1932

Abstract

Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041757
2019-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041757.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041757&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC et al. 2018. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res 46:D1D419–27
    [Google Scholar]
  2. 2.
    Miho E, Yermanos A, Weber CR, Berger CT, Reddy ST, Greiff V 2018. Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front. Immunol. 9:224
    [Google Scholar]
  3. 3.
    Hedrick SM, Cohen DI, Nielsen EA, Davis MM 1984. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308:5955149–53The original reports of cloning and sequencing a TCR cDNA.
    [Google Scholar]
  4. 4.
    Yanagi Y, Yoshikai Y, Leggett K, Clark SP, Aleksander I, Mak TW 1984. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308:5955145–49The original reports of cloning and sequencing a TCR cDNA.
    [Google Scholar]
  5. 5.
    Kelly JM, Sterry SJ, Cose S, Turner SJ, Fecondo J et al. 1993. Identification of conserved T cell receptor CDR3 residues contacting known exposed peptide side chains from a major histocompatibility complex class I-bound determinant. Eur. J. Immunol. 23:123318–26
    [Google Scholar]
  6. 6.
    Currier JR, Deulofeut H, Barron KS, Kehn PJ, Robinson MA 1996. Mitogens, superantigens, and nominal antigens elicit distinctive patterns of TCRB CDR3 diversity. Hum. Immunol. 48:1–239–51
    [Google Scholar]
  7. 7.
    Gorski J, Yassai M, Zhu X, Kissela B, Kissella B [corrected to Kissela B] et al. 1994. Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping: correlation with immune status. J. Immunol. 152:105109–19
    [Google Scholar]
  8. 8.
    McHeyzer-Williams LJ, Panus JF, Mikszta JA, McHeyzer-Williams MG 1999. Evolution of antigen-specific T cell receptors in vivo: preimmune and antigen-driven selection of preferred complementarity-determining region 3 (CDR3) motifs. J. Exp. Med. 189:111823–38
    [Google Scholar]
  9. 9.
    Dash P, McClaren JL, Oguin TH, Rothwell W, Todd B et al. 2011. Paired analysis of TCRα and TCRβ chains at the single-cell level in mice. J. Clin. Investig. 121:1288–95
    [Google Scholar]
  10. 10.
    Wang GC, Dash P, McCullers JA, Doherty PC, Thomas PG 2012. T cell receptor αβ diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci. Transl. Med. 4:128ra42
    [Google Scholar]
  11. 11.
    Sun X, Saito M, Sato Y, Chikata T, Naruto T et al. 2012. Unbiased analysis of TCRα/β chains at the single-cell level in human CD8+ T-cell subsets. PLOS ONE 7:7e40386
    [Google Scholar]
  12. 12.
    Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ et al. 2009. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114:194099–107
    [Google Scholar]
  13. 13.
    Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA 2009. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 19:101817–24
    [Google Scholar]
  14. 14.
    Mamedov IZ, Britanova OV, Bolotin DA, Chkalina AV, Staroverov DB et al. 2011. Quantitative tracking of T cell clones after haematopoietic stem cell transplantation. EMBO Mol. Med. 3:4201–7
    [Google Scholar]
  15. 15.
    Heather JM, Ismail M, Oakes T, Chain B 2018. High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities. Brief. Bioinform. 19:554–65
    [Google Scholar]
  16. 16.
    Friedensohn S, Khan TA, Reddy ST 2017. Advanced methodologies in high-throughput sequencing of immune repertoires. Trends Biotechnol 35:3203–14
    [Google Scholar]
  17. 17.
    Gerritsen B, Pandit A, Andeweg AC, de Boer RJ 2016. RTCR: a pipeline for complete and accurate recovery of T cell repertoires from high throughput sequencing data. Bioinformatics 32:203098–106
    [Google Scholar]
  18. 18.
    Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ et al. 2015. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12:5380–81
    [Google Scholar]
  19. 19.
    Brochet X, Lefranc M-P, Giudicelli V 2008. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 36:W503–8
    [Google Scholar]
  20. 20.
    Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV et al. 2015. VDJtools: unifying post-analysis of T cell receptor repertoires. PLOS Comput. Biol. 11:11e1004503
    [Google Scholar]
  21. 21.
    Christley S, Scarborough W, Salinas E, Rounds WH, Toby IT et al. 2018. VDJServer: a cloud-based analysis portal and data commons for immune repertoire sequences and rearrangements. Front. Immunol. 9:976
    [Google Scholar]
  22. 22.
