1932

Abstract

There is a growing interest in understanding tissue organization, homeostasis, and inflammation. However, despite an abundance of data, the organizing principles of tissue biology remain poorly defined. Here, we present a perspective on tissue organization based on the relationships between cell types and the functions that they perform. We provide a formal definition of tissue homeostasis as a collection of circuits that regulate specific variables within the tissue environment, and we describe how the functional organization of tissues allows for the maintenance of both tissue and systemic homeostasis. This leads to a natural definition of inflammation as a response to deviations from homeostasis that cannot be reversed by homeostatic mechanisms alone. We describe how inflammatory signals act on the same cellular functions involved in normal tissue organization and homeostasis in order to coordinate emergency responses to perturbations and ultimately return the system to a homeostatic state. Finally, we consider the hierarchy of homeostatic and inflammatory circuits and the implications for the development of inflammatory diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-061020-053734
2021-04-26
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-061020-053734.html?itemId=/content/journals/10.1146/annurev-immunol-061020-053734&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Majno G, Joris I. 2004. Cells, Tissues, and Disease: Principles of General Pathology New York: Oxford Univ. Press
    [Google Scholar]
  2. 2. 
    Tauber AI. 2003. Metchnikoff and the phagocytosis theory. Nat. Rev. Mol. Cell Biol. 4:11897–901
    [Google Scholar]
  3. 3. 
    Cannon WB. 1929. Organization for physiological homeostasis. Physiol. Rev. 9:3399–431
    [Google Scholar]
  4. 4. 
    Magie CR, Martindale MQ. 2008. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. Biol. Bull. 214:3218–32
    [Google Scholar]
  5. 5. 
    Tyler S. 2003. Epithelium—the primary building block for metazoan complexity. Integr. Comp. Biol. 43:155–63
    [Google Scholar]
  6. 6. 
    Fidler AL, Darris CE, Chetyrkin SV, Pedchenko VK, Boudko SP et al. 2017. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. eLife 6:1–24
    [Google Scholar]
  7. 7. 
    Okabe Y, Medzhitov R. 2015. Tissue biology perspective on macrophages. Nat. Immunol. 17:19–17
    [Google Scholar]
  8. 8. 
    Kiela PR, Ghishan FK. 2016. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 30:2145–59
    [Google Scholar]
  9. 9. 
    Low FN. 1953. The pulmonary alveolar epithelium of laboratory mammals and man. Anat. Rec. 117:2241–63
    [Google Scholar]
  10. 10. 
    Mercer B, Lemaitre V, Powell C, D'Armiento J. 2006. The epithelial cell in lung health and emphysema pathogenesis. Curr. Respir. Med. Rev. 2:2101–42
    [Google Scholar]
  11. 11. 
    Peterson LW, Artis D. 2014. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14:3141–53
    [Google Scholar]
  12. 12. 
    Allaire JM, Crowley SM, Law HT, Chang S-Y, Ko H-J, Vallance BA. 2018. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 39:9677–96
    [Google Scholar]
  13. 13. 
    Furness JB, Rivera LR, Cho H-J, Bravo DM, Callaghan B. 2013. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10:12729–40
    [Google Scholar]
  14. 14. 
    Whitsett JA, Wert SE, Weaver TE. 2010. Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu. Rev. Med. 61:1105–19
    [Google Scholar]
  15. 15. 
    Suki B, Bates JHT. 2008. Extracellular matrix mechanics in lung parenchymal diseases. Respir. Physiol. Neurobiol. 163:1–333–43
    [Google Scholar]
  16. 16. 
    Zhang J, Li W, Sanders MA, Sumpio BE, Panja A, Basson MD. 2003. Regulation of the intestinal epithelial response to cyclic strain by extracellular matrix proteins. FASEB J. 17:8926–28
    [Google Scholar]
  17. 17. 
    Thoua NM, Derrett-Smith EC, Khan K, Dooley A, Shi-Wen X, Denton CP. 2012. Gut fibrosis with altered colonic contractility in a mouse model of scleroderma. Rheumatology 51:111989–98
    [Google Scholar]
  18. 18. 
