1932

Abstract

Ten-eleven translocation (TET) proteins are iron-dependent and α-ketoglutarate-dependent dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. TET proteins are recruited by transcription factors and by RNA polymerase II to modify 5mC at enhancers and gene bodies, thereby regulating gene expression during development, cell lineage specification, and cell activation. It is not yet clear, however, how the established biochemical activities of TET enzymes in oxidizing 5mC and mediating DNA demethylation relate to the known association of TET deficiency with inflammation, clonal hematopoiesis, and cancer. There are hints that the ability of TET deficiency to promote cell proliferation in a signal-dependent manner may be harnessed for cancer immunotherapy. In this review, we draw upon recent findings in cells of the immune system to illustrate established as well as emerging ideas of how TET proteins influence cellular function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-080223-044610
2024-06-28
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-080223-044610.html?itemId=/content/journals/10.1146/annurev-immunol-080223-044610&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Markolovic S, Leissing TM, Chowdhury R, Wilkins SE, Lu X, Schofield CJ. 2016.. Structure-function relationships of human JmjC oxygenases—demethylases versus hydroxylases. . Curr. Opin. Struct. Biol. 41::6272
    [Crossref] [Google Scholar]
  2. 2.
    Loenarz C, Schofield CJ. 2011.. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. . Trends Biochem. Sci. 36::718
    [Crossref] [Google Scholar]
  3. 3.
    Ploumakis A, Coleman ML. 2015.. OH, the places you'll go! Hydroxylation, gene expression, and cancer. . Mol. Cell 58::72941
    [Crossref] [Google Scholar]
  4. 4.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, et al. 2009.. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. . Science 324::93035
    [Crossref] [Google Scholar]
  5. 5.
    Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, et al. 2010.. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. . Nature 468::83943
    [Crossref] [Google Scholar]
  6. 6.
    He YF, Li BZ, Li Z, Liu P, Wang Y, et al. 2011.. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. . Science 333::13037
    [Crossref] [Google Scholar]
  7. 7.
    Ito S, Shen L, Dai Q, Wu SC, Collins LB, et al. 2011.. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. . Science 333::13003
    [Crossref] [Google Scholar]
  8. 8.
    Pastor WA, Aravind L, Rao A. 2013.. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. . Nat. Rev. Mol. Cell Biol. 14::34156
    [Crossref] [Google Scholar]
  9. 9.
    Wu H, Zhang Y. 2014.. Reversing DNA methylation: mechanisms, genomics, and biological functions. . Cell 156::4568
    [Crossref] [Google Scholar]
  10. 10.
    Rasmussen KD, Helin K. 2016.. Role of TET enzymes in DNA methylation, development, and cancer. . Genes Dev. 30::73350
    [Crossref] [Google Scholar]
  11. 11.
    Lio CJ, Yue X, Lopez-Moyado IF, Tahiliani M, Aravind L, Rao A. 2020.. TET methylcytosine oxidases: new insights from a decade of research. . J. Biosci. 45::21
    [Crossref] [Google Scholar]
  12. 12.
    Koh KP, Rao A. 2013.. DNA methylation and methylcytosine oxidation in cell fate decisions. . Curr. Opin. Cell Biol. 25::15261
    [Crossref] [Google Scholar]
  13. 13.
    Scott-Browne JP, Lio CJ, Rao A. 2017.. TET proteins in natural and induced differentiation. . Curr. Opin. Genet. Dev. 46::2028
    [Crossref] [Google Scholar]
  14. 14.
    Joshi K, Liu S, Breslin SJP, Zhang J. 2022.. Mechanisms that regulate the activities of TET proteins. . Cell Mol. Life Sci. 79::363
    [Crossref] [Google Scholar]
  15. 15.
    Huang Y, Rao A. 2014.. Connections between TET proteins and aberrant DNA modification in cancer. . Trends Genet. 30::46474
    [Crossref] [Google Scholar]
  16. 16.
    An J, Ko M. 2023.. Epigenetic modification of cytosines in hematopoietic differentiation and malignant transformation. . Int. J. Mol. Sci. 24:(2):1727
    [Crossref] [Google Scholar]
  17. 17.
    Lio CJ, Yuita H, Rao A. 2019.. Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies. . Blood 134::148797
    [Crossref] [Google Scholar]
  18. 18.
    Monticelli S. 2019.. DNA (hydroxy)methylation in T helper lymphocytes. . Trends Biochem. Sci. 44::58998
    [Crossref] [Google Scholar]
  19. 19.
    Tsiouplis NJ, Bailey DW, Chiou LF, Wissink FJ, Tsagaratou A. 2020.. TET-mediated epigenetic regulation in immune cell development and disease. . Front. Cell Dev. Biol. 8::623948
    [Crossref] [Google Scholar]
  20. 20.
    Yue X, Rao A. 2020.. TET family dioxygenases and the TET activator vitamin C in immune responses and cancer. . Blood 136::1394401
    [Crossref] [Google Scholar]
  21. 21.
    Li J, Li L, Sun X, Deng T, Huang G, et al. 2021.. Role of Tet2 in regulating adaptive and innate immunity. . Front. Cell Dev. Biol. 9::665897
    [Crossref] [Google Scholar]
  22. 22.
