The unique class of heavy chain–only antibodies, present in Camelidae, can be shrunk to just the variable region of the heavy chain to yield VHHs, also called nanobodies. About one-tenth the size of their full-size counterparts, nanobodies can serve in applications similar to those for conventional antibodies, but they come with a number of signature advantages that find increasing application in biology. They not only function as crystallization chaperones but also can be expressed inside cells as such, or fused to other proteins to perturb the function of their targets, for example, by enforcing their localization or degradation. Their small size also affords advantages when applied in vivo, for example, in imaging applications. Here we review such applications, with particular emphasis on those areas where conventional antibodies would face a more challenging environment.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Geyer CR, McCafferty J, Dübel S, Bradbury ARM, Sidhu SS. 1.  2012. Recombinant antibodies and in vitro selection technologies. Antibody Methods and Protocols G Proetzel, H Ebersbach 11–32 Methods Mol. Biol. Vol. 901 Totowa, NJ: Humana [Google Scholar]
  2. Jost C, Plückthun A. 2.  2014. Engineered proteins with desired specificity: DARPins, other alternative scaffolds and bispecific IgGs. Curr. Opin. Struct. Biol. 27:102–12 [Google Scholar]
  3. Vincke C, Muyldermans S. 3.  2012. Introduction to heavy chain-only antibodies and derived nanobodies. Single Domain Antibodies D Saerens, S Mulydermans 15–26 Methods Mol. Biol. Vol. 911 Totowa, NJ: Humana [Google Scholar]
  4. De Meyer T, Muyldermans S, Depicker A. 4.  2014. Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32:5263–70 [Google Scholar]
  5. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C. 5.  et al. 1993. Naturally occurring antibodies devoid of light chains. Nature 363:6428446–48This is the original report of heavy chain–only antibodies, which started the entire nanobody field. [Google Scholar]
  6. Muyldermans S. 6.  2013. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82:775–97 [Google Scholar]
  7. Flajnik MF, Deschacht N, Muyldermans S. 7.  2011. A case of convergence: Why did a simple alternative to canonical antibodies arise in sharks and camels?. PLOS Biol 9:8e1001120 [Google Scholar]
  8. Achour I, Cavelier P, Tichit M, Bouchier C, Lafaye P, Rougeon F. 8.  2008. Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J. Immunol. 181:32001–9This article gives a concise description of the alpaca IgH locus and its potential for rearrangement. [Google Scholar]
  9. Umiker BR, McDonald G, Larbi A, Medina CO, Hobeika E. 9.  et al. 2014. Production of IgG autoantibody requires expression of activation-induced deaminase in early-developing B cells in a mouse model of SLE. Eur. J. Immunol. 44:103093–108 [Google Scholar]
  10. Flajnik MF, Kasahara M. 10.  2010. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11:147–59 [Google Scholar]
  11. Cogné M, Preud'homme JL, Guglielmi P. 11.  1989. Immunoglobulin gene alterations in human heavy chain diseases. Res. Immunol. 140:5–6487–502 [Google Scholar]
  12. Morrison SL. 12.  1978. Murine heavy chain disease. Eur. J. Immunol. 3:8194–99 [Google Scholar]
  13. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. 13.  2009. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284:53273–84 [Google Scholar]
  14. Sockolosky JT, Dougan M, Ingram JR, Ho CCM, Kauke MJ. 14.  et al. 2016. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. PNAS 113:E2646–54 [Google Scholar]
  15. Muyldermans S, Atarhouch T. 15.  1994. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng 7:1129–35 [Google Scholar]
  16. Schmidt FI, Hanke L, Morin B, Brewer R, Brusic V. 16.  et al. 2016. Phenotypic lentivirus screens to identify functional single domain antibodies. Nat. Microbiol. 1:81–10A phenotypic screen was conducted by inducible expression of intracellular nanobodies. [Google Scholar]
  17. McCoy LE, Quigley AF, Strokappe NM, Bulmer-Thomas B, Seaman MS. 17.  et al. 2012. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization. J. Exp. Med. 209:61091–103 [Google Scholar]
  18. Traenkle B, Emele F, Anton R, Poetz O, Haeussler RS. 18.  et al. 2015. Monitoring interactions and dynamics of endogenous beta-catenin with intracellular nanobodies in living cells. Mol. Cell Proteom. 14:3707–23 [Google Scholar]
  19. Braun MB, Traenkle B, Koch PA, Emele F, Weiss F. 19.  et al. 2016. Peptides in headlock—a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy. Sci. Rep. 6:19211 [Google Scholar]
  20. Rajan M. 20.  2015. Development of biomarkers and their application to the study of chromatin epistate effect on DNA damage and repair PhD Thesis, Techn. Univ., Darmstadt, Ger.