    Shugay M, Britanova OV, Merzlyak EM, Turchaninova MA, Mamedov IZ et al. 2014. Towards error-free profiling of immune repertoires. Nat. Methods 11:6653–55
    [Google Scholar]
  23. 23.
    Oakes T, Heather JM, Best K, Byng-Maddick R, Husovsky C et al. 2017. Quantitative characterization of the T cell receptor repertoire of naïve and memory subsets using an integrated experimental and computational pipeline which is robust, economical, and versatile. Front. Immunol. 8:1267
    [Google Scholar]
  24. 24.
    Venturi V, Kedzierska K, Price DA, Doherty PC, Douek DC et al. 2006. Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination. PNAS 103:4918691–96Identification of convergent recombination (higher generation probability) as a major contributor to the phenomenon of public TCR sequences.
    [Google Scholar]
  25. 25.
    Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS et al. 2011. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. J. Immunol. 186:74285–94
    [Google Scholar]
  26. 26.
    Madi A, Shifrut E, Reich-Zeliger S, Gal H, Best K et al. 2014. T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity. Genome Res 24:101603–12
    [Google Scholar]
  27. 27.
    Ralph DK, Matsen FA 4th 2016. Consistency of VDJ rearrangement and substitution parameters enables accurate B cell receptor sequence annotation. PLOS Comput. Biol. 12:1e1004409
    [Google Scholar]
  28. 28.
    Murugan A, Mora T, Walczak AM, Callan CG 2012. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. PNAS 109:4016161–66Initial robust statistical model of TCR generation probabilities using high-throughput data.
    [Google Scholar]
  29. 29.
    Marcou Q, Mora T, Walczak AM 2018. High-throughput immune repertoire analysis with IGoR. Nat. Commun. 9:1561
    [Google Scholar]
  30. 30.
    Dupic T, Marcou Q, Mora T, Walczak AM 2018. Genesis of the αβ T-cell receptor Work. pap. bioRxiv 353128. https://doi.org/10.1101/353128
    [Crossref]
  31. 31.
    Elhanati Y, Murugan A, Callan CG Jr, Mora T, Walczak AM 2014. Quantifying selection in immune receptor repertoires. PNAS 111:279875–80
    [Google Scholar]
  32. 32.
    Levraud JP, Pannetier C, Langlade-Demoyen P, Brichard V, Kourilsky P 1996. Recurrent T cell receptor rearrangements in the cytotoxic T lymphocyte response in vivo against the p815 murine tumor. J. Exp. Med. 183:2439–49
    [Google Scholar]
  33. 33.
    Kedzierska K, Turner SJ, Doherty PC 2004. Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope. PNAS 101:144942–47
    [Google Scholar]
  34. 34.
    Davis MM, Bjorkman PJ 1988. T-cell antigen receptor genes and T-cell recognition. Nature 334:6181395–402
    [Google Scholar]
  35. 35.
    Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J et al. 2010. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci. Transl. Med. 2:4747ra64
    [Google Scholar]
  36. 36.
    Shugay M, Bolotin DA, Putintseva EV, Pogorelyy MV, Mamedov IZ, Chudakov DM 2013. Huge overlap of individual TCR beta repertoires. Front. Immunol. 4:466
    [Google Scholar]
  37. 37.
    Song I, Gil A, Mishra R, Ghersi D, Selin LK, Stern LJ 2017. Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. Nat. Struct. Mol. Biol. 24:4395–406
    [Google Scholar]
  38. 38.
    Thomas PG, Handel A, Doherty PC, La Gruta NL 2013. Ecological analysis of antigen-specific CTL repertoires defines the relationship between naive and immune T-cell populations. PNAS 110:51839–44
    [Google Scholar]
  39. 39.
    Zvyagin IV, Pogorelyy MV, Ivanova ME, Komech EA, Shugay M et al. 2014. Distinctive properties of identical twins’ TCR repertoires revealed by high-throughput sequencing. PNAS 111:165980–85Twin study reporting presence of long-lived clonotypes shared in identical twins resulting from common blood supply in utero.
    [Google Scholar]
  40. 40.
    Pogorelyy MV, Elhanati Y, Marcou Q, Sycheva AL, Komech EA et al. 2017. Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires. PLOS Comput. Biol. 13:7e1005572
    [Google Scholar]
  41. 41.