    Joshi K, Zhang L, Breslin SJP, Kini AR, Zhang J. 2022.. Role of TET dioxygenases in the regulation of both normal and pathological hematopoiesis. . J. Exp. Clin. Cancer Res. 41::294
    [Crossref] [Google Scholar]
  23. 23.
    Gerecke C, Egea Rodrigues C, Homann T, Kleuser B. 2022.. The role of ten-eleven translocation proteins in inflammation. . Front. Immunol. 13::861351
    [Crossref] [Google Scholar]
  24. 24.
    Iyer LM, Tahiliani M, Rao A, Aravind L. 2009.. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. . Cell Cycle 8::1698710
    [Crossref] [Google Scholar]
  25. 25.
    Ko M, An J, Bandukwala HS, Chavez L, Aijö T, et al. 2013.. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. . Nature 497::12226
    [Crossref] [Google Scholar]
  26. 26.
    Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. 2010.. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. . PLOS ONE 5::e8888
    [Crossref] [Google Scholar]
  27. 27.
    Bird AP. 1986.. CpG-rich islands and the function of DNA methylation. . Nature 321::20913
    [Crossref] [Google Scholar]
  28. 28.
    Tsagaratou A, Aijo T, Lio CW, Yue X, Huang Y, et al. 2014.. Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. . PNAS 111::E330615
    [Crossref] [Google Scholar]
  29. 29.
    Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S. 2014.. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. . Nat. Chem. 6::104955
    [Crossref] [Google Scholar]
  30. 30.
    Vo N, Goodman RH. 2001.. CREB-binding protein and p300 in transcriptional regulation. . J. Biol. Chem. 276::135058
    [Crossref] [Google Scholar]
  31. 31.
    Lemon B, Tjian R. 2000.. Orchestrated response: a symphony of transcription factors for gene control. . Genes Dev. 14::255169
    [Crossref] [Google Scholar]
  32. 32.
    Ming X, Zhang Z, Zou Z, Lv C, Dong Q, et al. 2020.. Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. . Cell Res. 30::98096
    [Crossref] [Google Scholar]
  33. 33.
    Xu C, Corces VG. 2018.. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. . Science 359::116670
    [Crossref] [Google Scholar]
  34. 34.
    Otani J, Kimura H, Sharif J, Endo TA, Mishima Y, et al. 2013.. Cell cycle-dependent turnover of 5-hydroxymethyl cytosine in mouse embryonic stem cells. . PLOS ONE 8::e82961
    [Crossref] [Google Scholar]
  35. 35.
    Hashimoto H, Hong S, Bhagwat AS, Zhang X, Cheng X. 2012.. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. . Nucleic Acids Res. 40::1020314
    [Crossref] [Google Scholar]
  36. 36.
    Lio CJ, Shukla V, Samaniego-Castruita D, González-Avalos E, Chakraborty A, et al. 2019.. TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda uperenhancers. . Sci. Immunol. 4:(34):eaau7523
    [Crossref] [Google Scholar]
  37. 37.
    Jacobs AL, Schär P. 2012.. DNA glycosylases: in DNA repair and beyond. . Chromosoma 121::120
    [Crossref] [Google Scholar]
  38. 38.
    Maiti A, Drohat AC. 2011.. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. . J. Biol. Chem. 286::3533438
    [Crossref] [Google Scholar]
  39. 39.
    Zhang L, Lu X, Lu J, Liang H, Dai Q, et al. 2012.. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. . Nat. Chem. Biol. 8::32830
    [Crossref] [Google Scholar]
  40. 40.
    Weber AR, Krawczyk C, Robertson AB, Kuśnierczyk A, Vågbø CB, et al. 2016.. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. . Nat. Commun. 7::10806
    [Crossref] [Google Scholar]
  41. 41.
    Onodera A, González-Avalos E, Lio CJ, Georges RO, Bellacosa A, et al. 2021.. Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. . Genome Biol. 22::186
    [Crossref] [Google Scholar]
  42. 42.
    Wang D, Wu W, Callen E, Pavani R, Zolnerowich N, et al. 2022.. Active DNA demethylation promotes cell fate specification and the DNA damage response. . Science 378::98389
    [Crossref] [Google Scholar]
  43. 43.
    Stoyanova E, Riad M, Rao A, Heintz N. 2021.. 5-Hydroxymethylcytosine-mediated active demethylation is required for mammalian neuronal differentiation and function. . eLife 10::e66973
    [Crossref] [Google Scholar]
  44. 44.
    Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y, et al. 2011.. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. . Nature 470::41923
    [Crossref] [Google Scholar]
  45. 45.
    Cortellino S, Xu J, Sannai M, Moore R, Caretti E, et al. 2011.. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. . Cell 146::6779
    [Crossref] [Google Scholar]
  46. 46.
    Bussmann LH, Schubert A, Vu Manh TP, De Andres L, Desbordes SC, et al. 2009.. A robust and highly efficient immune cell reprogramming system. . Cell Stem Cell 5::55466
    [Crossref] [Google Scholar]
  47. 47.
    Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K, et al. 2019.. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. . Nat. Commun. 10::3215
    [Crossref] [Google Scholar]
  48. 48.
    Hon GC, Song CX, Du T, Jin F, Selvaraj S, et al. 2014.. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. . Mol. Cell 56::28697
    [Crossref] [Google Scholar]
  49. 49.