    Vaccaro CA, Brody JS. 1981. Structural features of alveolar wall basement membrane in the adult rat lung. J. Cell Biol. 91:2427–37
    [Google Scholar]
  19. 19. 
    Granger DN, Richardson PDI, Kvietys PR, Mortillaro NA. 1980. Intestinal blood flow. Gastroenterology 78:4837–63
    [Google Scholar]
  20. 20. 
    Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG et al. 2017. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 151:1181–92
    [Google Scholar]
  21. 21. 
    Spencer NJ, Hu H. 2020. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 17:6338–51
    [Google Scholar]
  22. 22. 
    Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. 2016. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol. Motil. 28:5620–30
    [Google Scholar]
  23. 23. 
    Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR et al. 2013. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Investig. 123:73025–36
    [Google Scholar]
  24. 24. 
    Keeley DP, Sherwood DR. 2019. Tissue linkage through adjoining basement membranes: the long and the short term of it. Matrix Biol. 75–76:58–71
    [Google Scholar]
  25. 25. 
    Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G. 2017. Pericytes, an overlooked player in vascular pathobiology. Pharmacol. Ther. 171:30–42
    [Google Scholar]
  26. 26. 
    Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E et al. 2010. Pericytes regulate the blood-brain barrier. Nature 468:7323557–61
    [Google Scholar]
  27. 27. 
    Abbott NJ, Rönnbäck L, Hansson E. 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7:141–53
    [Google Scholar]
  28. 28. 
    Herman MA, Kahn BB. 2006. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Investig. 116:71767–75
    [Google Scholar]
  29. 29. 
    Chovatiya R, Medzhitov R. 2014. Stress, inflammation, and defense of homeostasis. Mol. Cell 54:2281–88
    [Google Scholar]
  30. 30. 
    Majmundar AJ, Wong WJ, Simon MC. 2010. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40:2294–309
    [Google Scholar]
  31. 31. 
    Herzig S, Shaw RJ. 2018. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19:2121–35
    [Google Scholar]
  32. 32. 
    Gidalevitz T, Prahlad V, Morimoto RI. 2011. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb. Perspect. Biol. 3:6a009704
    [Google Scholar]
  33. 33. 
    Saxton RA, Sabatini DM. 2017. mTOR signaling in growth, metabolism, and disease. Cell 168:6960–76
    [Google Scholar]
  34. 34. 
    Deval C, Chaveroux C, Maurin AC, Cherasse Y, Parry L et al. 2009. Amino acid limitation regulates the expression of genes involved in several specific biological processes through GCN2-dependent and GCN2-independent pathways. FEBS J 276:3707–18
    [Google Scholar]
  35. 35. 
    Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325:5939473–77
    [Google Scholar]
  36. 36. 
    Pollard JW. 2009. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9:4259–70
    [Google Scholar]
  37. 37. 
    Pavlov VA, Chavan SS, Tracey KJ. 2018. Molecular and functional neuroscience in immunity. Annu. Rev. Immunol. 36:783–812
    [Google Scholar]
  38. 38. 
    Weidemann A, Johnson RS. 2008. Biology of HIF-1α. Cell Death Differ 15:4621–27
    [Google Scholar]
  39. 39. 
    Aramburu J, Drews-Elger K, Estrada-Gelonch A, Minguillón J, Morancho B et al. 2006. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochem. Pharmacol. 72:111597–604
    [Google Scholar]
  40. 40. 
    Lewis CE, Pollard JW. 2006. Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:2605–12
    [Google Scholar]
  41. 41. 
    Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T et al. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15:5545–52
    [Google Scholar]
  42. 42. 
    Levin LR, Buck J. 2014. Physiological roles of acid-base sensors. Annu. Rev. Physiol. 77:347–62
    [Google Scholar]
  43. 43. 
    Ip WKE, Medzhitov R. 2015. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6:1693
    [Google Scholar]
  44. 44. 
    Hotamisligil GS, Davis RJ. 2016. Cell signaling and stress responses. Cold Spring Harb. Perspect. Biol. 8:10a006072
    [Google Scholar]
  45. 45. 