  21. Gai SA, Wittrup KD. 21.  2007. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol. 17:4467–73 [Google Scholar]
  22. Anderson GP, Liu JL, Hale ML, Bernstein RD, Moore M. 22.  et al. 2008. Development of antiricin single domain antibodies toward detection and therapeutic reagents. Anal. Chem. 80:249604–11 [Google Scholar]
  23. Grubhofer N. 23.  1995. An adjuvant formulation based on N-acetylglucosaminyl-N-acetylmuramyl-l-alanyl-d-isoglutamine with dimethyldioctadecylammonium chloride and zinc-l-proline complex as synergists. Immunol. Lett. 44:119–24 [Google Scholar]
  24. Hassanzadeh-Ghassabeh G, Saerens D, Muyldermans S. 24.  2011. Generation of anti-infectome/anti-proteome nanobodies. Nanoproteomics S Toms, R Weil 239–59 Methods Mol. Biol. Vol. 790 Totowa, NJ: Humana [Google Scholar]
  25. Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A. 25.  et al. 2014. A general protocol for the generation of nanobodies for structural biology. Nat. Protocols 9:3674–93 [Google Scholar]
  26. Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A. 26.  et al. 2015. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347:62261113–17 [Google Scholar]
  27. Ashour J, Schmidt FI, Hanke L, Cragnolini J, Cavallari M. 27.  et al. 2015. Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. J. Virol. 89:52792–2800 [Google Scholar]
  28. Gao X, Hu X, Tong L, Liu D, Chang X. 28.  et al. 2016. Construction of a camelid VHH yeast two-hybrid library and the selection of VHH against haemagglutinin-neuraminidase protein of the Newcastle disease virus. BMC Vet. Res. 12:39 [Google Scholar]
  29. Ingram JR, Knockenhauer KE, Markus BM, Mandelbaum J, Ramek A. 29.  et al. 2015. Allosteric activation of apicomplexan calcium-dependent protein kinases. PNAS 112:36E4975–84A nanobody obtained from a naturally exposed animal was used to stabilize an intermediate in enzyme activation. [Google Scholar]
  30. Koch-Nolte F, Reyelt J, Schössow B, Schwarz N, Scheuplein F. 30.  et al. 2007. Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J 21:133490–98 [Google Scholar]
  31. Jähnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY. 31.  et al. 2010. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. PNAS 107:4720565–70 [Google Scholar]
  32. Haagmans BL, van den Brand JMA, Raj VS, Volz A, Wohlsein P. 32.  et al. 2015. An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels. Science 351:626877–81 [Google Scholar]
  33. Moutel S, Bery N, Bernard V, Keller L, Lemesre E. 33.  et al. 2016. NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. eLife 5:355–63This is a recent example of a fully synthetic nanobody library made to circumvent immunization. [Google Scholar]
  34. Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB. 34.  2007. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J. Immunol. Meth. 324:13–25 [Google Scholar]
  35. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. 35.  1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12:433–55 [Google Scholar]
  36. Qi H, Lu H, Qiu H-J, Petrenko V, Liu A. 36.  2012. phagemid vectors for phage display: properties, characteristics and construction. J. Mol. Biol. 417:3129–43 [Google Scholar]
  37. Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I. 37.  et al. 2014. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11:121253–60 [Google Scholar]
  38. Inoue A, Sawata SY, Taira K, Wadhwa R. 38.  2007. Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis. PNAS 104:218983–88 [Google Scholar]