    Caron G, Hussein M, Kulis M, Delaloy C, Chatonnet F, et al. 2015.. Cell-cycle-dependent reconfiguration of the DNA methylome during terminal differentiation of human B cells into plasma cells. . Cell Rep. 13::105971
    [Crossref] [Google Scholar]
  50. 50.
    Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, et al. 2013.. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. . EMBO J. 32::64555
    [Crossref] [Google Scholar]
  51. 51.
    Wang Y, Xiao M, Chen X, Chen L, Xu Y, et al. 2015.. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. . Mol. Cell 57::66273
    [Crossref] [Google Scholar]
  52. 52.
    Sardina JL, Collombet S, Tian TV, Gomez A, Di Stefano B, et al. 2018.. Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate. . Cell Stem Cell 23::72741.e9
    [Crossref] [Google Scholar]
  53. 53.
    Lio CW, Zhang J, González-Avalos E, Hogan PG, Chang X, Rao A. 2016.. Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. . eLife 5::e18290
    [Crossref] [Google Scholar]
  54. 54.
    Chen HY, Almonte-Loya A, Lay FY, Hsu M, Johnson E, et al. 2022.. Epigenetic remodeling by vitamin C potentiates plasma cell differentiation. . eLife 11::e73754
    [Crossref] [Google Scholar]
  55. 55.
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013.. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. . Nat. Methods 10::121318
    [Crossref] [Google Scholar]
  56. 56.
    Skene PJ, Henikoff S. 2017.. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. . eLife 6::e21856
    [Crossref] [Google Scholar]
  57. 57.
    Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, et al. 2019.. CUT&Tag for efficient epigenomic profiling of small samples and single cells. . Nat. Commun. 10::1930
    [Crossref] [Google Scholar]
  58. 58.
    An J, González-Avalos E, Chawla A, Jeong M, López-Moyado IF, et al. 2015.. Acute loss of TET function results in aggressive myeloid cancer in mice. . Nat. Commun. 6::10071
    [Crossref] [Google Scholar]
  59. 59.
    Tsagaratou A, González-Avalos E, Rautio S, Scott-Browne JP, Togher S, et al. 2017.. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. . Nat. Immunol. 18::4553
    [Crossref] [Google Scholar]
  60. 60.
    Zhao Z, Chen L, Dawlaty MM, Pan F, Weeks O, et al. 2015.. Combined loss of Tet1 and Tet2 promotes B cell, but not myeloid malignancies, in mice. . Cell Rep. 13::1692704
    [Crossref] [Google Scholar]
  61. 61.
    Yuita H, López-Moyado IF, Jeong H, Cheng AX, Scott-Browne J, et al. 2023.. Inducible disruption of Tet genes results in myeloid malignancy, readthrough transcription, and a heterochromatin-to-euchromatin switch. . PNAS 120::e2214824120
    [Crossref] [Google Scholar]
  62. 62.
    Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, et al. 2014.. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. . J. Am. Chem. Soc. 136::1158285
    [Crossref] [Google Scholar]
  63. 63.
    Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, et al. 2011.. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. . Nature 473::39497
    [Crossref] [Google Scholar]
  64. 64.
    Guallar D, Bi X, Pardavila JA, Huang X, Saenz C, et al. 2018.. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. . Nat. Genet. 50::44351
    [Crossref] [Google Scholar]
  65. 65.
    Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y, et al. 2018.. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. . Nature 554::12327
    [Crossref] [Google Scholar]
  66. 66.
    Legrand C, Tuorto F, Hartmann M, Liebers R, Jacob D, et al. 2017.. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. . Genome Res. 27::158996
    [Crossref] [Google Scholar]
  67. 67.
    He C, Bozler J, Janssen KA, Wilusz JE, Garcia BA, et al. 2021.. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. . Nat. Struct. Mol. Biol. 28::6270
    [Crossref] [Google Scholar]
  68. 68.
    Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, et al. 1992.. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. . PNAS 89::182731
    [Crossref] [Google Scholar]
  69. 69.
    Tanaka K, Okamoto A. 2007.. Degradation of DNA by bisulfite treatment. . Bioorg. Med. Chem. Lett. 17::191215
    [Crossref] [Google Scholar]
  70. 70.
    Grunau C, Clark SJ, Rosenthal A. 2001.. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. . Nucleic Acids Res. 29::e65
    [Crossref] [Google Scholar]
  71. 71.
    Ewing AD, Smits N, Sanchez-Luque FJ, Faivre J, Brennan PM, et al. 2020.. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. . Mol. Cell 80::91528.e5
    [Crossref] [Google Scholar]
  72. 72.
    Booth MJ, Raiber EA, Balasubramanian S. 2015.. Chemical methods for decoding cytosine modifications in DNA. . Chem. Rev. 115::224054
    [Crossref] [Google Scholar]
  73. 73.
    Huang Y, Pastor WA, Zepeda-Martínez JA, Rao A. 2012.. The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine. . Nat. Protoc. 7::1897908
    [Crossref] [Google Scholar]
  74. 74.
    Huang Y, Chavez L, Chang X, Wang X, Pastor WA, et al. 2014.. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. . PNAS 111::136166
    [Crossref] [Google Scholar]
  75. 75.
    Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, et al. 2018.. A reassessment of DNA-immunoprecipitation-based genomic profiling. . Nat. Methods 15::499504
    [Crossref] [Google Scholar]
  76. 76.
    Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, et al. 2012.. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. . Cell 149::136880
    [Crossref] [Google Scholar]
  77. 77.
    Booth MJ, Ost TW, Beraldi D, Bell NM, Branco MR, et al. 2013.. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. . Nat. Protoc. 8::184151
    [Crossref] [Google Scholar]
  78. 78.
    Schutsky EK, DeNizio JE, Hu P, Liu MY, Nabel CS, et al. 2018.. Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. . Nat. Biotechnol. 36::108390
    [Crossref] [Google Scholar]
  79. 79.
    Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, et al. 2021.. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. . Genome Res. 31::128089
    [Crossref] [Google Scholar]
  80. 80.
    Fabyanic EB, Hu P, Qiu Q, Berríos KN, Connolly DR, et al. 2023.. Joint single-cell profiling resolves 5mC and 5hmC and reveals their distinct gene regulatory effects. . Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01909-2
    [Google Scholar]
  81. 81.
    Liu Y, Siejka-Zielińska P, Velikova G, Bi Y, Yuan F, et al. 2019.. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. . Nat. Biotechnol. 37::42429
    [Crossref] [Google Scholar]
  82. 82.
    Liu Y, Hu Z, Cheng J, Siejka-Zielińska P, Chen J, et al. 2021.. Subtraction-free and bisulfite-free specific sequencing of 5-methylcytosine and its oxidized derivatives at base resolution. . Nat. Commun. 12::618
    [Crossref] [Google Scholar]
  83. 83.
    Füllgrabe J, Gosal WS, Creed P, Liu S, Lumby CK, et al. 2023.. Simultaneous sequencing of genetic and epigenetic bases in DNA. . Nat. Biotechnol. 41::145764
    [Crossref] [Google Scholar]
  84. 84.
    Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, et al. 2011.. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. . PNAS 108::1456671
    [Crossref] [Google Scholar]
  85. 85.
    Ichiyama K, Chen T, Wang X, Yan X, Kim BS, et al. 2015.. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. . Immunity 42::61326
    [Crossref] [Google Scholar]
  86. 86.
    Carty SA, Gohil M, Banks LB, Cotton RM, Johnson ME, et al. 2018.. The loss of TET2 promotes CD8+ T cell memory differentiation. . J. Immunol. 200::8291
    [Crossref] [Google Scholar]
  87. 87.
    Yue X, Lio CJ, Samaniego-Castruita D, Li X, Rao A. 2019.. Loss of TET2 and TET3 in regulatory T cells unleashes effector function. . Nat. Commun. 10::2011
    [Crossref] [Google Scholar]
  88. 88.
    Pan F, Wingo TS, Zhao Z, Gao R, Makishima H, et al. 2017.. Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells. . Nat. Commun. 8::15102
    [Crossref] [Google Scholar]
  89. 89.
    Baessler A, Novis CL, Shen Z, Perovanovic J, Wadsworth M, et al. 2022.. Tet2 coordinates with Foxo1 and Runx1 to balance T follicular helper cell and T helper 1 cell differentiation. . Sci. Adv. 8::eabm4982
    [Crossref] [Google Scholar]
  90. 90.
    Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI. 2012.. Recognition of CD1d-restricted antigens by natural killer T cells. . Nat. Rev. Immunol. 12::84557
    [Crossref] [Google Scholar]
  91. 91.
    Stritesky GL, Jameson SC, Hogquist KA. 2012.. Selection of self-reactive T cells in the thymus. . Annu. Rev. Immunol. 30::95114
    [Crossref] [Google Scholar]
  92. 92.
    Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, et al. 2010.. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. . Nature 463::8892
    [Crossref] [Google Scholar]
  93. 93.
    Young RM, Staudt LM. 2013.. Targeting pathological B cell receptor signalling in lymphoid malignancies. . Nat. Rev. Drug Discov. 12::22943
    [Crossref] [Google Scholar]
  94. 94.
    Young RM, Shaffer AL, Phelan JD, Staudt LM. 2015.. B-cell receptor signaling in diffuse large B-cell lymphoma. . Semin. Hematol. 52::7785
    [Crossref] [Google Scholar]
  95. 95.
    Dühren-von Minden M, Übelhart R, Schneider D, Wossning T, Bach MP, et al. 2012.. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. . Nature 489::30912
    [Crossref] [Google Scholar]
  96. 96.
    Yue X, Trifari S, Äijö T, Tsagaratou A, Pastor WA, et al. 2016.. Control of Foxp3 stability through modulation of TET activity. . J. Exp. Med. 213::37797
    [Crossref] [Google Scholar]
  97. 97.
    Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, et al. 2011.. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. . Nature 473::34348
    [Crossref] [Google Scholar]
  98. 98.
    Wu H, D'Alessio AC, Ito S, Xia K, Wang Z, et al. 2011.. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. . Nature 473::38993
    [Crossref] [Google Scholar]
  99. 99.
    Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, et al. 2015.. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. . Nature 525::38993
    [Crossref] [Google Scholar]
  100. 100.
    Chrysanthou S, Tang Q, Lee J, Taylor SJ, Zhao Y, et al. 2022.. The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent of its catalytic activity. . Nucleic Acids Res. 50::316989
    [Crossref] [Google Scholar]
  101. 101.