    Madi A, Poran A, Shifrut E, Reich-Zeliger S, Greenstein E et al. 2017. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. eLife 6:e22057
    [Google Scholar]
  42. 42.
    Elhanati Y, Sethna Z, Callan CG Jr, Mora T, Walczak AM 2018. Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination. Immunol. Rev 284:1167–79
    [Google Scholar]
  43. 43.
    Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK et al. 2017. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat. Genet. 49:5659–65
    [Google Scholar]
  44. 44.
    Venturi V, Kedzierska K, Turner SJ, Doherty PC, Davenport MP 2007. Methods for comparing the diversity of samples of the T cell receptor repertoire. J. Immunol. Methods 321:1–2182–95
    [Google Scholar]
  45. 45.
    Hill MO 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54:2427–32
    [Google Scholar]
  46. 46.
    Greiff V, Bhat P, Cook SC, Menzel U, Kang W, Reddy ST 2015. A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status. Genome Med 7:149
    [Google Scholar]
  47. 47.
    Mora T, Walczak AM 2016. Quantifying lymphocyte receptor diversity Work. pap. arXiv 1604.00487v1
  48. 48.
    La Gruta NL, Thomas PG, Webb AI, Dunstone MA, Cukalac T et al. 2008. Epitope-specific TCRβ repertoire diversity imparts no functional advantage on the CD8+ T cell response to cognate viral peptides. PNAS 105:62034–39
    [Google Scholar]
  49. 49.
    Cukalac T, Kan W-T, Dash P, Guan J, Quinn KM et al. 2015. Paired TCRαβ analysis of virus-specific CD8+ T cells exposes diversity in a previously defined “narrow” repertoire. Immunol. Cell Biol. 93:9804–14Paired sequencing of an epitope-specific naive repertoire isolated by magnetic enrichment demonstrates very limited examples of duplicate naive cells with identical clonotypes.
    [Google Scholar]
  50. 50.
    Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV et al. 2016. Dynamics of individual T cell repertoires: from cord blood to centenarians. J. Immunol. 196:125005–13
    [Google Scholar]
  51. 51.
    Izraelson M, Nakonechnaya TO, Moltedo B, Egorov ES, Kasatskaya SA et al. 2018. Comparative analysis of murine T-cell receptor repertoires. Immunology 153:2133–44
    [Google Scholar]
  52. 52.
    Bolen CR, Rubelt F, Vander Heiden JA, Davis MM 2017. The Repertoire Dissimilarity Index as a method to compare lymphocyte receptor repertoires. BMC Bioinform 18:1155
    [Google Scholar]
  53. 53.
    Yokota R, Kaminaga Y, Kobayashi TJ 2017. Quantification of inter-sample differences in T-cell receptor repertoires using sequence-based information. Front. Immunol. 8:1500
    [Google Scholar]
  54. 54.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM et al. 2014. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:7528568–71
    [Google Scholar]
  55. 55.
    Hopkins AC, Yarchoan M, Durham JN, Yusko EC, Rytlewski JA et al. 2018. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 3:13122092
    [Google Scholar]
  56. 56.
    Muraro PA, Robins H, Malhotra S, Howell M, Phippard D et al. 2014. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J. Clin. Investig. 124:31168–72
    [Google Scholar]
  57. 57.
    Thomas N, Best K, Cinelli M, Reich-Zeliger S, Gal H et al. 2014. Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence. Bioinformatics 30:223181–88Machine-learning-based approach for repertoire classification.
    [Google Scholar]
  58. 58.
    Cinelli M, Sun Y, Best K, Heather JM, Reich-Zeliger S et al. 2017. Feature selection using a one dimensional naïve Bayes’ classifier increases the accuracy of support vector machine classification of CDR3 repertoires. Bioinformatics 33:7951–55
    [Google Scholar]
  59. 59.
    Sun Y, Best K, Cinelli M, Heather JM, Reich-Zeliger S et al. 2017. Specificity, privacy, and degeneracy in the CD4 T cell receptor repertoire following immunization. Front. Immunol. 8:430
    [Google Scholar]
  60. 60.
    Demiriz A, Bennett KP, Shawe-Taylor J 2002. Linear programming boosting via column generation. Mach. Learn. 46:1225–54
    [Google Scholar]
  61. 61.
