1932

Abstract

The kidneys are life-sustaining organs that are vital to removing waste from our bodies. Because of their anatomic position and high blood flow, the kidneys are vulnerable to damage due to infections and autoinflammatory conditions. Even now, our knowledge of immune responses in the kidney is surprisingly rudimentary. Studying kidney-specific immune events is challenging because of the poor regenerative capacity of the nephrons, accumulation of uremic toxins, and hypoxia- and arterial blood pressure–mediated changes, all of which have unexpected positive or negative impacts on the immune response in the kidney. Kidney-specific defense confers protection against pathogens. On the other hand, unresolved inflammation leads to kidney damage and fibrosis. Interleukin-17 is a proinflammatory cytokine that has been linked to immunity against pathogens and pathogenesis of autoinflammatory diseases. In this review, we discuss current knowledge of IL-17 activities in the kidney in the context of infections, autoinflammatory diseases, and renal fibrosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-052523-015141
2024-06-28
2025-02-06
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-052523-015141.html?itemId=/content/journals/10.1146/annurev-immunol-052523-015141&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    McGeachy MJ, Cua DJ, Gaffen SL. 2019.. The IL-17 family of cytokines in health and disease. . Immunity 50::892906
    [Crossref] [Google Scholar]
  2. 2.
    Amatya N, Garg AV, Gaffen SL. 2017.. IL-17 signaling: the yin and the yang. . Trends Immunol. 38::31022
    [Crossref] [Google Scholar]
  3. 3.
    Novatchkova M, Leibbrandt A, Werzowa J, Neubüser A, Eisenhaber F. 2003.. The STIR-domain superfamily in signal transduction, development and immunity. . Trends Biochem. Sci. 28::22629
    [Crossref] [Google Scholar]
  4. 4.
    Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, et al. 2007.. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. . Nat. Immunol. 8::24756
    [Crossref] [Google Scholar]
  5. 5.
    Chang SH, Park H, Dong C. 2006.. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. . J. Biol. Chem. 281::356037
    [Crossref] [Google Scholar]
  6. 6.
    Sønder SU, Saret S, Tang W, Sturdevant DE, Porcella SF, Siebenlist U. 2011.. IL-17-induced NF-κB activation via CIKS/Act1: physiologic significance and signaling mechanisms. . J. Biol. Chem. 286::1288190
    [Crossref] [Google Scholar]
  7. 7.
    Liu C, Qian W, Qian Y, Giltiay NV, Lu Y, et al. 2009.. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. . Sci. Signal. 2::ra63
    [Google Scholar]
  8. 8.
    Shi P, Zhu S, Lin Y, Liu Y, Liu Y, et al. 2011.. Persistent stimulation with interleukin-17 desensitizes cells through SCFβ-TrCP-mediated degradation of Act1. . Sci. Signal. 4::ra73
    [Crossref] [Google Scholar]
  9. 9.
    Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL. 2019.. IL-17 receptor-based signaling and implications for disease. . Nat. Immunol. 20::1594602
    [Crossref] [Google Scholar]
  10. 10.
    Ramani K, Garg AV, Jawale CV, Conti HR, Whibley N, et al. 2016.. The Kallikrein-Kinin System: a novel mediator of IL-17-driven anti-Candida immunity in the kidney. . PLOS Pathog. 12::e1005952
    [Crossref] [Google Scholar]
  11. 11.
    Ho AW, Garg AV, Monin L, Simpson-Abelson MR, Kinner L, Gaffen SL. 2013.. The anaphase-promoting complex protein 5 (AnapC5) associates with A20 and inhibits IL-17-mediated signal transduction. . PLOS ONE 8::e70168
    [Crossref] [Google Scholar]
  12. 12.
    Zhong B, Liu X, Wang X, Chang SH, Liu X, et al. 2012.. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. . Nat. Immunol. 13::111017
    [Crossref] [Google Scholar]
  13. 13.
    Amatya N, Childs EE, Cruz JA, Aggor FEY, Garg AV, et al. 2018.. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. . Sci. Signal. 11:(551):eaat4617
    [Crossref] [Google Scholar]
  14. 14.
    Bulek K, Liu C, Swaidani S, Wang L, Page RC, et al. 2011.. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. . Nat. Immunol. 12::84452
    [Crossref] [Google Scholar]
  15. 15.
    Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T. 2011.. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). . Nat. Immunol. 12::85360
    [Crossref] [Google Scholar]
  16. 16.
    Herjan T, Yao P, Qian W, Li X, Liu C, et al. 2013.. HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. . J. Immunol. 191::64049
    [Crossref] [Google Scholar]
  17. 17.
    Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, et al. 2015.. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. . Cell 161::105873
    [Crossref] [Google Scholar]
  18. 18.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, et al. 2005.. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. . Nat. Immunol. 6::112332
    [Crossref] [Google Scholar]
  19. 19.
    Park H, Li Z, Yang XO, Chang SH, Nurieva R, et al. 2005.. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. . Nat. Immunol. 6::113341
    [Crossref] [Google Scholar]
  20. 20.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, et al. 2005.. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. . J. Exp. Med. 201::23340
    [Crossref] [Google Scholar]
  21. 21.
    Cua DJ, Tato CM. 2010.. Innate IL-17-producing cells: the sentinels of the immune system. . Nat. Rev. Immunol. 10::47989
    [Crossref] [Google Scholar]
  22. 22.
    Puel A, Picard C, Cypowyj S, Lilic D, Abel L, Casanova JL. 2010.. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines?. Curr. Opin. Immunol. 22::46774
    [Crossref] [Google Scholar]
  23. 23.
    Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, et al. 2011.. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. . Science 332::6568
    [Crossref] [Google Scholar]
  24. 24.
    Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, et al. 2011.. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. . J. Exp. Med. 208::163548
    [Crossref] [Google Scholar]
  25. 25.
    Stamm WE, Norrby SR. 2001.. Urinary tract infections: disease panorama and challenges. . J. Infect. Dis. 183:(Suppl. 1):S14
    [Crossref] [Google Scholar]
  26. 26.
    Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. 2015.. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. . Nat. Rev. Microbiol. 13::26984
    [Crossref] [Google Scholar]
  27. 27.
    Wojciuk B, Majewska K, Grygorcewicz B, Krukowska Ż, Kwiatkowska E, et al. 2022.. The role of uropathogenic Escherichia coli adhesive molecules in inflammatory response-comparative study on immunocompetent hosts and kidney recipients. . PLOS ONE 17::e0268243
    [Crossref] [Google Scholar]
  28. 28.
    Huang J, Fu L, Huang J, Zhao J, Zhang X, et al. 2022.. Group 3 innate lymphoid cells protect the host from the uropathogenic Escherichia coli infection in the bladder. . Adv. Sci. 9::e2103303
    [Crossref] [Google Scholar]
  29. 29.
    Sivick KE, Schaller MA, Smith SN, Mobley HL. 2010.. The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection. . J. Immunol. 184::206575
    [Crossref] [Google Scholar]
  30. 30.
    Chamoun MN, Sullivan MJ, Goh KGK, Acharya D, Ipe DS, et al. 2020.. Restriction of chronic Escherichia coli urinary tract infection depends upon T cell-derived interleukin-17, a deficiency of which predisposes to flagella-driven bacterial persistence. . FASEB J. 34::1457287
    [Crossref] [Google Scholar]
  31. 31.
    Jones-Carson J, Balish E, Uehling DT. 1999.. Susceptibility of immunodeficient gene-knockout mice to urinary tract infection. . J. Urol. 161::33841
    [Crossref] [Google Scholar]
  32. 32.
    Hu F, Ding G, Zhang Z, Gatto LA, Hawgood S, et al. 2016.. Innate immunity of surfactant proteins A and D in urinary tract infection with uropathogenic Escherichia coli. . Innate Immun. 22::920
    [Crossref] [Google Scholar]
  33. 33.
    Chan LC, Chaili S, Filler SG, Barr K, Wang H, et al. 2015.. Nonredundant roles of interleukin-17A (IL-17A) and IL-22 in murine host defense against cutaneous and hematogenous infection due to methicillin-resistant Staphylococcus aureus. . Infect. Immun. 83::442737
    [Crossref] [Google Scholar]
  34. 34.
    Sanchez M, Kolar SL, Müller S, Reyes CN, Wolf AJ, et al. 2017.. O-Acetylation of peptidoglycan limits helper T cell priming and permits Staphylococcus aureus reinfection. . Cell Host Microbe 22::54351.e4
    [Crossref] [Google Scholar]
  35. 35.
    Yeaman MR, Filler SG, Chaili S, Barr K, Wang H, et al. 2014.. Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection. . PNAS 111::E555563
    [Crossref] [Google Scholar]
  36. 36.
    Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, et al. 2009.. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. . PLOS Pathog. 5::e1000703
    [Crossref] [Google Scholar]
  37. 37.
    Narita K, Hu DL, Asano K, Nakane A. 2015.. Vaccination with non-toxic mutant toxic shock syndrome toxin-1 induces IL-17-dependent protection against Staphylococcus aureus infection. . Pathog. Dis. 73:(4):ftv023
    [Crossref] [Google Scholar]
  38. 38.
