    Serbina NV, Hohl TM, Cherny M, Pamer EG 2009. Selective expansion of the monocytic lineage directed by bacterial infection. J. Immunol. 183:31900–10
    [Google Scholar]
  63. 63.
    Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD et al. 2015. Patrolling monocytes control tumor metastasis to the lung. Science 350:6263985–90
    [Google Scholar]
  64. 64.
    Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A et al. 2013. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39:3599–610
    [Google Scholar]
  65. 65.
    Shi C, Pamer EG 2011. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11:11762–74
    [Google Scholar]
  66. 66.
    Jakubzick C, Tacke F, Ginhoux F, Wagers AJ, van Rooijen N et al. 2008. Blood monocyte subsets differentially give rise to CD103 and CD103 pulmonary dendritic cell populations. J. Immunol. 180:53019–27
    [Google Scholar]
  67. 67.
    Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA 1999. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11:6753–61
    [Google Scholar]
  68. 68.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V et al. 2009. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:5940612–16
    [Google Scholar]
  69. 69.
    Tacke F, Ginhoux F, Jakubzick C, van Rooijen N, Merad M, Randolph GJ 2006. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J. Exp. Med. 203:3583–97
    [Google Scholar]
  70. 70.
    Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O et al. 2013. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 6:3498–510
    [Google Scholar]
  71. 71.
    Rivollier A, He J, Kole A, Valatas V, Kelsall BL 2012. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209:1139–55
    [Google Scholar]
  72. 72.
    Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B 2015. Non-classical monocytes display inflammatory features: validation in sepsis and systemic lupus erythematous. Sci. Rep. 5:13886
    [Google Scholar]
  73. 73.
    Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:159–70
    [Google Scholar]
  74. 74.
    Olingy CE, San Emeterio CL, Ogle ME, Krieger JR, Bruce AC et al. 2017. Non-classical monocytes are biased progenitors of wound healing macrophages during soft tissue injury. Sci. Rep. 7:1447
    [Google Scholar]
  75. 75.
    Serbina NV, Jia T, Hohl TM, Pamer EG 2008. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26:421–52
    [Google Scholar]
  76. 76.
    Tolouei Semnani R, Moore V, Bennuru S, McDonald-Fleming R, Ganesan S et al. 2014. Human monocyte subsets at homeostasis and their perturbation in numbers and function in filarial infection. Infect. Immun. 82:114438–46
    [Google Scholar]
  77. 77.
    Jakubzick CV, Randolph GJ, Henson PM 2017. Monocyte differentiation and antigen-presenting functions. Nat. Rev. Immunol. 17:6349–62
    [Google Scholar]
  78. 78.
    Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L et al. 2013. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153:2362–75
    [Google Scholar]
  79. 79.
    Quintar A, McArdle S, Wolf D, Marki A, Ehinger E et al. 2017. Endothelial protective monocyte patrolling in large arteries intensified by Western diet and atherosclerosis. Circ. Res. 120:111789–99
    [Google Scholar]
  80. 80.
    Italiani P, Boraschi D 2014. From monocytes to M1/M2 macrophages: phenotypical versus functional differentiation. Front. Immunol. 5:514
    [Google Scholar]
  81. 81.
    Misharin AV, Cuda CM, Saber R, Turner JD, Gierut AK et al. 2014. Nonclassical Ly6C monocytes drive the development of inflammatory arthritis in mice. Cell Rep 9:2591–604
    [Google Scholar]
  82. 82.
    McInnes IB, Schett G 2011. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365:232205–19
    [Google Scholar]
  83. 83.
    Chaudhari K, Rizvi S, Syed BA 2016. Rheumatoid arthritis: current and future trends. Nat. Rev. Drug Discov. 15:5305–6
    [Google Scholar]
  84. 84.
    Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P et al. 2018. Rheumatoid arthritis. Nat. Rev. Dis. Primers 4:18001
    [Google Scholar]
  85. 85.
    Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D 1996. Organ-specific disease provoked by systemic autoimmunity. Cell 87:5811–22
    [Google Scholar]
  86. 86.
