1932

Abstract

For decades, scientists have relied on traditional animal models to study viral infection and the immune response. However, these models have limitations, and the search for more accurate and reliable ways to study the human-pathogen interphase has led to the development of humanized mouse systems. These revolutionary models have transformed how we understand viral infection and the human immune system's interactions with viruses to control or exacerbate disease. They are also paving the way for new treatments and therapies. In this article, we explore the history and development of humanized mouse systems and their advantages, limitations, and applications in viral immunology research. We describe the different types of humanized mouse models, including their generation and utility for studying human pathogens, with an emphasis on human-specific viruses. In addition, we discuss areas for further refinement and future applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082223-035718
2025-04-25
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-082223-035718.html?itemId=/content/journals/10.1146/annurev-immunol-082223-035718&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sarkar S, Heise MT. 2019.. Mouse models as resources for studying infectious diseases. . Clin. Ther. 41::191222
    [Crossref] [Google Scholar]
  2. 2.
    Garcia JV. 2016.. Humanized mice for HIV and AIDS research. . Curr. Opin. Virol. 19::5664
    [Crossref] [Google Scholar]
  3. 3.
    Dittmer DP, Damania B, Sin SH. 2015.. Animal models of tumorigenic herpesviruses—an update. . Curr. Opin. Virol. 14::14550
    [Crossref] [Google Scholar]
  4. 4.
    Fisher MA, Lloyd ML. 2021.. A review of murine cytomegalovirus as a model for human cytomegalovirus disease—do mice lie?. Int. J. Mol. Sci. 22::214
    [Crossref] [Google Scholar]
  5. 5.
    Perlman RL. 2016.. Mouse models of human disease: an evolutionary perspective. . Evol. Med. Public Health 2016::17076
    [Google Scholar]
  6. 6.
    Mestas J, Hughes CC. 2004.. Of mice and not men: differences between mouse and human immunology. . J. Immunol. 172::273138
    [Crossref] [Google Scholar]
  7. 7.
    Akkina R, Berges BK, Palmer BE, Remling L, Neff CP, et al. 2011.. Humanized Rag1/γc/ mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. . PLOS ONE 6::e20169
    [Crossref] [Google Scholar]
  8. 8.
    Bente DA, Melkus MW, Garcia JV, Rico-Hesse R. 2005.. Dengue fever in humanized NOD/SCID mice. . J. Virol. 79::1379799
    [Crossref] [Google Scholar]
  9. 9.
    Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R. 2006.. HIV-1 infection and CD4 T cell depletion in the humanized Rag2/γc/ (RAG-hu) mouse model. . Retrovirology 3::76
    [Crossref] [Google Scholar]
  10. 10.
    Bidanset DJ, Rybak RJ, Hartline CB, Kern ER. 2001.. Replication of human cytomegalovirus in severe combined immunodeficient mice implanted with human retinal tissue. . J. Infect. Dis. 184::19295
    [Crossref] [Google Scholar]
  11. 11.
    Bird BH, Spengler JR, Chakrabarti AK, Khristova ML, Sealy TK, et al. 2016.. Humanized mouse model of Ebola virus disease mimics the immune responses in human disease. . J. Infect. Dis. 213::70311
    [Crossref] [Google Scholar]
  12. 12.
    Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, et al. 2009.. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. . J. Virol. 83::730521
    [Crossref] [Google Scholar]
  13. 13.
    Brown JM, Kaneshima H, Mocarski ES. 1995.. Dramatic interstrain differences in the replication of human cytomegalovirus in SCID-hu mice. . J. Infect. Dis. 171::1599603
    [Crossref] [Google Scholar]
  14. 14.
    Caduff N, McHugh D, Rieble L, Forconi CS, Ong'echa JM, et al. 2021.. KSHV infection drives poorly cytotoxic CD56-negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection. . Cell Rep. 35::109056
    [Crossref] [Google Scholar]
  15. 15.
    Chateau ML, Denton PW, Swanson MD, McGowan I, Garcia JV. 2013.. Rectal transmission of transmitted/founder HIV-1 is efficiently prevented by topical 1% tenofovir in BLT humanized mice. . PLOS ONE 8::e60024
    [Crossref] [Google Scholar]
  16. 16.