    Asadi Karam MR, Badmasti F, Ahmadi K, Habibi M. 2022.. Vaccination of mice with hybrid protein containing Exotoxin S and PcrV with adjuvants alum and MPL protects Pseudomonas aeruginosa infections. . Sci. Rep. 12::1325
    [Crossref] [Google Scholar]
  39. 39.
    Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012.. Hidden killers: human fungal infections. . Sci. Transl. Med. 4::165rv13
    [Crossref] [Google Scholar]
  40. 40.
    Lehner T. 1964.. Systemic candidiasis and renal involvement. . Lancet 2::141416
    [Crossref] [Google Scholar]
  41. 41.
    Huang W, Na L, Fidel PL, Schwarzenberger P. 2004.. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. . J. Infect. Dis. 190::62431
    [Crossref] [Google Scholar]
  42. 42.
    Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, et al. 2010.. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. . Immunity 32::68191
    [Crossref] [Google Scholar]
  43. 43.
    Ramani K, Jawale CV, Verma AH, Coleman BM, Kolls JK, Biswas PS. 2018.. Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection. . JCI Insight 3:(9):e98241
    [Crossref] [Google Scholar]
  44. 44.
    Bär E, Whitney PG, Moor K, Reis e Sousa C, LeibundGut-Landmann S. 2014.. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. . Immunity 40::11727
    [Crossref] [Google Scholar]
  45. 45.
    Domínguez-Andrés J, Feo-Lucas L, Minguito de la Escalera M, González L, López-Bravo M, Ardavín C. 2017.. Inflammatory Ly6Chigh monocytes protect against candidiasis through IL-15-driven NK cell/neutrophil activation. . Immunity 46::105972.e4
    [Crossref] [Google Scholar]
  46. 46.
    Hillmeister P, Persson PB. 2012.. The Kallikrein-Kinin system. . Acta Physiol. 206::21519
    [Crossref] [Google Scholar]
  47. 47.
    Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, et al. 2007.. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. . Eur. J. Immunol. 37::2695706
    [Crossref] [Google Scholar]
  48. 48.
    Huang J, Meng S, Hong S, Lin X, Jin W, Dong C. 2016.. IL-17C is required for lethal inflammation during systemic fungal infection. . Cell Mol. Immunol. 13::47483
    [Crossref] [Google Scholar]
  49. 49.
    Whibley N, Jaycox JR, Reid D, Garg AV, Taylor JA, et al. 2015.. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-α-dependent, IL-17-independent mechanism. . J. Immunol. 195::378192
    [Crossref] [Google Scholar]
  50. 50.
    Alpers CE, Kowalewska J. 2007.. Emerging paradigms in the renal pathology of viral diseases. . Clin. J. Am. Soc. Nephrol. 2:(Suppl. 1):S612
    [Crossref] [Google Scholar]
  51. 51.
    Prasad N, Novak JE, Patel MR. 2019.. Kidney diseases associated with Parvovirus B19, Hanta, Ebola, and Dengue virus infection: a brief review. . Adv. Chronic Kidney Dis. 26::20719
    [Crossref] [Google Scholar]
  52. 52.
    Masset C, Le Turnier P, Bressollette-Bodin C, Renaudin K, Raffi F, Dantal J. 2022.. Virus-associated nephropathies: a narrative review. . Int. J. Mol. Sci. 23:(19):12014
    [Crossref] [Google Scholar]
  53. 53.
    Hatsukari I, Singh P, Hitosugi N, Messmer D, Valderrama E, et al. 2007.. DEC-205-mediated internalization of HIV-1 results in the establishment of silent infection in renal tubular cells. . J. Am. Soc. Nephrol. 18::78087
    [Crossref] [Google Scholar]
  54. 54.
    Xie X, Colberg-Poley AM, Das JR, Li J, Zhang A, et al. 2014.. The basic domain of HIV-Tat transactivating protein is essential for its targeting to lipid rafts and regulating fibroblast growth factor-2 signaling in podocytes isolated from children with HIV-1-associated nephropathy. . J. Am. Soc. Nephrol. 25::180013
    [Crossref] [Google Scholar]
  55. 55.
    Rodriguez-Garcia M, Barr FD, Crist SG, Fahey JV, Wira CR. 2014.. Phenotype and susceptibility to HIV infection of CD4+ Th17 cells in the human female reproductive tract. . Mucosal Immunol. 7::137585
    [Crossref] [Google Scholar]
  56. 56.