    La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J 2018. Understanding the drivers of MHC restriction of T cell receptors. Nat. Rev. Immunol. 18:7467–78
    [Google Scholar]
  62. 62.
    Pogorelyy MV, Minervina AA, Chudakov DM, Mamedov IZ, Lebedev YB et al. 2018. Method for identification of condition-associated public antigen receptor sequences. eLife 7:e33050
    [Google Scholar]
  63. 63.
    DeWitt WS III, Smith A, Schoch G, Hansen JA, Matsen FA 4th, Bradley P 2018. Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity. eLife 7:e38358
    [Google Scholar]
  64. 64.
    Sharon E, Sibener LV, Battle A, Fraser HB, Garcia KC, Pritchard JK 2016. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat. Genetics 48:9995–1002
    [Google Scholar]
  65. 65.
    Schneider-Hohendorf T, Görlich D, Savola P, Kelkka T, Mustjoki S et al. 2018. Sex bias in MHC I-associated shaping of the adaptive immune system. PNAS 115:2168–73
    [Google Scholar]
  66. 66.
    Klarenbeek PL, Remmerswaal EBM, ten Berge IJM, Doorenspleet ME, van Schaik BDC et al. 2012. Deep sequencing of antiviral T-cell responses to HCMV and EBV in humans reveals a stable repertoire that is maintained for many years. PLOS Pathog 8:9e1002889
    [Google Scholar]
  67. 67.
    Link CS, Eugster A, Heidenreich F, Rücker-Braun E, Schmiedgen M et al. 2016. Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8+ T cell receptor alpha repertoire following allogeneic transplantation. Clin. Exp. Immunol. 184:3389–402
    [Google Scholar]
  68. 68.
    Chen G, Yang X, Ko A, Sun X, Gao M et al. 2017. Sequence and structural analyses reveal distinct and highly diverse human CD8+ TCR repertoires to immunodominant viral antigens. Cell Rep 19:3569–83
    [Google Scholar]
  69. 69.
    Turner SJ, Doherty PC, McCluskey J, Rossjohn J 2006. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6:12883–94
    [Google Scholar]
  70. 70.
    Gras S, Wilmann PG, Chen Z, Halim H, Liu YC et al. 2012. A structural basis for varied αβ TCR usage against an immunodominant EBV antigen restricted to a HLA-B8 molecule. J. Immunol. 188:1311–21
    [Google Scholar]
  71. 71.
    Liu YC, Miles JJ, Neller MA, Gostick E, Price DA et al. 2013. Highly divergent T-cell receptor binding modes underlie specific recognition of a bulged viral peptide bound to a human leukocyte antigen class I molecule. J. Biol. Chem. 288:2215442–54
    [Google Scholar]
  72. 72.
    Yang X, Gao M, Chen G, Pierce BG, Lu J et al. 2015. Structural basis for clonal diversity of the public T cell response to a dominant human cytomegalovirus epitope. J. Biol. Chem. 290:4829106–19
    [Google Scholar]
  73. 73.
    Glanville J, Huang H, Nau A, Hatton O, Wagar LE et al. 2017. Identifying specificity groups in the T cell receptor repertoire. Nature 547:766194–98Cluster-based methods for relating TCR sequences with shared epitope specificity.
    [Google Scholar]
  74. 74.
    Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S et al. 2017. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547:766189–93Cluster-based methods for relating TCR sequences with shared epitope specificity.
    [Google Scholar]
  75. 75.
    DeWitt WS, Yu KKQ, Wilburn DB, Sherwood A, Vignali M et al. 2018. A diverse lipid antigen–specific TCR repertoire is clonally expanded during active tuberculosis. J. Immunol. 201:888–96
    [Google Scholar]
  76. 76.
    De Neuter N, Bittremieux W, Beirnaert C, Cuypers B, Mrzic A et al. 2018. On the feasibility of mining CD8+ T cell receptor patterns underlying immunogenic peptide recognition. Immunogenetics 70:3159–68
    [Google Scholar]
  77. 77.
    Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N 2017. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33:182924–29
    [Google Scholar]
  78. 78.
    Michielin O, Luescher I, Karplus M 2000. Modeling of the TCR-MHC-peptide complex. J. Mol. Biol. 300:51205–35
    [Google Scholar]
  79. 79.
    Pierce BG, Weng Z 2013. A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes. Protein Sci 22:135–46
    [Google Scholar]
  80. 80.