    Ebert BL, Firth JD, Ratcliffe PJ. 1995. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J. Biol. Chem. 270:4929083–89
    [Google Scholar]
  46. 46. 
    Shweiki D, Itin A, Soffer D, Keshet E. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:6398843–45
    [Google Scholar]
  47. 47. 
    Asada N, Takase M, Nakamura J, Oguchi A, Asada M et al. 2011. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J. Clin. Investig. 121:103981–90
    [Google Scholar]
  48. 48. 
    Rankin EB, Biju MP, Liu Q, Unger TL, Rha J et al. 2007. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Investig. 117:41068–77
    [Google Scholar]
  49. 49. 
    Palm W, Thompson CB. 2017. Nutrient acquisition strategies of mammalian cells. Nature 546:7657234–42
    [Google Scholar]
  50. 50. 
    Egeblad M, Nakasone ES, Werb Z. 2010. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18:6884–901
    [Google Scholar]
  51. 51. 
    Noy R, Pollard JW. 2014. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:149–61
    [Google Scholar]
  52. 52. 
    Mantovani A, Allavena P, Sica A, Balkwill F. 2008. Cancer-related inflammation. Nature 454:7203436–44
    [Google Scholar]
  53. 53. 
    Grivennikov SI, Greten FR, Karin M 2010. Immunity, inflammation, and cancer. Cell 140:6883–99
    [Google Scholar]
  54. 54. 
    Colaço HG, Moita LF. 2016. Initiation of innate immune responses by surveillance of homeostasis perturbations. FEBS J 283:132448–57
    [Google Scholar]
  55. 55. 
    Martin SJ. 2016. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J 283:142599–615
    [Google Scholar]
  56. 56. 
    Hotamisligil GS. 2006. Inflammation and metabolic disorders. Nature 444:7121860–67
    [Google Scholar]
  57. 57. 
    Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454:7203428–35
    [Google Scholar]
  58. 58. 
    Lasry A, Ben-Neriah Y. 2015. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol 36:4217–28
    [Google Scholar]
  59. 59. 
    Bronner DN, Abuaita BH, Chen X, Fitzgerald KA, Nuñez G et al. 2015. Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage. Immunity 43:3451–62
    [Google Scholar]
  60. 60. 
    Lamkanfi M, Dixit VM. 2012. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 28:137–61
    [Google Scholar]
  61. 61. 
    Sullivan GP, O'Connor H, Henry CM, Davidovich P, Clancy DM et al. 2020. TRAIL receptors serve as stress-associated molecular patterns to promote ER-stress-induced inflammation. Dev. Cell 52:6714–30.e5
    [Google Scholar]
  62. 62. 
    Hotamisligil GS. 2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:6900–17
    [Google Scholar]
  63. 63. 
    Gregor MF, Hotamisligil GS. 2011. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29:415–45
    [Google Scholar]
  64. 64. 
    Hotamisligil GS. 2017. Inflammation, metaflammation and immunometabolic disorders. Nature 542:7640177–85
    [Google Scholar]
  65. 65. 
    Pribluda A, Elyada E, Wiener Z, Hamza H, Goldstein RE et al. 2013. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell 24:2242–56
    [Google Scholar]
  66. 66. 
    van Deursen JM. 2014. The role of senescent cells in ageing. Nature 509:7501439–46
    [Google Scholar]
  67. 67. 
    Knudsen NH, Stanya KJ, Hyde AL, Chalom MM, Alexander RK et al. 2020. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 368:6490eaat3987
    [Google Scholar]
  68. 68. 
    Pedersen BK, Febbraio M. 2005. Muscle-derived interleukin-6—a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain Behav. Immun. 19:5371–76
    [Google Scholar]
  69. 69. 
    Pedersen BK, Steensberg A, Schjerling P. 2001. Muscle-derived interleukin-6: possible biological effects. J. Physiol. 536:2329–37
    [Google Scholar]
  70. 70. 
    Qing H, Desrouleaux R, Israni-Winger K, Mineur YS, Fogelman N et al. 2020. Origin and function of stress-induced IL-6 in murine models. Cell 182:2372–87.e14
    [Google Scholar]
  71. 71. 