    Perdomo-Celis F, Feria MG, Taborda NA, Rugeles MT. 2018.. A low frequency of IL-17-producing CD8+ T-cells is associated with persistent immune activation in people living with HIV despite HAART-induced viral suppression. . Front. Immunol. 9::2502
    [Crossref] [Google Scholar]
  57. 57.
    Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, Tarhriz V, Farjami A, et al. 2022.. COVID-19 infection: an overview on cytokine storm and related interventions. . Virol. J. 19::92
    [Crossref] [Google Scholar]
  58. 58.
    Ferlicot S, Jamme M, Gaillard F, Oniszczuk J, Couturier A, et al. 2021.. The spectrum of kidney biopsies in hospitalized patients with COVID-19, acute kidney injury, and/or proteinuria. . Nephrol. Dial. Transplant. 36:(7):125362
    [Crossref] [Google Scholar]
  59. 59.
    Diao B, Wang C, Wang R, Feng Z, Zhang J, et al. 2021.. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. . Nat. Commun. 12::2506
    [Crossref] [Google Scholar]
  60. 60.
    Pan XW, Xu D, Zhang H, Zhou W, Wang LH, Cui XG. 2020.. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. . Intensive Care Med. 46::111416
    [Crossref] [Google Scholar]
  61. 61.
    Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. 2020.. Targeting the progression of chronic kidney disease. . Nat. Rev. Nephrol. 16::26988
    [Crossref] [Google Scholar]
  62. 62.
    Anders HJ, Kitching AR, Leung N, Romagnani P. 2023.. Glomerulonephritis: immunopathogenesis and immunotherapy. . Nat. Rev. Immunol. 23:(7):45371
    [Crossref] [Google Scholar]
  63. 63.
    Chadban SJ, Atkins RC. 2005.. Glomerulonephritis. . Lancet 365::1797806
    [Crossref] [Google Scholar]
  64. 64.
    Van Kooten C, Boonstra JG, Paape ME, Fossiez F, Banchereau J, et al. 1998.. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. . J. Am. Soc. Nephrol. 9::152634
    [Crossref] [Google Scholar]
  65. 65.
    Paust HJ, Turner JE, Steinmetz OM, Peters A, Heymann F, et al. 2009.. The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis. . J. Am. Soc. Nephrol. 20::96979
    [Crossref] [Google Scholar]
  66. 66.
    Ooi JD, Phoon RK, Holdsworth SR, Kitching AR. 2009.. IL-23, not IL-12, directs autoimmunity to the Goodpasture antigen. . J. Am. Soc. Nephrol. 20::98089
    [Crossref] [Google Scholar]
  67. 67.
    Steinmetz OM, Summers SA, Gan PY, Semple T, Holdsworth SR, Kitching AR. 2011.. The Th17-defining transcription factor RORγt promotes glomerulonephritis. . J. Am. Soc. Nephrol 22::47283
    [Crossref] [Google Scholar]
  68. 68.
    Summers SA, Steinmetz OM, Li M, Kausman JY, Semple T, et al. 2009.. Th1 and Th17 cells induce proliferative glomerulonephritis. . J. Am. Soc. Nephrol. 20::251824
    [Crossref] [Google Scholar]
  69. 69.
    Tulone C, Giorgini A, Freeley S, Coughlan A, Robson MG. 2011.. Transferred antigen-specific TH17 but not TH1 cells induce crescentic glomerulonephritis in mice. . Am. J. Pathol. 179::268390
    [Crossref] [Google Scholar]
  70. 70.
    Hünemörder S, Treder J, Ahrens S, Schumacher V, Paust HJ, et al. 2015.. TH1 and TH17 cells promote crescent formation in experimental autoimmune glomerulonephritis. . J. Pathol. 237::6271
    [Crossref] [Google Scholar]
  71. 71.
    Ramani K, Pawaria S, Maers K, Huppler AR, Gaffen SL, Biswas PS. 2014.. An essential role of interleukin-17 receptor signaling in the development of autoimmune glomerulonephritis. . J. Leukoc. Biol. 96::46372
    [Crossref] [Google Scholar]
  72. 72.
    Li DD, Bechara R, Ramani K, Jawale CV, Li Y, et al. 2021.. RTEC-intrinsic IL-17-driven inflammatory circuit amplifies antibody-induced glomerulonephritis and is constrained by Regnase-1. . JCI Insight 6:(13):e147505
    [Crossref] [Google Scholar]
  73. 73.