    Riley TP, Singh NK, Pierce BG, Weng Z, Baker BM 2016. Computational modeling of T cell receptor complexes. Methods Mol. Biol. 1414:319–40
    [Google Scholar]
  81. 81.
    Zoete V, Irving M, Ferber M, Cuendet MA, Michielin O 2013. Structure-based, rational design of T cell receptors. Front. Immunol. 4:268
    [Google Scholar]
  82. 82.
    Pierce BG, Hellman LM, Hossain M, Singh NK, Vander Kooi CW et al. 2014. Computational design of the affinity and specificity of a therapeutic T cell receptor. PLOS Comput. Biol. 10:2e1003478
    [Google Scholar]
  83. 83.
    Riley TP, Ayres CM, Hellman LM, Singh NK, Cosiano M et al. 2016. A generalized framework for computational design and mutational scanning of T-cell receptor binding interfaces. Protein Eng. Des. Sel. 29:12595–606
    [Google Scholar]
  84. 84.
    Gowthaman R, Pierce BG 2018. TCRmodel: high resolution modeling of T cell receptors from sequence. Nucleic Acids Res 46:W1W396–401
    [Google Scholar]
  85. 85.
    Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM 2017. Emerging concepts in TCR specificity: rationalizing and (maybe) predicting outcomes. J. Immunol. 199:72203–13
    [Google Scholar]
  86. 86.
    Obar JJ, Khanna KM, Lefrançois L 2008. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28:6859–69
    [Google Scholar]
  87. 87.
    Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC et al. 2007. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:2203–13
    [Google Scholar]
  88. 88.
    La Gruta NL, Rothwell WT, Cukalac T, Swan NG, Valkenburg SA et al. 2010. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J. Clin. Investig. 120:1885–94
    [Google Scholar]
  89. 89.
    Neller MA, Ladell K, McLaren JE, Matthews KK, Gostick E et al. 2015. Naive CD8+ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics. Immunol. Cell Biol. 93:7625–33
    [Google Scholar]
  90. 90.
    Gras S, Chadderton J, Del Campo CM, Farenc C, Wiede F et al. 2016. Reversed T cell receptor docking on a major histocompatibility class I complex limits involvement in the immune response. Immunity 45:4749–60
    [Google Scholar]
  91. 91.
    Nguyen THO, Sant S, Bird NL, Grant EJ, Clemens EB et al. 2018. Perturbed CD8+ T cell immunity across universal influenza epitopes in the elderly. J. Leukoc. Biol. 103:2321–39
    [Google Scholar]
  92. 92.
    Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA 2008. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med. 205:3711–23
    [Google Scholar]
  93. 93.
    Sewell AK 2012. Why must T cells be cross-reactive?. Nat. Rev. Immunol. 12:9669–77
    [Google Scholar]
  94. 94.
    Wooldridge L, Ekeruche-Makinde J, van den Berg HA, Skowera A, Miles JJ et al. 2012. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287:21168–77
    [Google Scholar]
  95. 95.
    Yu W, Jiang N, Ebert PJR, Kidd BA, Müller S et al. 2015. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42:5929–41Evidence for high numbers of self-reactive clones and a lack of readily detectable holes in the TCR repertoire.
    [Google Scholar]
  96. 96.
    Pinilla C, Appel JR, Blanc P, Houghten RA 1992. Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. Biotechniques 13:6901–5
    [Google Scholar]
  97. 97.
    Falta MT, Tinega AN, Mack DG, Bowerman NA, Crawford F et al. 2016. Metal-specific CD4+ T-cell responses induced by beryllium exposure in HLA-DP2 transgenic mice. Mucosal Immunol 9:1218–28
    [Google Scholar]
  98. 98.
    Falta MT, Pinilla C, Mack DG, Tinega AN, Crawford F et al. 2013. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease. J. Exp. Med. 210:71403–18Positional scanning approach with peptides to identify targets of disease-associated TCRs.
    [Google Scholar]
  99. 99.
    Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J et al. 2014. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157:51073–87
    [Google Scholar]
  100. 100.
    Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL et al. 2018. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172:3549–63.e16
    [Google Scholar]
  101. 101.
    Strønen E, Toebes M, Kelderman S, van Buuren MM, Yang W et al. 2016. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 352:62911337–41
    [Google Scholar]
  102. 102.
    Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J et al. 2017. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547:7662217–21
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041757
Loading
/content/journals/10.1146/annurev-immunol-042718-041757
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error