    Korganow AS, Ji H, Mangialaio S, Duchatelle V, Pelanda R et al. 1999. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10:4451–61
    [Google Scholar]
  87. 87.
    Puchner A, Saferding V, Bonelli M, Mikami Y, Hofmann M et al. 2018. Non-classical monocytes as mediators of tissue destruction in arthritis. Ann. Rheum. Dis 77:1490–97
    [Google Scholar]
  88. 88.
    Brunet A, LeBel M, Egarnes B, Paquet-Bouchard C, Lessard A-J et al. 2016. NR4A1-dependent Ly6C monocytes contribute to reducing joint inflammation in arthritic mice through Treg cells. Eur. J. Immunol. 46:122789–800
    [Google Scholar]
  89. 89.
    Kawanaka N, Yamamura M, Aita T, Morita Y, Okamoto A et al. 2002. CD14+,CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum 46:102578–86
    [Google Scholar]
  90. 90.
    Kinne RW, Stuhlmüller B, Burmester G-R 2007. Cells of the synovium in rheumatoid arthritis: macrophages. Arthritis Res. Ther. 9:6224
    [Google Scholar]
  91. 91.
    Stuhlmüller B, Ungethüm U, Scholze S, Martinez L, Backhaus M et al. 2000. Identification of known and novel genes in activated monocytes from patients with rheumatoid arthritis. Arthritis Rheum 43:4775–90
    [Google Scholar]
  92. 92.
    Smiljanovic B, Radzikowska A, Kuca-Warnawin E, Kurowska W, Grün JR et al. 2018. Monocyte alterations in rheumatoid arthritis are dominated by preterm release from bone marrow and prominent triggering in the joint. Ann. Rheum. Dis. 77:2300–8
    [Google Scholar]
  93. 93.
    Lacerte P, Brunet A, Egarnes B, Duchêne B, Brown JP, Gosselin J 2016. Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Res. Ther. 18:10
    [Google Scholar]
  94. 94.
    Dendrou CA, Fugger L, Friese MA 2015. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15:9545–58
    [Google Scholar]
  95. 95.
    Filion LG, Graziani-Bowering G, Matusevicius D, Freedman MS 2003. Monocyte-derived cytokines in multiple sclerosis. Clin. Exp. Immunol. 131:2324–34
    [Google Scholar]
  96. 96.
    Kouwenhoven M, Teleshova N, Ozenci V, Press R, Link H 2001. Monocytes in multiple sclerosis: phenotype and cytokine profile. J. Neuroimmunol. 112:1–2197–205
    [Google Scholar]
  97. 97.
    McCarthy DP, Richards MH, Miller SD 2012. Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler's virus-induced demyelinating disease. Methods Mol. Biol. 900:381–401
    [Google Scholar]
  98. 98.
    Constantinescu CS, Farooqi N, O'Brien K, Gran B 2011. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 164:41079–106
    [Google Scholar]
  99. 99.
    Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV 2011. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14:91142–49
    [Google Scholar]
  100. 100.
    King IL, Dickendesher TL, Segal BM 2009. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113:143190–97
    [Google Scholar]
  101. 101.
    Shaked I, Hanna RN, Shaked H, Chodaczek G, Nowyhed HN et al. 2015. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nat. Immunol. 16:121228–34
    [Google Scholar]
  102. 102.
    Croxford AL, Lanzinger M, Hartmann FJ, Schreiner B, Mair F et al. 2015. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity 43:3502–14
    [Google Scholar]
  103. 103.
    Moreno M, Bannerman P, Ma J, Guo F, Miers L et al. 2014. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J. Neurosci. 34:248175–85
    [Google Scholar]
  104. 104.
    Mildner A, Mack M, Schmidt H, Brück W, Djukic M et al. 2009. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:Part 92487–500
    [Google Scholar]
  105. 105.
    Jiang W, Li D, Han R, Zhang C, Jin W-N et al. 2017. Acetylcholine-producing NK cells attenuate CNS inflammation via modulation of infiltrating monocytes/macrophages. PNAS 114:30E6202–11
    [Google Scholar]
  106. 106.