    Ito K, Lee J, Chrysanthou S, Zhao Y, Josephs K, et al. 2019.. Non-catalytic Roles of Tet2 are essential to regulate hematopoietic stem and progenitor cell homeostasis. . Cell Rep. 28::248090.e4
    [Crossref] [Google Scholar]
  102. 102.
    Yeaton A, Cayanan G, Loghavi S, Dolgalev I, Leddin EM, et al. 2022.. The impact of inflammation-induced tumor plasticity during myeloid transformation. . Cancer Discov. 12::2392413
    [Crossref] [Google Scholar]
  103. 103.
    Äijö T, Theofilatos D, Cheng M, Smith MD, Xiong Y, et al. 2022.. TET proteins regulate T cell and iNKT cell lineage specification in a TET2 catalytic dependent manner. . Front. Immunol. 13::940995
    [Crossref] [Google Scholar]
  104. 104.
    Montagner S, Leoni C, Emming S, Della Chiara G, Balestrieri C, et al. 2016.. TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities. . Cell Rep. 15::156679
    [Crossref] [Google Scholar]
  105. 105.
    Pan W, Zhu S, Qu K, Meeth K, Cheng J, et al. 2017.. The DNA methylcytosine dioxygenase Tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression. . Immunity 47::28497.e5
    [Crossref] [Google Scholar]
  106. 106.
    Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, et al. 2018.. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. . Nature 558::30712
    [Crossref] [Google Scholar]
  107. 107.
    Jain N, Zhao Z, Feucht J, Koche R, Iyer A, et al. 2023.. TET2 guards against unchecked BATF3-induced CAR T cell expansion. . Nature 615::31522
    [Crossref] [Google Scholar]
  108. 108.
    Zhao Z, Condomines M, van der Stegen SJC, Perna F, Kloss CC, et al. 2015.. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. . Cancer Cell 28::41528
    [Crossref] [Google Scholar]
  109. 109.
    Lee M, Li J, Fang S, Zhang J, Vo ATT, et al. 2021.. Tet2 inactivation enhances the antitumor activity of tumor-infiltrating lymphocytes. . Cancer Res. 81::196576
    [Crossref] [Google Scholar]
  110. 110.
    Nakagawa M, Shaffer AL, Ceribelli M, Zhang M, Wright G, et al. 2018.. Targeting the HTLV-I-regulated BATF3/IRF4 transcriptional network in adult T cell leukemia/lymphoma. . Cancer Cell 34::28697.e10
    [Crossref] [Google Scholar]
  111. 111.
    Lollies A, Hartmann S, Schneider M, Bracht T, Weiß AL, et al. 2018.. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. . Leukemia 32::92101
    [Crossref] [Google Scholar]
  112. 112.
    Kameda T, Shide K, Kamiunten A, Kogure Y, Morishita D, et al. 2022.. CARD11 mutation and HBZ expression induce lymphoproliferative disease and adult T-cell leukemia/lymphoma. . Commun. Biol. 5::1309
    [Crossref] [Google Scholar]
  113. 113.
    Dash B, Hogan PG. 2023.. TET2, tumor control, and CAR T cell hyperproliferation. . Trends Cancer 9::52123
    [Crossref] [Google Scholar]
  114. 114.
    Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, et al. 2014.. Age-related mutations associated with clonal hematopoietic expansion and malignancies. . Nat. Med. 20::147278
    [Crossref] [Google Scholar]
  115. 115.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, et al. 2014.. Age-related clonal hematopoiesis associated with adverse outcomes. . N. Engl. J. Med. 371::248898
    [Crossref] [Google Scholar]
  116. 116.
    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, et al. 2014.. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. . N. Engl. J. Med. 371::247787
    [Crossref] [Google Scholar]
  117. 117.
    Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, et al. 2017.. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. . Blood 130::75362
    [Crossref] [Google Scholar]
  118. 118.
    Jaiswal S, Ebert BL. 2019.. Clonal hematopoiesis in human aging and disease. . Science 366:(6465):eaan4673
    [Crossref] [Google Scholar]
  119. 119.
    Jaiswal S, Libby P. 2020.. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. . Nat. Rev. Cardiol. 17::13744
    [Crossref] [Google Scholar]
  120. 120.
    Ahmad H, Jahn N, Jaiswal S. 2023.. Clonal hematopoiesis and its impact on human health. . Annu. Rev. Med. 74::24960
    [Crossref] [Google Scholar]
  121. 121.
    Belizaire R, Wong WJ, Robinette ML, Ebert BL. 2023.. Clonal haematopoiesis and dysregulation of the immune system. . Nat. Rev. Immunol. 23:(9):595610
    [Crossref] [Google Scholar]
  122. 122.
    Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, et al. 2022.. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. . Leukemia 36::172048. Erratum. . 2023.. Leukemia 37::194451
    [Google Scholar]
  123. 123.
    Marques-Piubelli ML, Amador C, Vega F. 2023.. Pathologic and molecular insights in nodal T-follicular helper cell lymphomas. . Front. Oncol. 13::1105651
    [Crossref] [Google Scholar]
  124. 124.