    Claiborne DT, Dudek TE, Maldini CR, Power KA, Ghebremichael M, et al. 2019.. Immunization of BLT humanized mice redirects T cell responses to Gag and reduces acute HIV-1 viremia. . J. Virol. 93::
    [Crossref] [Google Scholar]
  17. 17.
    Council OD, Swanson MD, Spagnuolo RA, Wahl A, Garcia JV. 2015.. Role of semen on vaginal HIV-1 transmission and maraviroc protection. . Antimicrob. Agents Chemother. 59::784751
    [Crossref] [Google Scholar]
  18. 18.
    Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R. 2012.. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. . J. Virol. 86::763749
    [Crossref] [Google Scholar]
  19. 19.
    Crawford LB, Tempel R, Streblow DN, Kreklywich C, Smith P, et al. 2017.. Human cytomegalovirus induces cellular and humoral virus-specific immune responses in humanized BLT mice. . Sci. Rep. 7::937
    [Crossref] [Google Scholar]
  20. 20.
    De C, Pickles RJ, Yao W, Liao B, Boone A, et al. 2023.. Human T cells efficiently control RSV infection. . JCI Insight 8::e168110
    [Crossref] [Google Scholar]
  21. 21.
    De C, Pickles RJ, Yao W, Liao B, Boone A, et al. 2024.. RSV infection of humanized lung-only mice induces pathological changes resembling severe bronchiolitis and bronchopneumonia. . Front. Virol. 4::1380030
    [Crossref] [Google Scholar]
  22. 22.
    Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, et al. 2008.. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. . PLOS Med. 5::e16
    [Crossref] [Google Scholar]
  23. 23.
    Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, et al. 2010.. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. . PLOS ONE 5::e8829
    [Crossref] [Google Scholar]
  24. 24.
    Denton PW, Long JM, Wietgrefe SW, Sykes C, Spagnuolo RA, et al. 2014.. Targeted cytotoxic therapy kills persisting HIV infected cells during ART. . PLOS Pathog. 10::e1003872
    [Crossref] [Google Scholar]
  25. 25.
    Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, et al. 2012.. Generation of HIV latency in humanized BLT mice. . J. Virol. 86::63034
    [Crossref] [Google Scholar]
  26. 26.
    Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, et al. 2011.. One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. . J. Virol. 85::758293
    [Crossref] [Google Scholar]
  27. 27.
    Deruaz M, Moldt B, Le KM, Power KA, Vrbanac VD, et al. 2016.. Protection of humanized mice from repeated intravaginal HIV challenge by passive immunization: a model for studying the efficacy of neutralizing antibodies in vivo. . J. Infect. Dis. 214::61216
    [Crossref] [Google Scholar]
  28. 28.
    Dittmer D, Stoddart C, Renne R, Linquist-Stepps V, Moreno ME, et al. 1999.. Experimental transmission of Kaposi's sarcoma–associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. . J. Exp. Med. 190::185768
    [Crossref] [Google Scholar]
  29. 29.
    Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, et al. 2012.. Rapid evolution of HIV-1 to functional CD8+ T cell responses in humanized BLT mice. . Sci. Transl. Med. 4::143ra98
    [Crossref] [Google Scholar]
  30. 30.
    Frias-Staheli N, Dorner M, Marukian S, Billerbeck E, Labitt RN, et al. 2014.. Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing. . J. Virol. 88::220518
    [Crossref] [Google Scholar]
  31. 31.
    Honeycutt JB, Liao B, Nixon CC, Cleary RA, Thayer WO, et al. 2018.. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. . J. Clin. Investig. 128::286276
    [Crossref] [Google Scholar]
  32. 32.
    Islas-Ohlmayer M, Padgett-Thomas A, Domiati-Saad R, Melkus MW, Cravens PD, et al. 2004.. Experimental infection of NOD/SCID mice reconstituted with human CD34+ cells with Epstein-Barr virus. . J. Virol. 78::13891900
    [Crossref] [Google Scholar]
  33. 33.
    Ivic S, Rochat M-A, Li D, Audigé A, Schlaepfer E, et al. 2017.. Differential dynamics of HIV infection in humanized MISTRG versus MITRG mice. . ImmunoHorizons 1::16275
    [Crossref] [Google Scholar]
  34. 34.