    Bechara R, Amatya N, Bailey RD, Li Y, Aggor FEY, et al. 2021.. The m6A reader IMP2 directs autoimmune inflammation through an IL-17- and TNFα-dependent C/EBP transcription factor axis. . Sci. Immunol. 6:(61):eabd1287
    [Crossref] [Google Scholar]
  74. 74.
    Paust HJ, Turner JE, Riedel JH, Disteldorf E, Peters A, et al. 2012.. Chemokines play a critical role in the cross-regulation of Th1 and Th17 immune responses in murine crescentic glomerulonephritis. . Kidney Int. 82::7283
    [Crossref] [Google Scholar]
  75. 75.
    Pisitkun P, Ha HL, Wang H, Claudio E, Tivy CC, et al. 2012.. Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. . Immunity 37::110415
    [Crossref] [Google Scholar]
  76. 76.
    Krebs CF, Kapffer S, Paust HJ, Schmidt T, Bennstein SB, et al. 2013.. MicroRNA-155 drives TH17 immune response and tissue injury in experimental crescentic GN. . J. Am. Soc. Nephrol. 24::195565
    [Crossref] [Google Scholar]
  77. 77.
    Gan PY, Steinmetz OM, Tan DS, O'Sullivan KM, Ooi JD, et al. 2010.. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. . J. Am. Soc. Nephrol. 21::92531
    [Crossref] [Google Scholar]
  78. 78.
    Summers SA, Steinmetz OM, Gan PY, Ooi JD, Odobasic D, et al. 2011.. Toll-like receptor 2 induces Th17 myeloperoxidase autoimmunity while Toll-like receptor 9 drives Th1 autoimmunity in murine vasculitis. . Arthritis Rheum. 63::112435
    [Crossref] [Google Scholar]
  79. 79.
    Krohn S, Nies JF, Kapffer S, Schmidt T, Riedel JH, et al. 2018.. IL-17C/IL-17 receptor E signaling in CD4+ T cells promotes TH17 cell-driven glomerular inflammation. . J. Am. Soc. Nephrol. 29::121022
    [Crossref] [Google Scholar]
  80. 80.
    Riedel JH, Paust HJ, Krohn S, Turner JE, Kluger MA, et al. 2016.. IL-17F promotes tissue injury in autoimmune kidney diseases. . J. Am. Soc. Nephrol. 27::366677
    [Crossref] [Google Scholar]
  81. 81.
    Turner JE, Krebs C, Tittel AP, Paust HJ, Meyer-Schwesinger C, et al. 2012.. IL-17A production by renal γδ T cells promotes kidney injury in crescentic GN. . J. Am. Soc. Nephrol. 23::148695
    [Crossref] [Google Scholar]
  82. 82.
    Krebs CF, Turner JE, Paust HJ, Kapffer S, Koyro T, et al. 2016.. Plasticity of Th17 cells in autoimmune kidney diseases. . J. Immunol. 197::44957
    [Crossref] [Google Scholar]
  83. 83.
    Krebs CF, Paust HJ, Krohn S, Koyro T, Brix SR, et al. 2016.. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. . Immunity 45::107892
    [Crossref] [Google Scholar]
  84. 84.
    Krebs CF, Reimers D, Zhao Y, Paust HJ, Bartsch P, et al. 2020.. Pathogen-induced tissue-resident memory TH17 (TRM17) cells amplify autoimmune kidney disease. . Sci. Immunol. 5:(50):eaba4163
    [Crossref] [Google Scholar]
  85. 85.
    Abdulahad WH, Stegeman CA, Limburg PC, Kallenberg CG. 2008.. Skewed distribution of Th17 lymphocytes in patients with Wegener's granulomatosis in remission. . Arthritis Rheum. 58::2196205
    [Crossref] [Google Scholar]
  86. 86.
    Saito H, Tsurikisawa N, Tsuburai T, Oshikata C, Akiyama K. 2009.. Cytokine production profile of CD4+ T cells from patients with active Churg-Strauss syndrome tends toward Th17. . Int. Arch. Allergy Immunol. 149:(Suppl. 1):6165
    [Crossref] [Google Scholar]
  87. 87.
    Nogueira E, Hamour S, Sawant D, Henderson S, Mansfield N, et al. 2010.. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. . Nephrol. Dial. Transplant. 25::220917
    [Crossref] [Google Scholar]
  88. 88.
    Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE, Mohan C. 2020.. Lupus nephritis. . Nat. Rev. Dis. Primers 6::7
    [Crossref] [Google Scholar]
  89. 89.
    Mohan C, Putterman C. 2015.. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. . Nat. Rev. Nephrol. 11::32941
    [Crossref] [Google Scholar]
  90. 90.