    Palomero T, Couronné L, Khiabanian H, Kim MY, Ambesi-Impiombato A, et al. 2014.. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. . Nat. Genet. 46::16670
    [Crossref] [Google Scholar]
  125. 125.
    Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, et al. 2014.. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. . Nat. Genet. 46::17175
    [Crossref] [Google Scholar]
  126. 126.
    Yoo HY, Sung MK, Lee SH, Kim S, Lee H, et al. 2014.. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. . Nat. Genet. 46::37175
    [Crossref] [Google Scholar]
  127. 127.
    Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, et al. 2011.. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. . Cancer Cell 20::2538
    [Crossref] [Google Scholar]
  128. 128.
    Nguyen TB, Sakata-Yanagimoto M, Asabe Y, Matsubara D, Kano J, et al. 2017.. Identification of cell-type-specific mutations in nodal T-cell lymphomas. . Blood Cancer J. 7::e516
    [Crossref] [Google Scholar]
  129. 129.
    Lemonnier F, Cairns RA, Inoue S, Li WY, Dupuy A, et al. 2016.. The IDH2 R172K mutation associated with angioimmunoblastic T-cell lymphoma produces 2HG in T cells and impacts lymphoid development. . PNAS 113::1508489
    [Crossref] [Google Scholar]
  130. 130.
    Zang S, Li J, Yang H, Zeng H, Han W, . 2017.. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. . J. Clin. Investig. 127::29983012
    [Crossref] [Google Scholar]
  131. 131.
    Ng SY, Brown L, Stevenson K, deSouza T, Aster JC, et al. 2018.. RhoA G17V is sufficient to induce autoimmunity and promotes T-cell lymphomagenesis in mice. . Blood 132::93547
    [Crossref] [Google Scholar]
  132. 132.
    Cortes JR, Ambesi-Impiombato A, Couronné L, Quinn SA, Kim CS, et al. 2018.. RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis. . Cancer Cell 33::25973.e7
    [Crossref] [Google Scholar]
  133. 133.
    Deleted in proof
  134. 134.
    Fujisawa M, Nguyen TB, Abe Y, Suehara Y, Fukumoto K, et al. 2022.. Clonal germinal center B cells function as a niche for T-cell lymphoma. . Blood 140::193750
    [Crossref] [Google Scholar]
  135. 135.
    López-Moyado IF, Tsagaratou A, Yuita H, Seo H, Delatte B, et al. 2019.. Paradoxical association of TET loss of function with genome-wide DNA hypomethylation. . PNAS 116:(34):1693342
    [Crossref] [Google Scholar]
  136. 136.
    Charlton J, Jung EJ, Mattei AL, Bailly N, Liao J, et al. 2020.. TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. . Nat. Genet. 52::81927
    [Crossref] [Google Scholar]
  137. 137.
    Kyriakopoulos C, Nordström K, Kramer PL, Gottfreund JY, Salhab A, et al. 2022.. A comprehensive approach for genome-wide efficiency profiling of DNA modifying enzymes. . Cell Rep. Methods 2::100187
    [Crossref] [Google Scholar]
  138. 138.
    Kaasinen E, Kuismin O, Rajamäki K, Ristolainen H, Aavikko M, et al. 2019.. Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans. . Nat. Commun. 10::1252
    [Crossref] [Google Scholar]
  139. 139.
    Zhou W, Dinh HQ, Ramjan Z, Weisenberger DJ, Nicolet CM, et al. 2018.. DNA methylation loss in late-replicating domains is linked to mitotic cell division. . Nat. Genet. 50::591602
    [Crossref] [Google Scholar]
  140. 140.
    Li X, Yue X, Pastor WA, Lin L, Georges R, et al. 2016.. Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. . PNAS 113::E826776
    [Google Scholar]
  141. 141.
    Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y. 2014.. Role of Tet proteins in enhancer activity and telomere elongation. . Genes Dev. 28::210319
    [Crossref] [Google Scholar]
  142. 142.
    Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, et al. 2017.. Impact of cytosine methylation on DNA binding specificities of human transcription factors. . Science 356:(6337):eaaj2239
    [Crossref] [Google Scholar]
  143. 143.
    Gu T, Lin X, Cullen SM, Luo M, Jeong M, et al. 2018.. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. . Genome Biol. 19::88
    [Crossref] [Google Scholar]
  144. 144.
    Wang Q, Yu G, Ming X, Xia W, Xu X, et al. 2020.. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. . Nat. Genet. 52::82839
    [Crossref] [Google Scholar]
  145. 145.
    Stolz P, Mantero AS, Tvardovskiy A, Ugur E, Wange LE, et al. 2022.. TET1 regulates gene expression and repression of endogenous retroviruses independent of DNA demethylation. . Nucleic Acids Res. 50::8491511
    [Crossref] [Google Scholar]
  146. 146.
    Groh S, Schotta G. 2017.. Silencing of endogenous retroviruses by heterochromatin. . Cell Mol. Life Sci. 74::205565
    [Crossref] [Google Scholar]
  147. 147.
    Janssen A, Colmenares SU, Karpen GH. 2018.. Heterochromatin: guardian of the genome. . Annu. Rev. Cell Dev. Biol. 34::26588
    [Crossref] [Google Scholar]
  148. 148.