    Sanford JA, Nogiec CD, Lindholm ME, Adkins JN, Amar D et al. 2020. Molecular Transducers of Physical Activity Consortium (MoTrPAC): mapping the dynamic responses to exercise. Cell 181:71464–74
    [Google Scholar]
  72. 72. 
    Martinon F, Chen X, Lee A-H, Glimcher LH. 2010. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11:5411–18
    [Google Scholar]
  73. 73. 
    Bradford EM, Ryu SH, Singh AP, Lee G, Goretsky T et al. 2017. Epithelial TNF receptor signaling promotes mucosal repair in inflammatory bowel disease. J. Immunol. 199:51886–97
    [Google Scholar]
  74. 74. 
    Bernad A, Kopf M, Kulbacki R, Weich N, Koehler G, Gutierrez-Ramos JC. 1994. Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity 1:9725–31
    [Google Scholar]
  75. 75. 
    Notara M, Shortt AJ, Galatowicz G, Calder V, Daniels JT. 2010. IL6 and the human limbal stem cell niche: a mediator of epithelial-stromal interaction. Stem Cell Res 5:3188–200
    [Google Scholar]
  76. 76. 
    Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS. 2009. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J. Cell. Biochem. 108:3577–88
    [Google Scholar]
  77. 77. 
    Jeffery V, Goldson AJ, Dainty JR, Chieppa M, Sobolewski A. 2017. IL-6 signaling regulates small intestinal crypt homeostasis. J. Immunol. 199:1304–11
    [Google Scholar]
  78. 78. 
    Cohn SM, Schloemann S, Tessner T, Seibert K, Stenson WF. 1997. Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1. J. Clin. Investig. 99:61367–79
    [Google Scholar]
  79. 79. 
    Palm NW, Rosenstein RK, Medzhitov R. 2012. Allergic host defences. Nature 484:7395465–72
    [Google Scholar]
  80. 80. 
    Yoo BB, Mazmanian SK. 2017. The enteric network: interactions between the immune and nervous systems of the gut. Immunity 46:6910–26
    [Google Scholar]
  81. 81. 
    Mössner J, Caca K. 2005. Developments in the inhibition of gastric acid secretion. Eur. J. Clin. Investig. 35:8469–75
    [Google Scholar]
  82. 82. 
    Haas H, Panula P. 2003. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci. 4:2121–30
    [Google Scholar]
  83. 83. 
    Yuan J, Kroemer G. 2010. Alternative cell death mechanisms in development and beyond. Genes Dev 24:232592–602
    [Google Scholar]
  84. 84. 
    Scaffidi P, Misteli T, Bianchi ME. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:6894191–95
    [Google Scholar]
  85. 85. 
    Bergsbaken T, Fink SL, Cookson BT. 2009. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7:299–109
    [Google Scholar]
  86. 86. 
    Broz P, Pelegrín P, Shao F. 2020. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20:3143–57
    [Google Scholar]
  87. 87. 
    Weinlich R, Oberst A, Beere HM, Green DR 2017. Necroptosis in development, inflammation and disease. 18:2127–36
    [Google Scholar]
  88. 88. 
    Dixon SJ, Stockwell BR. 2019. The hallmarks of ferroptosis. Annu. Rev. Cancer Biol. 3:35–54
    [Google Scholar]
  89. 89. 
    Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K et al. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:7081228–32
    [Google Scholar]
  90. 90. 
    Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim J-Y et al. 2006. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 290:3C917–24
    [Google Scholar]
  91. 91. 
    Lai JJ, Cruz FM, Rock KL. 2020. Immune sensing of cell death through recognition of histone sequences by C-type lectin-receptor-2d causes inflammation and tissue injury. Immunity 52:1123–35.e6
    [Google Scholar]
  92. 92. 
    Nie A, Sun B, Fu Z, Yu D 2019. Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases. Cell Death Dis 10:12901
    [Google Scholar]
  93. 93. 
    Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J et al. 2008. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat. Immunol. 9:111261–69
    [Google Scholar]
  94. 94. 
    Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140:6805–20
    [Google Scholar]
  95. 95. 
    Papayannopoulos V. 2018. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18:2134–47
    [Google Scholar]
  96. 96. 
    Nathan C. 2006. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6:3173–82
    [Google Scholar]
  97. 97. 
    Sorokin L. 2010. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10:10712–23
    [Google Scholar]
  98. 98. 
    Van Linthout S, Miteva K, Tschope C. 2014. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc. Res. 102:2258–69
    [Google Scholar]
  99. 99. 
    DiSpirito JR, Mathis D. 2015. Immunological contributions to adipose tissue homeostasis. Semin. Immunol. 27:5315–21
    [Google Scholar]
  100. 100. 
    Busse R, Fleming I 2006. Vascular endothelium and blood flow. The Vascular Endothelium II, ed. S Moncada, A Higgs43–78 Berlin: Springer
    [Google Scholar]
  101. 101. 
    Parsons ME, Ganellin CR. 2006. Histamine and its receptors. Br. J. Pharmacol. 147:Suppl. 1S127
    [Google Scholar]
  102. 102. 
    Niu J, Profirovic J, Pan H, Vaiskunaite R, Voyno-Yasenetskaya T. 2003. G protein βγ subunits stimulate p114RhoGEF, a guanine nucleotide exchange factor for RhoA and Rac1. Circ. Res. 93:9848–56
    [Google Scholar]
  103. 103. 
    Pober JS, Sessa WC. 2007. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7:10803–15
    [Google Scholar]
  104. 104. 
    Stevens T, Garcia JGN, Shasby DM, Bhattacharya J, Malik AB. 2000. Mechanisms regulating endothelial cell barrier function. Am. J. Physiol. Cell. Mol. Physiol. 279:3L419–22
    [Google Scholar]
  105. 105. 
    Wolburg H, Neuhaus J, Kniesel U, Krauß B, Schmid EM et al. 1994. Modulation of tight junction structure in blood-brain barrier endothelial cells: effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107:51347–57
    [Google Scholar]
  106. 106. 
    Moore TM, Chetham PM, Kelly JJ, Stevens T. 1998. Signal transduction and regulation of lung endothelial cell permeability: interaction between calcium and cAMP. Am. J. Physiol. Cell. Mol. Physiol. 275:2L203–22
    [Google Scholar]
  107. 107. 
    Haskó G, Linden J, Cronstein B, Pacher P. 2008. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 7:9759–70
    [Google Scholar]
  108. 108. 
    Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. 2004. Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27:107–44
    [Google Scholar]
  109. 109. 
    Martin MU, Wesche H. 2002. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim. Biophys. Acta Mol. Cell Res. 1592:3265–80
    [Google Scholar]
  110. 110. 
    Moncada S, Higgs EA. 2006. Nitric oxide and the vascular endothelium. The Vascular Endothelium IIed. S Moncada, A Higgs213–54 Berlin: Springer
    [Google Scholar]
  111. 111. 
    Hakonarson H, Herrick DJ, Serrano PG, Grunstein MM. 1996. Mechanism of cytokine-induced modulation of β-adrenoceptor responsiveness in airway smooth muscle. J. Clin. Investig. 97:112593–600
    [Google Scholar]
  112. 112. 
    McKenzie GJ, Bancroft A, Grencis RK, McKenzie ANJ. 1998. A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Curr. Biol. 8:6339–42
    [Google Scholar]
  113. 113. 
    Boettcher S, Manz MG. 2017. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol 38:5345–57
    [Google Scholar]
  114. 114. 
    Sanderson CJ, Warren DJ, Strath M. 1985. Identification of a lymphokine that stimulates eosinophil differentiation in vitro: its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. J. Exp. Med. 162:160–74
    [Google Scholar]
  115. 115. 
    Kaushansky K. 2006. Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354:192034–45
    [Google Scholar]
  116. 116. 
    Lerner UH, Kindstedt E, Lundberg P. 2019. The critical interplay between bone resorbing and bone forming cells. J. Clin. Periodontol. 46:S2133–51
    [Google Scholar]
  117. 117. 