    Jaiswal S, Smith K, Ramirez A, Woda M, Pazoles P, et al. 2015.. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice. . Exp. Biol. Med. 240::6778
    [Crossref] [Google Scholar]
  35. 35.
    Kessing CF, Nixon CC, Li C, Tsai P, Takata H, et al. 2017.. In vivo suppression of HIV rebound by didehydro-Cortistatin A, a “block-and-lock” strategy for HIV-1 treatment. . Cell Rep. 21::60011
    [Crossref] [Google Scholar]
  36. 36.
    Kim SG, Lowe EL, Dixit D, Youn CS, Kim IJ, et al. 2015.. Cocaine-mediated impact on HIV infection in humanized BLT mice. . Sci. Rep. 5::10010
    [Crossref] [Google Scholar]
  37. 37.
    Kovarova M, Benhabbour SR, Massud I, Spagnuolo RA, Skinner B, et al. 2018.. Ultra-long-acting removable drug delivery system for HIV treatment and prevention. . Nat. Commun. 9::4156
    [Crossref] [Google Scholar]
  38. 38.
    Kovarova M, Council OD, Date AA, Long JM, Nochi T, et al. 2015.. Nanoformulations of rilpivirine for topical pericoital and systemic coitus-independent administration efficiently prevent HIV transmission. . PLOS Pathog. 11::e1005075. Correction . 2015.. PLOS Pathog. 11::e1005170
    [Google Scholar]
  39. 39.
    Kovarova M, Shanmugasundaram U, Baker CE, Spagnuolo RA, De C, et al. 2016.. HIV pre-exposure prophylaxis for women and infants prevents vaginal and oral HIV transmission in a preclinical model of HIV infection. . J. Antimicrob. Chemother. 71::318594
    [Crossref] [Google Scholar]
  40. 40.
    Kovarova M, Swanson MD, Sanchez RI, Baker CE, Steve J, et al. 2016.. A long-acting formulation of the integrase inhibitor raltegravir protects humanized BLT mice from repeated high-dose vaginal HIV challenges. . J. Antimicrob. Chemother. 71::158696
    [Crossref] [Google Scholar]
  41. 41.
    Krisko JF, Martinez-Torres F, Foster JL, Garcia JV. 2013.. HIV restriction by APOBEC3 in humanized mice. . PLOS Pathog. 9::e1003242
    [Crossref] [Google Scholar]
  42. 42.
    Kuruvilla JG, Troyer RM, Devi S, Akkina R. 2007.. Dengue virus infection and immune response in humanized RAG2/γc/ (RAG-hu) mice. . Virology 369::14352
    [Crossref] [Google Scholar]
  43. 43.
    Lavender KJ, Pang WW, Messer RJ, Duley AK, Race B, et al. 2013.. BLT-humanized C57BL/6 Rag2/γc/CD47/ mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. . Blood 122::401320. Erratum . 2014.. Blood 124::1848
    [Google Scholar]
  44. 44.
    Lavender KJ, Williamson BN, Saturday G, Martellaro C, Griffin A, et al. 2018.. Pathogenicity of Ebola and Marburg viruses is associated with differential activation of the myeloid compartment in humanized triple knockout-bone marrow, liver, and thymus mice. . J. Infect. Dis. 218::S40917
    [Crossref] [Google Scholar]
  45. 45.
    Ling L, De C, Spagnuolo RA, Begum N, Falcinelli SD, et al. 2023.. Transient CD4+ T cell depletion during suppressive ART reduces the HIV reservoir in humanized mice. . PLOS Pathog. 19::e1011824
    [Crossref] [Google Scholar]
  46. 46.
    Ling L, Leda AR, Begum N, Spagnuolo RA, Wahl A, et al. 2023.. Loss of in vivo replication fitness of HIV-1 variants resistant to the Tat inhibitor, dCA. . Viruses 15::950
    [Crossref] [Google Scholar]
  47. 47.
    Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, et al. 2011.. A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. . J. Virol. 85::16577
    [Crossref] [Google Scholar]
  48. 48.