    Akdemir KC, Le VT, Kim JM, Killcoyne S, King DA, et al. 2020.. Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. . Nat. Genet. 52::117888
    [Crossref] [Google Scholar]
  149. 149.
    Cimmino L, Dawlaty MM, Ndiaye-Lobry D, Yap YS, Bakogianni S, et al. 2015.. TET1 is a tumor suppressor of hematopoietic malignancy. . Nat. Immunol. 16::65362
    [Crossref] [Google Scholar]
  150. 150.
    Lian BSX, Kawasaki T, Kano N, Ori D, Ikegawa M, et al. 2022.. Regulation of Il6 expression by single CpG methylation in downstream of Il6 transcription initiation site. . iScience 25::104118
    [Crossref] [Google Scholar]
  151. 151.
    Cull AH, Snetsinger B, Buckstein R, Wells RA, Rauh MJ. 2017.. Tet2 restrains inflammatory gene expression in macrophages. . Exp. Hematol. 55::5670.e13
    [Crossref] [Google Scholar]
  152. 152.
    Jiang S, Yan W, Wang SE, Baltimore D. 2019.. Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. . PNAS 116::1241621
    [Crossref] [Google Scholar]
  153. 153.
    Rajshekar S, Yao J, Arnold PK, Payne SG, Zhang Y, et al. 2018.. Pericentromeric hypomethylation elicits an interferon response in an animal model of ICF syndrome. . eLife 7::e39658
    [Crossref] [Google Scholar]
  154. 154.
    Xiao M, Yang H, Xu W, Ma S, Lin H, et al. 2012.. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. . Genes Dev. 26::132638
    [Crossref] [Google Scholar]
  155. 155.
    Neves-Costa A, Moita LF. 2013.. TET1 is a negative transcriptional regulator of IL-1β in the THP-1 cell line. . Mol. Immunol. 54::26470
    [Crossref] [Google Scholar]
  156. 156.
    Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, et al. 2017.. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. . Science 355::84247
    [Crossref] [Google Scholar]
  157. 157.
    Liu W, Yalcinkaya M, Maestre IF, Olszewska M, Ampomah PB, et al. 2023.. Blockade of IL-6 signaling alleviates atherosclerosis in Tet2-deficient clonal hematopoiesis. . Nat. Cardiovasc. Res. 2::57286
    [Crossref] [Google Scholar]
  158. 158.
    Sano S, Oshima K, Wang Y, MacLauchlan S, Katanasaka Y, et al. 2018.. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. . J. Am. Coll. Cardiol. 71::87586
    [Crossref] [Google Scholar]
  159. 159.
    Fuster JJ, Zuriaga MA, Zorita V, MacLauchlan S, Polackal MN, et al. 2020.. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. . Cell Rep. 33::108326
    [Crossref] [Google Scholar]
  160. 160.
    Xue S, Liu C, Sun X, Li W, Zhang C, et al. 2016.. TET3 inhibits type I IFN production independent of DNA demethylation. . Cell Rep. 16::1096105
    [Crossref] [Google Scholar]
  161. 161.
    Cobo I, Tanaka TN, Chandra Mangalhara K, Lana A, Yeang C, et al. 2022.. DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. . Immunity 55::1386401.e10
    [Crossref] [Google Scholar]
  162. 162.
    West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, et al. 2015.. Mitochondrial DNA stress primes the antiviral innate immune response. . Nature 520::55357
    [Crossref] [Google Scholar]
  163. 163.
    Wu F, Li X, Looso M, Liu H, Ding D, et al. 2023.. Spurious transcription causing innate immune responses is prevented by 5-hydroxymethylcytosine. . Nat. Genet. 55::10011
    [Crossref] [Google Scholar]
  164. 164.
    McCauley BS, Sun L, Yu R, Lee M, Liu H, et al. 2021.. Altered chromatin states drive cryptic transcription in aging mammalian stem cells. . Nat. Aging 1::68497
    [Crossref] [Google Scholar]
  165. 165.
    Cai Z, Kotzin JJ, Ramdas B, Chen S, Nelanuthala S, et al. 2018.. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. . Cell Stem Cell 23::83349.e5
    [Crossref] [Google Scholar]
  166. 166.
    Miller PG, Qiao D, Rojas-Quintero J, Honigberg MC, Sperling AS, et al. 2022.. Association of clonal hematopoiesis with chronic obstructive pulmonary disease. . Blood 139::35768
    [Crossref] [Google Scholar]
  167. 167.
    Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, et al. 2020.. Bone marrow niches in haematological malignancies. . Nat. Rev. Cancer 20::28598
    [Crossref] [Google Scholar]
  168. 168.
    Pietras EM. 2017.. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. . Blood 130::169398
    [Crossref] [Google Scholar]
  169. 169.
    Avagyan S, Henninger JE, Mannherz WP, Mistry M, Yoon J, et al. 2021.. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. . Science 374::76872
    [Crossref] [Google Scholar]
  170. 170.
    Chavakis T, Wielockx B, Hajishengallis G. 2022.. Inflammatory modulation of hematopoiesis: linking trained immunity and clonal hematopoiesis with chronic disorders. . Annu. Rev. Physiol. 84::183207
    [Crossref] [Google Scholar]
  171. 171.