    Fujii T, Kitaura H, Kimura K, Hakami ZW, Takano-Yamamoto T. 2012. IL-4 inhibits TNF-α-mediated osteoclast formation by inhibition of RANKL expression in TNF-α-activated stromal cells and direct inhibition of TNF-α-activated osteoclast precursors via a T-cell-independent mechanism in vivo. Bone 51:4771–80
    [Google Scholar]
  118. 118. 
    Shaw AT, Gravallese EM. 2016. Mediators of inflammation and bone remodeling in rheumatic disease. Semin. Cell Dev. Biol. 49:2–10
    [Google Scholar]
  119. 119. 
    Wang A, Luan HH, Medzhitov R. 2019. An evolutionary perspective on immunometabolism. Science 363:6423eaar3932
    [Google Scholar]
  120. 120. 
    McCarville J, Ayres J. 2018. Disease tolerance: concept and mechanisms. Curr. Opin. Immunol. 50:88–93
    [Google Scholar]
  121. 121. 
    Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. 1997. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389:6651610–14
    [Google Scholar]
  122. 122. 
    Wen H, Gris D, Lei Y, Jha S, Zhang L et al. 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12:5408–15
    [Google Scholar]
  123. 123. 
    Odegaard JI, Chawla A. 2013. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339:6116172–77
    [Google Scholar]
  124. 124. 
    Feingold KR, Grunfeld C, Heuer JG, Gupta A, Cramer M et al. 2012. FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology 153:62689–700
    [Google Scholar]
  125. 125. 
    Park C, Kim JR, Shim JK, Kang BS, Park YG et al. 1999. Inhibitory effects of streptozotocin, tumor necrosis factor-α, and interleukin-1β on glucokinase activity in pancreatic islets and gene expression of GLUT2 and glucokinase. Arch. Biochem. Biophys. 362:2217–24
    [Google Scholar]
  126. 126. 
    Hotamisligil GS, Shargill NS, Spiegelman BM. 1993. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259:509187–91
    [Google Scholar]
  127. 127. 
    Robinson MW, Harmon C, O'Farrelly C. 2016. Liver immunology and its role in inflammation and homeostasis. Cell. Mol. Immunol. 13:3267–76
    [Google Scholar]
  128. 128. 
    Saper CB, Romanovsky AA, Scammell TE. 2012. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat. Neurosci. 15:81088–95
    [Google Scholar]
  129. 129. 
    Jin S, Kim JG, Park JW, Koch M, Horvath TL, Lee BJ. 2016. Hypothalamic TLR2 triggers sickness behavior via a microglia-neuronal axis. Sci. Rep. 6:129424
    [Google Scholar]
  130. 130. 
    Ganeshan K, Nikkanen J, Man K, Leong YA, Sogawa Y et al. 2019. Energetic trade-offs and hypometabolic states promote disease tolerance. Cell 177:2399–413.e12
    [Google Scholar]
  131. 131. 
    Wang A, Huen SC, Luan HH, Yu S, Zhang C et al. 2016. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166:61512–25.e12
    [Google Scholar]
  132. 132. 
    Ayres JS, Schneider DS. 2009. The role of anorexia in resistance and tolerance to infections in Drosophila. PLOS Biol 7:7e1000150
    [Google Scholar]
  133. 133. 
    Zhou X, Franklin RA, Adler M, Jacox JB, Bailis W et al. 2018. Circuit design features of a stable two-cell system. Cell 172:4744–57.e17
    [Google Scholar]
  134. 134. 
    Razawy W, van Driel M, Lubberts E. 2018. The role of IL-23 receptor signaling in inflammation-mediated erosive autoimmune arthritis and bone remodeling. Eur. J. Immunol. 48:2220–29
    [Google Scholar]
  135. 135. 
    Lambrecht BN, Hammad H, Fahy JV. 2019. The cytokines of asthma. Immunity 50:4975–91
    [Google Scholar]
  136. 136. 
    Kips JC. 2001. Cytokines in asthma. Eur. Respir. J. 18:34 Suppl24S–33S
    [Google Scholar]
  137. 137. 