    Ma SD, Xu X, Plowshay J, Ranheim EA, Burlingham WJ, et al. 2015.. LMP1-deficient Epstein-Barr virus mutant requires T cells for lymphomagenesis. . J. Clin. Investig. 125::30415
    [Crossref] [Google Scholar]
  49. 49.
    Ma SD, Yu X, Mertz JE, Gumperz JE, Reinheim E, et al. 2012.. An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. . J. Virol. 86::797687
    [Crossref] [Google Scholar]
  50. 50.
    Maidji E, Moreno ME, Rivera JM, Joshi P, Galkina SA, et al. 2019.. Cellular HIV reservoirs and viral rebound from the lymphoid compartments of 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA)-suppressed humanized mice. . Viruses 11::256
    [Crossref] [Google Scholar]
  51. 51.
    Marsden MD, Zack JA. 2015.. Studies of retroviral infection in humanized mice. . Virology 479–480::297309
    [Crossref] [Google Scholar]
  52. 52.
    McBrien JB, Mavigner M, Franchitti L, Smith SA, White E, et al. 2020.. Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells. . Nature 578::15459
    [Crossref] [Google Scholar]
  53. 53.
    McCune JM, Namikawa R, Shih CC, Rabin L, Kaneshima H. 1990.. Suppression of HIV infection in AZT-treated SCID-hu mice. . Science 247::56466
    [Crossref] [Google Scholar]
  54. 54.
    McHugh D, Caduff N, Barros MHM, Ramer PC, Raykova A, et al. 2017.. Persistent KSHV infection increases EBV-associated tumor formation in vivo via enhanced EBV lytic gene expression. . Cell Host Microbe 22::6173.e7
    [Crossref] [Google Scholar]
  55. 55.
    Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, et al. 2006.. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. . Nat. Med. 12::131622
    [Crossref] [Google Scholar]
  56. 56.
    Mocarski ES, Bonyhadi M, Salimi S, McCune JM, Kaneshima H. 1993.. Human cytomegalovirus in a SCID-hu mouse: Thymic epithelial cells are prominent targets of viral replication. . PNAS 90::1048
    [Crossref] [Google Scholar]
  57. 57.
    Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM. 1988.. Infection of the SCID-hu mouse by HIV-1. . Science 242::168486
    [Crossref] [Google Scholar]
  58. 58.
    Nischang M, Gers-Huber G, Audige A, Akkina R, Speck RF. 2012.. Modeling HIV infection and therapies in humanized mice. . Swiss Med. Wkly. 142::w13618
    [Google Scholar]
  59. 59.
    Nixon CC, Mavigner M, Sampey GC, Brooks AD, Spagnuolo RA, et al. 2020.. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. . Nature 578::16065
    [Crossref] [Google Scholar]
  60. 60.
    Nochi T, Denton PW, Wahl A, Garcia JV. 2013.. Cryptopatches are essential for the development of human GALT. . Cell Rep. 3::187484
    [Crossref] [Google Scholar]
  61. 61.
    Norton TD, Zhen A, Tada T, Kim J, Kitchen S, Landau NR. 2019.. Lentiviral vector-based dendritic cell vaccine suppresses HIV replication in humanized mice. . Mol. Ther. 27::96073
    [Crossref] [Google Scholar]
  62. 62.
    Nusbaum RJ, Calderon VE, Huante MB, Sutjita P, Vijayakumar S, et al. 2016.. Pulmonary tuberculosis in humanized mice infected with HIV-1. . Sci. Rep. 6::21522
    [Crossref] [Google Scholar]
  63. 63.
    Olesen R, Swanson MD, Kovarova M, Nochi T, Chateau M, et al. 2016.. ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions. . J. Clin. Investig. 126::892904
    [Crossref] [Google Scholar]
  64. 64.
    Olesen R, Wahl A, Denton PW, Garcia JV. 2011.. Immune reconstitution of the female reproductive tract of humanized BLT mice and their susceptibility to human immunodeficiency virus infection. . J. Reprod. Immunol. 88::195203
    [Crossref] [Google Scholar]
  65. 65.
    Parsons CH, Adang LA, Overdevest J, O'Connor CM, Taylor JR Jr., et al. 2006.. KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice. . J. Clin. Investig. 116::196373
    [Crossref] [Google Scholar]
  66. 66.