    Dogan R-NE, Elhofy A, Karpus WJ 2008. Production of CCL2 by central nervous system cells regulates development of murine experimental autoimmune encephalomyelitis through the recruitment of TNF- and iNOS-expressing macrophages and myeloid dendritic cells. J. Immunol. 180:117376–84
    [Google Scholar]
  107. 107.
    Waschbisch A, Schröder S, Schraudner D, Sammet L, Weksler B et al. 2016. Pivotal role for CD16+ monocytes in immune surveillance of the central nervous system. J. Immunol. 196:41558–67
    [Google Scholar]
  108. 108.
    Gjelstrup MC, Stilund M, Petersen T, Møller HJ, Petersen EL, Christensen T 2018. Subsets of activated monocytes and markers of inflammation in incipient and progressed multiple sclerosis. Immunol. Cell Biol. 96:2160–74
    [Google Scholar]
  109. 109.
    Caza TN, Talaber G, Perl A 2012. Metabolic regulation of organelle homeostasis in lupus T cells. Clin. Immunol. 144:3200–13
    [Google Scholar]
  110. 110.
    Li X, Kimberly RP 2014. Targeting the Fc receptor in autoimmune disease. Expert Opin. Ther. Targets. 18:3335–50
    [Google Scholar]
  111. 111.
    Katsiari CG, Liossis S-NC, Sfikakis PP 2010. The pathophysiologic role of monocytes and macrophages in systemic lupus erythematosus: a reappraisal. Semin. Arthritis Rheum. 39:6491–503
    [Google Scholar]
  112. 112.
    Thomas G, Tacke R, Hedrick CC, Hanna RN 2015. Nonclassical patrolling monocyte function in the vasculature. Arterioscler. Thromb. Vasc. Biol. 35:61306–16
    [Google Scholar]
  113. 113.
    Finsterbusch M, Hall P, Li A, Devi S, Westhorpe CLV et al. 2016. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. PNAS 113:35E5172–81
    [Google Scholar]
  114. 114.
    Barrera García A, Gómez-Puerta JA, Arias LF, Burbano C, Restrepo M et al. 2016. Infiltrating CD16 are associated with a reduction in peripheral CD14CD16 monocytes and severe forms of lupus nephritis. Autoimmune Dis 2016:9324315
    [Google Scholar]
  115. 115.
    Zhu H, Hu F, Sun X, Zhang X, Zhu L et al. 2016. CD16+ monocyte subset was enriched and functionally exacerbated in driving T-cell activation and B-cell response in systemic lupus erythematosus. Front. Immunol. 7:512
    [Google Scholar]
  116. 116.
    Woollard KJ, Geissmann F 2010. Monocytes in atherosclerosis: subsets and functions. Nat. Rev. Cardiol. 7:277–86
    [Google Scholar]
  117. 117.
    Weber C, Zernecke A, Libby P 2008. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat. Rev. Immunol. 8:10802–15
    [Google Scholar]
  118. 118.
    Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R et al. 2007. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Investig. 117:1185–94
    [Google Scholar]
  119. 119.
    Čejková S, Králová-Lesná I, Poledne R 2016. Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. Cor Vasa 58:4e419–25
    [Google Scholar]
  120. 120.
    Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW et al. 2007. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Investig. 117:1195–205
    [Google Scholar]
  121. 121.
    Robbins CS, Chudnovskiy A, Rauch PJ, Figueiredo J-L, Iwamoto Y et al. 2012. Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesions. Circulation 125:2364–74
    [Google Scholar]
  122. 122.
    McArdle S, Chodaczek G, Ray N, Ley K 2015. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries. J. Biomed. Opt. 20:226005
    [Google Scholar]
  123. 123.
    Marcovecchio PM, Thomas GD, Mikulski Z, Ehinger E, Mueller KAL et al. 2017. Scavenger receptor CD36 directs nonclassical monocyte patrolling along the endothelium during early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 37:112043–52
    [Google Scholar]
  124. 124.
    Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF et al. 2004. CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb. Haemost. 92:2419–24
    [Google Scholar]
  125. 125.
    Poitou C, Dalmas E, Renovato M, Benhamo V, Hajduch F et al. 2011. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31:102322–30
    [Google Scholar]
  126. 126.
    Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N et al. 2012. CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J. Am. Coll. Cardiol. 60:161512–20
    [Google Scholar]
  127. 127.
    Ozaki Y, Imanishi T, Taruya A, Aoki H, Masuno T et al. 2012. Circulating CD14+CD16+ monocyte subsets as biomarkers of the severity of coronary artery disease in patients with stable angina pectoris. Circ. J. 76:102412–18
    [Google Scholar]
  128. 128.
    Wildgruber M, Lee H, Chudnovskiy A, Yoon T-J, Etzrodt M et al. 2009. Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLOS ONE 4:5e5663
    [Google Scholar]
  129. 129.
    Urbanski K, Ludew D, Filip G, Filip M, Sagan A et al. 2017. CD14 CD16 “nonclassical” monocytes are associated with endothelial dysfunction in patients with coronary artery disease. Thromb. Haemost. 117:05971–80
    [Google Scholar]
  130. 130.
    Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R et al. 2012. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ. Res. 110:3416–27
    [Google Scholar]
  131. 131.
    Hamers AAJ, Vos M, Rassam F, Marinković G, Marincovic G et al. 2012. Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ. Res. 110:3428–38
    [Google Scholar]
  132. 132.
    Hu Y-W, Zhang P, Yang J-Y, Huang J-L, Ma X et al. 2014. Nur77 decreases atherosclerosis progression in apoE/ mice fed a high-fat/high-cholesterol diet. PLOS ONE 9:1e87313
    [Google Scholar]
  133. 133.
    Chao LC, Soto E, Hong C, Ito A, Pei L et al. 2013. Bone marrow NR4A expression is not a dominant factor in the development of atherosclerosis or macrophage polarization in mice. J. Lipid Res. 54:3806–15
    [Google Scholar]
  134. 134.
    Pei L, Castrillo A, Tontonoz P 2006. Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Mol. Endocrinol. 20:4786–94
    [Google Scholar]
  135. 135.
    Eltzschig HK, Eckle T 2011. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17:111391–401
    [Google Scholar]
  136. 136.
    Zuidema MY 2010. Ischemia/reperfusion injury: the role of immune cells. World J. Cardiol. 2:10325
    [Google Scholar]
  137. 137.
    Hartmann FJ, Khademi M, Aram J, Ammann S, Kockum I et al. 2014. Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human TH cells. Nat. Commun. 5:5056
    [Google Scholar]
  138. 138.
    Li L, Huang L, Sung S-SJ, Vergis AL, Rosin DL et al. 2008. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74:121526–37
    [Google Scholar]
  139. 139.
    Huen SC, Cantley LG 2017. Macrophages in renal injury and repair. Annu. Rev. Physiol. 79:449–69
    [Google Scholar]
  140. 140.
    Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K-I et al. 2003. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J. Am. Soc. Nephrol. 14:102503–15
    [Google Scholar]
  141. 141.
    Karasawa K, Asano K, Moriyama S, Ushiki M, Monya M et al. 2015. Vascular-resident CD169-positive monocytes and macrophages control neutrophil accumulation in the kidney with ischemia-reperfusion injury. J. Am. Soc. Nephrol. 26:4896–906
    [Google Scholar]
  142. 142.
    Liu J, Wang H, Li J 2016. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword. Clin. Med. Insights Cardiol. 10:79–84
    [Google Scholar]
  143. 143.
    Zhou X, Liu X-L, Ji W-J, Liu J-X, Guo Z-Z et al. 2016. The kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events. Medicine 95:18e3466
    [Google Scholar]
  144. 144.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T et al. 2007. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:123037–47
    [Google Scholar]
  145. 145.
    Hilgendorf I, Gerhardt LMS, Tan TC, Winter C, Holderried TAW et al. 2014. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 114:101611–22
    [Google Scholar]
  146. 146.
    Nakano Y, Matoba T, Tokutome M, Funamoto D, Katsuki S et al. 2016. Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation. Sci. Rep. 6:29601
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042617-053119
Loading
/content/journals/10.1146/annurev-immunol-042617-053119
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error