    Yu C, Li P, Dang X, Zhang X, Mao Y, Chen X. 2022.. Lupus nephritis: new progress in diagnosis and treatment. . J. Autoimmun. 132::102871
    [Crossref] [Google Scholar]
  91. 91.
    Hsu HC, Yang P, Wang J, Wu Q, Myers R, et al. 2008.. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. . Nat. Immunol. 9::16675
    [Crossref] [Google Scholar]
  92. 92.
    Biswas PS, Gupta S, Chang E, Song L, Stirzaker RA, et al. 2010.. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice. . J. Clin. Investig. 120::328095
    [Crossref] [Google Scholar]
  93. 93.
    Biswas PS, Gupta S, Stirzaker RA, Kumar V, Jessberger R, et al. 2012.. Dual regulation of IRF4 function in T and B cells is required for the coordination of T-B cell interactions and the prevention of autoimmunity. . J. Exp. Med. 209::58196
    [Crossref] [Google Scholar]
  94. 94.
    Steinmetz OM, Turner JE, Paust HJ, Lindner M, Peters A, et al. 2009.. CXCR3 mediates renal Th1 and Th17 immune response in murine lupus nephritis. . J. Immunol. 183::4693704
    [Crossref] [Google Scholar]
  95. 95.
    Zhang Z, Kyttaris VC, Tsokos GC. 2009.. The role of IL-23/IL-17 axis in lupus nephritis. . J. Immunol. 183::316069
    [Crossref] [Google Scholar]
  96. 96.
    Schmidt T, Paust HJ, Krebs CF, Turner JE, Kaffke A, et al. 2015.. Function of the Th17/interleukin-17A immune response in murine lupus nephritis. . Arthritis Rheumatol. 67::47587
    [Crossref] [Google Scholar]
  97. 97.
    Kyttaris VC, Zhang Z, Kuchroo VK, Oukka M, Tsokos GC. 2010.. Cutting edge: IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6–lpr/lpr mice. . J. Immunol. 184::46059
    [Crossref] [Google Scholar]
  98. 98.
    Kattah NH, Newell EW, Jarrell JA, Chu AD, Xie J, et al. 2015.. Tetramers reveal IL-17-secreting CD4+ T cells that are specific for U1-70 in lupus and mixed connective tissue disease. . PNAS 112::304449
    [Crossref] [Google Scholar]
  99. 99.
    Summers SA, Odobasic D, Khouri MB, Steinmetz OM, Yang Y, et al. 2014.. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane. . Clin. Exp. Immunol. 176::34150
    [Crossref] [Google Scholar]
  100. 100.
    Ramani K, Biswas PS. 2016.. Interleukin 17 signaling drives Type I Interferon induced proliferative crescentic glomerulonephritis in lupus-prone mice. . Clin. Immunol. 162::3136
    [Crossref] [Google Scholar]
  101. 101.
    Amarilyo G, Lourenço EV, Shi FD, La Cava A. 2014.. IL-17 promotes murine lupus. . J. Immunol. 193::54043
    [Crossref] [Google Scholar]
  102. 102.
    Corneth OBJ, Schaper F, Luk F, Asmawidjaja PS, Mus AMC, et al. 2019.. Lack of IL-17 Receptor A signaling aggravates lymphoproliferation in C57BL/6 lpr mice. . Sci. Rep. 9::4032
    [Crossref] [Google Scholar]
  103. 103.
    Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, et al. 2011.. Fate mapping of IL-17-producing T cells in inflammatory responses. . Nat. Immunol. 12::25563
    [Crossref] [Google Scholar]
  104. 104.
    Abdel Galil SM, Ezzeldin N, El-Boshy ME. 2015.. The role of serum IL-17 and IL-6 as biomarkers of disease activity and predictors of remission in patients with lupus nephritis. . Cytokine 76::28087
    [Crossref] [Google Scholar]
  105. 105.
    Dedong H, Feiyan Z, Jie S, Xiaowei L, Shaoyang W. 2019.. Analysis of interleukin-17 and interleukin-23 for estimating disease activity and predicting the response to treatment in active lupus nephritis patients. . Immunol. Lett. 210::3339
    [Crossref] [Google Scholar]
  106. 106.
    Wong CK, Ho CY, Li EK, Lam CW. 2000.. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. . Lupus 9::58993
    [Crossref] [Google Scholar]
  107. 107.
    Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW. 2008.. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. . Clin. Immunol. 127::38593
    [Crossref] [Google Scholar]
  108. 108.
    Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, et al. 2008.. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. . J. Immunol. 181::876166
    [Crossref] [Google Scholar]
  109. 109.
    Yang J, Chu Y, Yang X, Gao D, Zhu L, et al. 2009.. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. . Arthritis Rheum. 60::147283
    [Crossref] [Google Scholar]
  110. 110.
    Zhao XF, Pan HF, Yuan H, Zhang WH, Li XP, et al. 2010.. Increased serum interleukin 17 in patients with systemic lupus erythematosus. . Mol. Biol. Rep. 37::8185
    [Crossref] [Google Scholar]
  111. 111.
    Hristova M, Kamenarska Z, Dzhebir G, Nikolova S, Hristova R, et al. 2021.. The role of IL-17 rs2275913, IL-17RC rs708567 and TGFB1 rs1800469 SNPs and IL-17A serum levels in patients with lupus nephritis. . Rheumatol. Int. 41::220513
    [Crossref] [Google Scholar]
  112. 112.
    Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, et al. 2016.. IgA nephropathy. . Nat. Rev. Dis. Primers 2::16001
    [Crossref] [Google Scholar]
  113. 113.
    Liao H, Huang Z, Zhang J, Yang B. 2022.. Association of genetic polymorphisms in IL-23R and IL-17A with the susceptibility to IgA nephropathy in a Chinese Han population. . Genes Immun. 23::3341
    [Crossref] [Google Scholar]
  114. 114.
    Qing J, Li C, Hu X, Song W, Tirichen H, et al. 2022.. Differentiation of T helper 17 cells may mediate the abnormal humoral immunity in IgA nephropathy and inflammatory bowel disease based on shared genetic effects. . Front. Immunol. 13::916934
    [Crossref] [Google Scholar]
  115. 115.
    Stangou M, Papagianni A, Bantis C, Moisiadis D, Kasimatis S, et al. 2013.. Up-regulation of urinary markers predict outcome in IgA nephropathy but their predictive value is influenced by treatment with steroids and azathioprine. . Clin. Nephrol. 80::20310
    [Crossref] [Google Scholar]
  116. 116.
    Lu G, Zhang X, Shen L, Qiao Q, Li Y, et al. 2017.. CCL20 secreted from IgA1-stimulated human mesangial cells recruits inflammatory Th17 cells in IgA nephropathy. . PLOS ONE 12::e0178352
    [Crossref] [Google Scholar]
  117. 117.
    Lin JR, Wen J, Zhang H, Wang L, Gou FF, Yang M, Fan JM. 2018.. Interleukin-17 promotes the production of underglycosylated IgA1 in DAKIKI cells. . Ren. Fail. 40::6067
    [Crossref] [Google Scholar]
  118. 118.
    Matsumoto K, Kanmatsuse K. 2003.. Interleukin-17 stimulates the release of pro-inflammatory cytokines by blood monocytes in patients with IgA nephropathy. Scand. . J. Urol. Nephrol. 37::16471
    [Crossref] [Google Scholar]
  119. 119.
    Ma S, Yang B, Zhao M, Li P, Fan J, et al. 2023.. Effects of modified Huangqi Chifeng decoction on the IL-17 signaling pathway in an IgA nephropathy rat model. . J. Ethnopharmacol. 307::116220
    [Crossref] [Google Scholar]
  120. 120.
    Lin FJ, Jiang GR, Shan JP, Zhu C, Zou J, Wu XR. 2012.. Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand. . J. Clin. Lab. Investig. 72::22129
    [Crossref] [Google Scholar]
  121. 121.
    Wick G, Grundtman C, Mayerl C, Wimpissinger TF, Feichtinger J, et al. 2013.. The immunology of fibrosis. . Annu. Rev. Immunol. 31::10735
    [Crossref] [Google Scholar]
  122. 122.
    Borthwick LA, Wynn TA, Fisher AJ. 2013.. Cytokine mediated tissue fibrosis. . Biochim. Biophys. Acta Mol. Basis Dis. 1832::104960
    [Crossref] [Google Scholar]
  123. 123.
    Meng XM, Nikolic-Paterson DJ, Lan HY. 2014.. Inflammatory processes in renal fibrosis. . Nat. Rev. Nephrol. 10::493503
    [Crossref] [Google Scholar]
  124. 124.
    Hewitson TD. 2012.. Fibrosis in the kidney: Is a problem shared a problem halved?. Fibrogenesis Tissue Rep. 5::S14
    [Crossref] [Google Scholar]
  125. 125.
    Ramani K, Biswas PS. 2019.. Interleukin-17: friend or foe in organ fibrosis. . Cytokine 120::28288
    [Crossref] [Google Scholar]
  126. 126.