    Schmitt K, Charlins P, Veselinovic M, Kinner-Bibeau L, Hu S, et al. 2018.. Zika viral infection and neutralizing human antibody response in a BLT humanized mouse model. . Virology 515::23542
    [Crossref] [Google Scholar]
  67. 67.
    Schmitt K, Curlin JZ, Remling-Mulder L, Aboellail T, Akkina R. 2023.. Zika virus induced microcephaly and aberrant hematopoietic cell differentiation modeled in novel neonatal humanized mice. . Front. Immunol. 14::1060959
    [Crossref] [Google Scholar]
  68. 68.
    Sefik E, Israelow B, Mirza H, Zhao J, Qu R, et al. 2022.. A humanized mouse model of chronic COVID-19. . Nat. Biotechnol. 40::90620
    [Crossref] [Google Scholar]
  69. 69.
    Seung E, Dudek TE, Allen TM, Freeman GJ, Luster AD, Tager AM. 2013.. PD-1 blockade in chronically HIV-1-infected humanized mice suppresses viral loads. . PLOS ONE 8::e77780
    [Crossref] [Google Scholar]
  70. 70.
    Shanmugasundaram U, Kovarova M, Ho PT, Schramm N, Wahl A, et al. 2016.. Efficient inhibition of HIV replication in the gastrointestinal and female reproductive tracts of humanized BLT mice by EFdA. . PLOS ONE 11::e0159517
    [Crossref] [Google Scholar]
  71. 71.
    Sharma A, Wu W, Sung B, Huang J, Tsao T, et al. 2016.. Respiratory syncytial virus (RSV) pulmonary infection in humanized mice induces human anti-RSV immune responses and pathology. . J. Virol. 90::506874
    [Crossref] [Google Scholar]
  72. 72.
    Shimizu S, Ringpis GE, Marsden MD, Cortado RV, Wilhalme HM, et al. 2015.. RNAi-mediated CCR5 knockdown provides HIV-1 resistance to memory T cells in humanized BLT mice. . Mol. Ther. Nucleic Acids 4::e227
    [Crossref] [Google Scholar]
  73. 73.
    Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN, et al. 2010.. Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. . Cell Host Microbe 8::28491
    [Crossref] [Google Scholar]
  74. 74.
    Stoddart CA, Galkina SA, Joshi P, Kosikova G, Moreno ME, et al. 2015.. Oral administration of the nucleoside EFdA (4′-ethynyl-2-fluoro-2′-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. . Antimicrob. Agents Chemother. 59::419098
    [Crossref] [Google Scholar]
  75. 75.
    Stoddart CA, Maidji E, Galkina SA, Kosikova G, Rivera JM, et al. 2011.. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2Rγ/ (NSG) BLT mice. . Virology 417::15460
    [Crossref] [Google Scholar]
  76. 76.
    Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, et al. 2007.. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. . J. Exp. Med. 204::70514
    [Crossref] [Google Scholar]
  77. 77.
    Tager AM, Pensiero M, Allen TM. 2013.. Recent advances in humanized mice: accelerating the development of an HIV vaccine. . J. Infect. Dis. 208:(Suppl. 2):S12124
    [Crossref] [Google Scholar]
  78. 78.
    Tsai P, Wu G, Baker CE, Thayer WO, Spagnuolo RA, et al. 2016.. In vivo analysis of the effect of panobinostat on cell-associated HIV RNA and DNA levels and latent HIV infection. . Retrovirology 13::36
    [Crossref] [Google Scholar]
  79. 79.
    Veselinovic M, Charlins P, Akkina R. 2016.. Modeling HIV-1 mucosal transmission and prevention in humanized mice. . In HIV Protocols, ed. V Prasad, G Kalpana , pp. 20320. Methods Mol. Biol. 1354 . New York:: Humana Press
    [Crossref] [Google Scholar]
  80. 80.
    Wahl A, Baker C, Spagnuolo RA, Stamper LW, Fouda GG, et al. 2015.. Breast milk of HIV-positive mothers has potent and species-specific in vivo HIV-inhibitory activity. . J. Virol. 89::1086878
    [Crossref] [Google Scholar]
  81. 81.