    Hollenberg SM, Cunnion RE. 1994. Endothelial and vascular smooth muscle function in sepsis. J. Crit. Care 9:4262–80
    [Google Scholar]
  138. 138. 
    Boulpaep E, Boron W. 2009. Medical Physiology: A Cellular and Molecular Approach Philadelphia: Saunders/Elsevier
    [Google Scholar]
  139. 139. 
    Forray C, Bard JA, Wetzel JM, Chiu G, Shapiro E et al. 1994. The α1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human α1c subtype. Mol. Pharmacol. 45:4703–8
    [Google Scholar]
  140. 140. 
    Holgate ST, Peters-Golden M, Panettieri RA, Henderson WR. 2003. Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J. Allergy Clin. Immunol. 111:1S18–36
    [Google Scholar]
  141. 141. 
    Johnson M. 2006. Molecular mechanisms of β2-adrenergic receptor function, response, and regulation. J. Allergy Clin. Immunol. 117:118–24
    [Google Scholar]
  142. 142. 
    Lu C, Diehl SA, Noubade R, Ledoux J, Nelson MT et al. 2010. Endothelial histamine H1 receptor signaling reduces blood-brain barrier permeability and susceptibility to autoimmune encephalomyelitis. PNAS 107:4418967–72
    [Google Scholar]
  143. 143. 
    Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T et al. 1993. Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J. Clin. Investig. 91:1257–63
    [Google Scholar]
  144. 144. 
    Jimi E, Akiyama S, Tsurukai T, Okahashi N, Kobayashi K et al. 1999. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163:1434–42
    [Google Scholar]
  145. 145. 
    Boyce BF, Xing L. 2008. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 473:2139–46
    [Google Scholar]
  146. 146. 
    Wiercigroch M, Folwarczna J. 2013. [Histamine in regulation of bone remodeling processes]. Postepy Hig. Med. Dosw. 67:887–95 (In Polish)
    [Google Scholar]
  147. 147. 
    Watanabe K, Tanaka Y, Morimoto I, Yahata K, Zeki K et al. 1990. Interleukin-4 as a potent inhibitor of bone resorption. Biochem. Biophys. Res. Commun. 172:31035–41
    [Google Scholar]
  148. 148. 
    Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T et al. 2002. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β. Nature 416:6882744–49
    [Google Scholar]
  149. 149. 
    Guilherme A, Virbasius JV, Puri V, Czech MP. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9:5367–77
    [Google Scholar]
  150. 150. 
    Wunderlich FT, Ströhle P, Könner AC, Gruber S, Tovar S et al. 2010. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab 12:3237–49
    [Google Scholar]
  151. 151. 
    Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N et al. 2018. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554:7691255–59
    [Google Scholar]
  152. 152. 
    Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR. 2020. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature 579:7800575–80
    [Google Scholar]
  153. 153. 
    Knoop KA, McDonald KG, McCrate S, McDole JR, Newberry RD. 2015. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol 8:1198–210
    [Google Scholar]
  154. 154. 
    Van Es JH, Van Gijn ME, Riccio O, Van Den Born M, Vooijs M et al. 2005. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:7044959–63
    [Google Scholar]
  155. 155. 
    Orkin SH, Zon LI. 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:4631–44
    [Google Scholar]
  156. 156. 
    North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR et al. 2007. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:71471007–11
    [Google Scholar]
  157. 157. 
    Laiosa CV, Stadtfeld M, Graf T. 2006. Determinants of lymphoid-myeloid lineage diversification. Annu. Rev. Immunol. 24:1705–38
    [Google Scholar]
  158. 158. 
    Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB et al. 2011. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477:7363229–33
    [Google Scholar]
  159. 159. 
    Sullivan ZA, Khoury-Hanold W, Lim J, Smillie C, Biton Met al 2021. γδ T-cells regulate intestinal response to nutrient sensing. Science In press. https://doi.org/10.1126/science.aba8310
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-061020-053734
Loading
/content/journals/10.1146/annurev-immunol-061020-053734
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error