    Muto T, Walker CS, Choi K, Hueneman K, Smith MA, et al. 2020.. Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. . Nat. Immunol. 21::53545
    [Crossref] [Google Scholar]
  172. 172.
    Cai Z, Lu X, Zhang C, Nelanuthala S, Aguilera F, et al. 2021.. Hyperglycemia cooperates with Tet2 heterozygosity to induce leukemia driven by proinflammatory cytokine-induced lncRNA Morrbid. . J. Clin. Investig. 131:(1):e140707
    [Crossref] [Google Scholar]
  173. 173.
    Abegunde SO, Buckstein R, Wells RA, Rauh MJ. 2018.. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. . Exp. Hematol. 59::6065
    [Crossref] [Google Scholar]
  174. 174.
    Meisel M, Hinterleitner R, Pacis A, Chen L, Earley ZM, et al. 2018.. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. . Nature 557::58084
    [Crossref] [Google Scholar]
  175. 175.
    Shin TH, Zhou Y, Chen S, Cordes S, Grice MZ, et al. 2022.. A macaque clonal hematopoiesis model demonstrates expansion of TET2-disrupted clones and utility for testing interventions. . Blood 140::177489
    [Crossref] [Google Scholar]
  176. 176.
    Caiado F, Kovtonyuk LV, Gonullu NG, Fullin J, Boettcher S, Manz MG. 2023.. Aging drives Tet2+/− clonal hematopoiesis via IL-1 signaling. . Blood 141::886903
    [Crossref] [Google Scholar]
  177. 177.
    Burns SS, Kumar R, Pasupuleti SK, So K, Zhang C, Kapur R. 2022.. Il-1r1 drives leukemogenesis induced by Tet2 loss. . Leukemia 36::253134
    [Crossref] [Google Scholar]
  178. 177a.
    Zeng H, He H, Guo L, Li J, Lee M, . 2019.. Antibiotic treatment ameliorates Ten-eleven translocation 2 (TET2) loss-of-function associated hematological malignancies. . Cancer Lett. 467::18
    [Crossref] [Google Scholar]
  179. 178.
    Ma S, Wan X, Deng Z, Shi L, Hao C, et al. 2017.. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. . J. Exp. Med. 214::147191
    [Crossref] [Google Scholar]
  180. 179.
    Sun F, Abreu-Rodriguez I, Ye S, Gay S, Distler O, et al. 2019.. TET1 is an important transcriptional activator of TNFα expression in macrophages. . PLOS ONE 14::e0218551
    [Crossref] [Google Scholar]
  181. 180.
    Dominguez PM, Ghamlouch H, Rosikiewicz W, Kumar P, Beguelin W, et al. 2018.. TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell lymphomagenesis. . Cancer Discov. 8::163253
    [Crossref] [Google Scholar]
  182. 181.
    Rosikiewicz W, Chen X, Dominguez PM, Ghamlouch H, Aoufouchi S, et al. 2020.. TET2 deficiency reprograms the germinal center B cell epigenome and silences genes linked to lymphomagenesis. . Sci. Adv. 6::eaay5872
    [Crossref] [Google Scholar]
  183. 182.
    Mouly E, Ghamlouch H, Della-Valle V, Scourzic L, Quivoron C, et al. 2018.. B-cell tumor development in Tet2-deficient mice. . Blood Adv. 2::70314
    [Crossref] [Google Scholar]
  184. 183.
    Shukla V, Samaniego-Castruita D, Dong Z, Gonzalez-Avalos E, Yan Q, et al. 2022.. TET deficiency perturbs mature B cell homeostasis and promotes oncogenesis associated with accumulation of G-quadruplex and R-loop structures. . Nat. Immunol. 23::99108
    [Crossref] [Google Scholar]
  185. 184.
    Tanaka S, Ise W, Inoue T, Ito A, Ono C, et al. 2020.. Tet2 and Tet3 in B cells are required to repress CD86 and prevent autoimmunity. . Nat. Immunol. 21::95061
    [Crossref] [Google Scholar]
  186. 185.
    Orlanski S, Labi V, Reizel Y, Spiro A, Lichtenstein M, et al. 2016.. Tissue-specific DNA demethylation is required for proper B-cell differentiation and function. . PNAS 113::501823
    [Crossref] [Google Scholar]
  187. 186.
    Schoeler K, Aufschnaiter A, Messner S, Derudder E, Herzog S, et al. 2019.. TET enzymes control antibody production and shape the mutational landscape in germinal centre B cells. . FEBS J. 286::356681
    [Crossref] [Google Scholar]
  188. 187.
    Fujii K, Tanaka S, Hasegawa T, Narazaki M, Kumanogoh A, et al. 2020.. Tet DNA demethylase is required for plasma cell differentiation by controlling expression levels of IRF4. . Int. Immunol. 32::68390
    [Crossref] [Google Scholar]
  189. 188.
    Yang R, Qu C, Zhou Y, Konkel JE, Shi S, et al. 2015.. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. . Immunity 43::25163
    [Crossref] [Google Scholar]
  190. 189.
    Muto H, Sakata-Yanagimoto M, Nagae G, Shiozawa Y, Miyake Y, et al. 2014.. Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice. . Blood Cancer J. 4::e264
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-080223-044610
Loading
/content/journals/10.1146/annurev-immunol-080223-044610
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error