    Wahl A, De C, Abad Fernandez M, Lenarcic EM, Xu Y, et al. 2019.. Precision mouse models with expanded tropism for human pathogens. . Nat. Biotechnol. 37::116373
    [Crossref] [Google Scholar]
  82. 82.
    Wahl A, Gralinski LE, Johnson CE, Yao W, Kovarova M, et al. 2021.. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. . Nature 591::45157
    [Crossref] [Google Scholar]
  83. 83.
    Wahl A, Ho PT, Denton PW, Garrett KL, Hudgens MG, et al. 2017.. Predicting HIV pre-exposure prophylaxis efficacy for women using a preclinical pharmacokinetic-pharmacodynamic in vivo model. . Sci. Rep. 7::41098
    [Crossref] [Google Scholar]
  84. 84.
    Wahl A, Linnstaedt SD, Esoda C, Krisko JF, Martinez-Torres F, et al. 2013.. A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. . J. Virol. 87::543746
    [Crossref] [Google Scholar]
  85. 85.
    Wahl A, Swanson MD, Nochi T, Olesen R, Denton PW, et al. 2012.. Human breast milk and antiretrovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice. . PLOS Pathog. 8::e1002732
    [Crossref] [Google Scholar]
  86. 86.
    Wahl A, Yao W, Liao B, Chateau M, Richardson C, et al. 2024.. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection. . Nat. Biotechnol. 42::90515
    [Crossref] [Google Scholar]
  87. 87.
    Wang LX, Kang G, Kumar P, Lu W, Li Y, et al. 2014.. Humanized-BLT mouse model of Kaposi's sarcoma-associated herpesvirus infection. . PNAS 111::314651
    [Crossref] [Google Scholar]
  88. 88.
    Watkins RL, Foster JL, Garcia JV. 2015.. In vivo analysis of Nef's role in HIV-1 replication, systemic T cell activation and CD4+ T cell loss. . Retrovirology 12::61
    [Crossref] [Google Scholar]
  89. 89.
    Watkins RL, Zou W, Denton PW, Krisko JF, Foster JL, Garcia JV. 2013.. In vivo analysis of highly conserved Nef activities in HIV-1 replication and pathogenesis. . Retrovirology 10::125
    [Crossref] [Google Scholar]
  90. 90.
    Wheeler LA, Trifonova R, Vrbanac V, Basar E, McKernan S, et al. 2011.. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. . J. Clin. Investig. 121::240112
    [Crossref] [Google Scholar]
  91. 91.
    Yi G, Xu X, Abraham S, Petersen S, Guo H, et al. 2017.. A DNA vaccine protects human immune cells against Zika virus infection in humanized mice. . EBioMedicine 25::8794
    [Crossref] [Google Scholar]
  92. 92.
    Zou W, Denton PW, Watkins RL, Krisko JF, Nochi T, et al. 2012.. Nef functions in BLT mice to enhance HIV-1 replication and deplete CD4+CD8+ thymocytes. . Retrovirology 9::44
    [Crossref] [Google Scholar]
  93. 93.
    Roche KL, Remiszewski S, Todd MJ, Kulp JL III, Tang L, et al. 2023.. An allosteric inhibitor of sirtuin 2 deacetylase activity exhibits broad-spectrum antiviral activity. . J. Clin. Investig. 133::e158978
    [Crossref] [Google Scholar]
  94. 94.
    Honeycutt JB, Wahl A, Baker C, Spagnuolo RA, Foster J, et al. 2016.. Macrophages sustain HIV replication in vivo independently of T cells. . J. Clin. Investig. 126::135366
    [Crossref] [Google Scholar]
  95. 95.
    Honeycutt JB, Thayer WO, Baker CE, Ribeiro RM, Lada SM, et al. 2017.. HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy. . Nat. Med. 23::63843
    [Crossref] [Google Scholar]
  96. 96.
    Whitehurst CB, Rizk M, Teklezghi A, Spagnuolo RA, Pagano JS, Wahl A. 2022.. HIV co-infection augments EBV-induced tumorigenesis in vivo. . Front. Virol. 2::861628
    [Crossref] [Google Scholar]
  97. 97.