    Peng X, Xiao Z, Zhang J, Li Y, Dong Y, Du J. 2015.. IL-17A produced by both γδ T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. . J. Pathol. 235::7989
    [Crossref] [Google Scholar]
  127. 127.
    Weng CH, Li YJ, Wu HH, Liu SH, Hsu HH, et al. 2020.. Interleukin-17A induces renal fibrosis through the ERK and Smad signaling pathways. . Biomed. Pharmacother. 123::109741
    [Crossref] [Google Scholar]
  128. 128.
    Li L, Luo R, Yang Y, Cheng Y, Ge S, Xu G. 2020.. Tamibarotene inhibit the accumulation of fibrocyte and alleviate renal fibrosis by IL-17A. . Ren. Fail. 42::117383
    [Crossref] [Google Scholar]
  129. 129.
    Mehrotra P, Patel JB, Ivancic CM, Collett JA, Basile DP. 2015.. Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. . Kidney Int. 88::77684
    [Crossref] [Google Scholar]
  130. 130.
    Ge S, Hertel B, Susnik N, Rong S, Dittrich AM, et al. 2014.. Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo. . PLOS ONE 9::e85461
    [Crossref] [Google Scholar]
  131. 131.
    Liu Y, Wang K, Liang X, Li Y, Zhang Y, et al. 2018.. Complement C3 produced by macrophages promotes renal fibrosis via IL-17A secretion. . Front. Immunol. 9::2385
    [Crossref] [Google Scholar]
  132. 132.
    Chi HH, Hua KF, Lin YC, Chu CL, Hsieh CY, et al. 2017.. IL-36 signaling facilitates activation of the NLRP3 inflammasome and IL-23/IL-17 axis in renal inflammation and fibrosis. . J. Am. Soc. Nephrol. 28::202237
    [Crossref] [Google Scholar]
  133. 133.
    Ramani K, Tan RJ, Zhou D, Coleman BM, Jawale CV, et al. 2018.. IL-17 receptor signaling negatively regulates the development of tubulointerstitial fibrosis in the kidney. . Mediators Inflamm. 2018::5103672
    [Crossref] [Google Scholar]
  134. 134.
    Sun B, Wang H, Zhang L, Yang X, Zhang M, et al. 2018.. Role of interleukin 17 in TGF-β signaling-mediated renal interstitial fibrosis. . Cytokine 106::8088
    [Crossref] [Google Scholar]
  135. 135.
    Krebs CF, Lange S, Niemann G, Rosendahl A, Lehners A, et al. 2014.. Deficiency of the interleukin 17/23 axis accelerates renal injury in mice with deoxycorticosterone acetate+angiotensin II–induced hypertension. . Hypertension 63::56571
    [Crossref] [Google Scholar]
  136. 136.
    Nasri H, Rafieian-Kopaei M. 2015.. Diabetes mellitus and renal failure: prevention and management. . J. Res. Med. Sci. 20::111220
    [Crossref] [Google Scholar]
  137. 137.
    Duran-Salgado MB, Rubio-Guerra AF. 2014.. Diabetic nephropathy and inflammation. . World J. Diabetes 5::39398
    [Crossref] [Google Scholar]
  138. 138.
    Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. 2015.. Inflammatory cytokines in diabetic nephropathy. . J. Diabetes Res. 2015::948417
    [Crossref] [Google Scholar]
  139. 139.
    Ma J, Li YJ, Chen X, Kwan T, Chadban SJ, Wu H. 2019.. Interleukin 17A promotes diabetic kidney injury. . Sci. Rep. 9::2264
    [Crossref] [Google Scholar]
  140. 140.
    Kim SM, Lee SH, Lee A, Kim DJ, Kim YG, et al. 2015.. Targeting T helper 17 by mycophenolate mofetil attenuates diabetic nephropathy progression. . Transl. Res. 166::37583
    [Crossref] [Google Scholar]
  141. 141.
    Kim KH, Hong GL, Jung DY, Karunasagara S, Jeong WI, Jung JY. 2021.. IL-17 deficiency aggravates the streptozotocin-induced diabetic nephropathy through the reduction of autophagosome formation in mice. . Mol. Med. 27::25
    [Crossref] [Google Scholar]
  142. 142.
    Mohamed R, Jayakumar C, Chen F, Fulton D, Stepp D, et al. 2016.. Low-dose IL-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis. . J. Am. Soc. Nephrol. 27::74565
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-052523-015141
Loading
/content/journals/10.1146/annurev-immunol-052523-015141
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error