  39. Tardiff DF, Jui NT, Khurana V, Tambe MA, Thompson ML. 39.  et al. 2013. Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates α-synuclein toxicity in neurons. Science 342:6161979–83 [Google Scholar]
  40. Gargano N, Cattaneo A. 40.  1997. Rescue of a neutralizing anti-viral antibody fragment from an intracellular polyclonal repertoire expressed in mammalian cells. FEBS Lett 414:3537–40 [Google Scholar]
  41. Mazuc E, Guglielmi L, Bec N, Parez V, Hahn CS. 41.  et al. 2014. In-cell intrabody selection from a diverse human library identifies C12orf4 protein as a new player in rodent mast cell degranulation. PLOS ONE 9:8e104998 [Google Scholar]
  42. Xie J, Zhang H, Yea K, Lerner RA. 42.  2013. Autocrine signaling based selection of combinatorial antibodies that transdifferentiate human stem cells. PNAS 110:208099–104 [Google Scholar]
  43. Yea K, Zhang H, Xie J, Jones TM, Yang G. 43.  et al. 2013. Converting stem cells to dendritic cells by agonist antibodies from unbiased morphogenic selections. PNAS 110:3714966–71 [Google Scholar]
  44. Xie J, Yea K, Zhang H, Moldt B, He L. 44.  et al. 2014. Prevention of cell death by antibodies selected from intracellular combinatorial libraries. Chem. Biol. 21:2274–83 [Google Scholar]
  45. Zhang H, Wilson IA, Lerner RA. 45.  2012. Selection of antibodies that regulate phenotype from intracellular combinatorial antibody libraries. PNAS 109:3915728–33 [Google Scholar]
  46. Sosa BA, Demircioglu FE, Chen JZ, Ingram J, Ploegh HL, Schwartz TU. 46.  2014. How lamina-associated polypeptide 1 (LAP1) activates Torsin. eLife 3:e03239 [Google Scholar]
  47. Schmidt FI, Lu A, Chen JW, Ruan J, Tang C. 47.  et al. 2016. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J. Exp. Med. 213:5771–90 [Google Scholar]
  48. Hanke L, Knockenhauer KE, Brewer RC, van Diest E, Schmidt FI. 48.  et al. 2016. The antiviral mechanism of an influenza A virus nucleoprotein-specific single-domain antibody fragment. mBio 7:6e01569–16 [Google Scholar]
  49. Hanke L, Schmidt FI, Knockenhauer KE, Morin B, Whelan SP. 49.  et al. 2017. Vesicular stomatitis virus N protein‐specific single‐domain antibody fragments inhibit replication. EMBO Rep 18:1027–37 [Google Scholar]
  50. Lawson ADG. 50.  2012. Antibody-enabled small-molecule drug discovery. Nat. Rev. Drug Discov. 11:7519–25 [Google Scholar]
  51. Rothbauer U, Zolghadr K, Muyldermans S, Schepers A, Cardoso MC, Leonhardt H. 51.  2008. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell Proteom. 7:2282–89This article describes the most widely used anti-GFP nanobody. [Google Scholar]
  52. Caussinus E, Kanca O, Affolter M. 52.  2011. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol. 19:1117–21With Reference 53, this is an early example of using nanobodies to redirect proteins to a degradative fate. [Google Scholar]
  53. Kuo C-L, Oyler GA, Shoemaker CB. 53.  2011. Accelerated neuronal cell recovery from botulinum neurotoxin intoxication by targeted ubiquitination. PLOS ONE 6:5e20352 [Google Scholar]
  54. Yang X, Jost APT, Weiner OD, Tang C. 54.  2013. A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Mol. Biol. Cell 24:152419–30 [Google Scholar]
  55. Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP. 55.  et al. 2013. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:7442534–38With Reference 57, this is a striking example of the ability of nanobodies to stabilize particular receptor conformations. [Google Scholar]
  56. Mujić-Delić A, de Wit RH, Verkaar F, Smit MJ. 56.  2014. GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Trends Pharmacol. Sci. 35:5247–55 [Google Scholar]