    Kovarova M, Wessel SE, Johnson CE, Anderson SV, Cottrell ML, et al. 2023.. EFdA efficiently suppresses HIV replication in the male genital tract and prevents penile HIV acquisition. . mBio 14::e0222422
    [Crossref] [Google Scholar]
  98. 98.
    Honeycutt JB, Wahl A, Archin N, Choudhary S, Margolis D, Garcia JV. 2013.. HIV-1 infection, response to treatment and establishment of viral latency in a novel humanized T cell-only mouse (TOM) model. . Retrovirology 10::121
    [Crossref] [Google Scholar]
  99. 99.
    McCune JM. 1996.. Development and applications of the SCID-hu mouse model. . Semin. Immunol. 8::18796
    [Crossref] [Google Scholar]
  100. 100.
    Mosier DE, Gulizia RJ, Baird SM, Wilson DB. 1988.. Transfer of a functional human immune system to mice with severe combined immunodeficiency. . Nature 335::25659
    [Crossref] [Google Scholar]
  101. 101.
    Bosma GC, Custer RP, Bosma MJ. 1983.. A severe combined immunodeficiency mutation in the mouse. . Nature 301::52730
    [Crossref] [Google Scholar]
  102. 102.
    McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. 1988.. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. . Science 241::163239
    [Crossref] [Google Scholar]
  103. 103.
    Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, et al. 1995.. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. . J. Immunol. 154::18091
    [Crossref] [Google Scholar]
  104. 104.
    Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. 2006.. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. . Blood 108::48792
    [Crossref] [Google Scholar]
  105. 105.
    Kumari R, Feuer G, Bourre L. 2023.. Humanized mouse models for immuno-oncology drug discovery. . Curr. Protoc. 3::e852
    [Crossref] [Google Scholar]
  106. 106.
    Ali N, Flutter B, Sanchez Rodriguez R, Sharif-Paghaleh E, Barber LD, et al. 2012.. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype. . PLOS ONE 7::e44219
    [Crossref] [Google Scholar]
  107. 107.
    Ito R, Katano I, Kawai K, Hirata H, Ogura T, et al. 2009.. Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. . Transplantation 87::165458
    [Crossref] [Google Scholar]
  108. 108.
    King MA, Covassin L, Brehm MA, Racki W, Pearson T, et al. 2009.. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. . Clin. Exp. Immunol. 157::10418
    [Crossref] [Google Scholar]
  109. 109.
    Yaguchi T, Kobayashi A, Inozume T, Morii K, Nagumo H, et al. 2018.. Human PBMC-transferred murine MHC class I/II-deficient NOG mice enable long-term evaluation of human immune responses. . Cell Mol. Immunol. 15::95362
    [Crossref] [Google Scholar]
  110. 110.
    Akkina R, Allam A, Balazs AB, Blankson JN, Burnett JC, et al. 2016.. Improvements and limitations of humanized mouse models for HIV research: NIH/NIAID “Meet the Experts” 2015 workshop summary. . AIDS Res. Hum. Retroviruses 32::10919
    [Crossref] [Google Scholar]
  111. 111.
    Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. 2012.. Humanized mice for immune system investigation: progress, promise and challenges. . Nat. Rev. Immunol. 12::78698
    [Crossref] [Google Scholar]
  112. 112.
    Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, et al. 2009.. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/γc/, Balb/c-Rag1/γc/, and C.B-17-scid/bg immunodeficient mice. . Hum. Immunol. 70::790802
    [Crossref] [Google Scholar]
  113. 113.
    Shiina T, Blancher A, Inoko H, Kulski JK. 2017.. Comparative genomics of the human, macaque and mouse major histocompatibility complex. . Immunology 150::12738
    [Crossref] [Google Scholar]
  114. 114.
    Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, et al. 2009.. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). . Int. Immunol. 21::84358
    [Crossref] [Google Scholar]
  115. 115.
    Prochazka M, Gaskins HR, Shultz LD, Leiter EH. 1992.. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. . PNAS 89::329094
    [Crossref] [Google Scholar]
  116. 116.