  57. Rasmussen SGF, Choi H-J, Fung JJ, Pardon E, Casarosa P. 57.  et al. 2010. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:7329175–80 [Google Scholar]
  58. Kruse AC, Ring AM, Manglik A, Hu J, Hu K. 58.  et al. 2013. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:7478101–6 [Google Scholar]
  59. Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. 59.  2016. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531:7594395–99 [Google Scholar]
  60. Pathare GR, Nagy I, Sledz P, Anderson DJ, Zhou HJ. 60.  et al. 2014. Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. PNAS 111:82984–89 [Google Scholar]
  61. Strauss M, Schotte L, Karunatilaka KS, Filman DJ, Hogle JM. 61.  2017. Cryo-electron microscopy structures of expanded poliovirus with VHHs sample the conformational repertoire of the expanded state. J. Virol. 91:3e01443–16 [Google Scholar]
  62. Baranova E, Fronzes R, Garcia-Pino A, Van Gerven N, Papapostolou D. 62.  et al. 2012. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487:7405119–22 [Google Scholar]
  63. Massa S, Xavier C, De Vos J, Caveliers V, Lahoutte T. 63.  et al. 2014. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjugate Chem 25:979–88 [Google Scholar]
  64. De Vos J, Devoogdt N, Lahoutte T, Muyldermans S. 64.  2013. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert Opin. Biol. Ther. 13:1149–60 [Google Scholar]
  65. Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL. 65.  2007. Sortagging: a versatile method for protein labeling. Nat. Chem. Biol. 3:11707–8 [Google Scholar]
  66. Witte MD, Cragnolini JJ, Dougan SK, Yoder NC, Popp MW, Ploegh HL. 66.  2012. Preparation of unnatural N-to-N and C-to-C protein fusions. PNAS 109:3011993–98 [Google Scholar]
  67. Massa S, Vikani N, Betti C, Ballet S, Vanderhaegen S. 67.  et al. 2016. Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities. Contrast Media Mol. Imaging 11:5328–39 [Google Scholar]
  68. Ingram JR, Dougan M, Rashidian M, Knoll M, Keliher EJ. 68.  et al. 2017. PD-L1 is an activation-independent marker of brown adipocytes. Nat. Commun. 8:647 https://dx.doi.org/10.1038/s41467-017-00799-8 [Crossref] [Google Scholar]
  69. Rashidian M, Wang L, Edens JG, Jacobsen JT, Hossain I. 69.  et al. 2015. Enzyme-mediated modification of single-domain antibodies for imaging modalities with different characteristics. Angew. Chem. 128:2538–43 [Google Scholar]
  70. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W. 70.  et al. 2012. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res 72:164165–77 [Google Scholar]
  71. Zheng F, Put S, Bouwens L, Lahoutte T, Matthys P. 71.  et al. 2014. Molecular imaging with macrophage CRIg-targeting nanobodies for early and preclinical diagnosis in a mouse model of rheumatoid arthritis. J. Nucl. Med. 55:5824–29 [Google Scholar]
  72. Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR. 72.  et al. 2015. Noninvasive imaging of immune responses. PNAS 112:196146–51These examples show how nanobodies can be configured into PET imaging agents in mice (72) and humans (75). [Google Scholar]
  73. Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA. 73.  et al. 2017. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J. Exp. Med. 214:2243–55 [Google Scholar]
  74. Huang L, Gainkam LOT, Caveliers V, Vanhove C, Keyaerts M. 74.  et al. 2008. SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol. Imaging Biol. 10:3167–75 [Google Scholar]
  75. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H. 75.  et al. 2016. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med. 57:127–33These examples show how nanobodies can be configured into PET imaging agents in mice (72) and humans (75). [Google Scholar]
  76. De Groeve K, Deschacht N, De Koninck C, Caveliers V, Lahoutte T. 76.  et al. 2010. Nanobodies as tools for in vivo imaging of specific immune cell types. J. Nucl. Med. 51:5782–89 [Google Scholar]
  77. Van Elssen CHMJ, Rashidian M, Vrbanac V, Wucherpfennig KW, Habre ZE. 77.  et al. 2017. Noninvasive imaging of human immune responses in a human xenograft model of graft-versus-host disease. J. Nucl. Med. 58:61003–8 [Google Scholar]
  78. Sheridan C. 78.  2017. Ablynx's nanobody fragments go places antibodies cannot. Nat. Biotechnol. 35:1115–17 [Google Scholar]
  79. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA. 79.  et al. 2011. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3:95ra73 [Google Scholar]
  80. Roybal KT, Williams JZ, Morsut L, Rupp LJ, Kolinko I. 80.  et al. 2016. Engineering T cells with customized therapeutic response programs using synthetic Notch receptors. Cell 167:2419–432.e16 [Google Scholar]
  81. Khaleghi S, Rahbarizadeh F, Ahmadvand D, Rasaee MJ, Pognonec P. 81.  2012. A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int. J. Hematol. 95:4434–44 [Google Scholar]
  82. Idoyaga J, Lubkin A, Fiorese C, Lahoud MH, Caminschi I. 82.  et al. 2011. Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. PNAS 108:2384–89 [Google Scholar]
  83. Nchinda G, Kuroiwa J, Oks M, Trumpfheller C, Park CG. 83.  et al. 2008. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J. Clin. Investig. 118:1427–36 [Google Scholar]
  84. Swee LK, Guimaraes CP, Sehrawat S, Spooner E, Barrasa MI, Ploegh HL. 84.  2013. Sortase-mediated modification of αDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. PNAS 110:41428–33 [Google Scholar]
  85. Duarte JN, Cragnolini JJ, Swee LK, Bilate AM, Bader J. 85.  et al. 2016. Generation of immunity against pathogens via single-domain antibody-antigen constructs. J. Immunol. 197:124838–47 [Google Scholar]
  86. Fang T, Van Elssen CHMJ, Duarte JN, Guzman JS, Chahal JS. 86.  et al. 2017. Targeted antigen delivery by an anti-class II MHC VHH elicits focused αMUC1(Tn) immunity. Chem. Sci. 8:85591–97 [Google Scholar]
  87. Li T, Bourgeois JP, Celli S, Glacial F, Le Sourd AM. 87.  et al. 2012. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB J 26:103969–79 [Google Scholar]
  88. Gainkam LOT, Huang L, Caveliers V, Keyaerts M, Hernot S. 88.  et al. 2008. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J. Nucl. Med. 49:5788–95 [Google Scholar]
  89. Farrington GK, Caram-Salas N, Haqqani AS, Brunette E, Eldredge J. 89.  et al. 2014. A novel platform for engineering blood-brain barrier-crossing bispecific biologics. FASEB J 28:114764–78 [Google Scholar]
  90. Yu YJ, Atwal JK, Zhang Y, Tong RK, Wildsmith KR. 90.  et al. 2014. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci. Transl. Med. 6:261261ra154 [Google Scholar]
  91. Janssens R, Dekker S, Hendriks RW, Panayotou G, van Remoortere A. 91.  et al. 2006. Generation of heavy-chain-only antibodies in mice. PNAS 103:4115130–35 [Google Scholar]
  92. Drabek D, Janssens R, de Boer E, Rademaker R, Kloess J. 92.  et al. 2016. Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells. Front. Immunol. 7:619 [Google Scholar]
  93. Yan J, Li G, Hu Y, Ou W, Wan Y. 93.  2014. Construction of a synthetic phage-displayed nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J. Transl. Med. 12:343 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error