    Moffat JF, Zerboni L, Kinchington PR, Grose C, Kaneshima H, Arvin AM. 1998.. Attenuation of the vaccine Oka strain of varicella-zoster virus and role of glycoprotein C in alphaherpesvirus virulence demonstrated in the SCID-hu mouse. . J. Virol. 72::96574
    [Crossref] [Google Scholar]
  117. 117.
    Moffat JF, Zerboni L, Sommer MH, Heineman TC, Cohen JI, et al. 1998.. The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. . PNAS 95::1196974
    [Crossref] [Google Scholar]
  118. 118.
    Denton PW, Nochi T, Lim A, Krisko JF, Martinez-Torres F, et al. 2012.. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. . Mucosal Immunol. 5::55566
    [Crossref] [Google Scholar]
  119. 119.
    Laing ST, Griffey SM, Moreno ME, Stoddart CA. 2015.. CD8-positive lymphocytes in graft-versus-host disease of humanized NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. . J. Comp. Pathol. 152::23842
    [Crossref] [Google Scholar]
  120. 120.
    Lavender KJ, Messer RJ, Race B, Hasenkrug KJ. 2014.. Production of bone marrow, liver, thymus (BLT) humanized mice on the C57BL/6 Rag2/γc/CD47/ background. . J. Immunol. Methods 407::12734
    [Crossref] [Google Scholar]
  121. 121.
    Lee J, Brehm MA, Greiner D, Shultz LD, Kornfeld H. 2013.. Engrafted human cells generate adaptive immune responses to Mycobacterium bovis BCG infection in humanized mice. . BMC Immunol. 14::53
    [Crossref] [Google Scholar]
  122. 122.
    Lockridge JL, Zhou Y, Becker YA, Ma S, Kenney SC, et al. 2013.. Mice engrafted with human fetal thymic tissue and hematopoietic stem cells develop pathology resembling chronic graft-versus-host disease. . Biol. Blood Marrow Transplant. 19::131022
    [Crossref] [Google Scholar]
  123. 123.
    Long BR, Stoddart CA. 2012.. OMIP-012: phenotypic and numeric determination of human leukocyte reconstitution in humanized mice. . Cytometry A 81A::64648
    [Crossref] [Google Scholar]
  124. 124.
    Martinez-Torres F, Nochi T, Wahl A, Garcia JV, Denton PW. 2014.. Hypogammaglobulinemia in BLT humanized mice – an animal model of primary antibody deficiency. . PLOS ONE 9::e108663
    [Crossref] [Google Scholar]
  125. 125.
    Semple KM, Gonzalez CM, Zarr M, Austin JR, Patel V, Howard KE. 2019.. Evaluation of the ability of immune humanized mice to demonstrate CD20-specific cytotoxicity induced by Ofatumumab. . Clin. Transl. Sci. 12::28390
    [Crossref] [Google Scholar]
  126. 126.
    Tsai P, Thayer WO, Liu L, Silvestri G, Nordstrom JL, Garcia JV. 2016.. CD19xCD3 DART protein mediates human B-cell depletion in vivo in humanized BLT mice. . Mol. Ther. Oncolytics 3::15024
    [Crossref] [Google Scholar]
  127. 127.
    Weaver JL, Zadrozny LM, Gabrielson K, Semple KM, Shea KI, Howard KE. 2019.. BLT-immune humanized mice as a model for nivolumab-induced immune-mediated adverse events: comparison of the NOG and NOG-EXL strains. . Toxicol. Sci. 169::194208
    [Crossref] [Google Scholar]
  128. 128.
    Yan H, Semple KM, Gonzalez CM, Howard KE. 2019.. Bone marrow-liver-thymus (BLT) immune humanized mice as a model to predict cytokine release syndrome. . Transl. Res. 210::4356
    [Crossref] [Google Scholar]
  129. 129.
    Tonomura N, Habiro K, Shimizu A, Sykes M, Yang YG. 2008.. Antigen-specific human T-cell responses and T cell–dependent production of human antibodies in a humanized mouse model. . Blood 111::429396
    [Crossref] [Google Scholar]
  130. 130.
    Samal J, Kelly S, Na-Shatal A, Elhakiem A, Das A, et al. 2018.. Human immunodeficiency virus infection induces lymphoid fibrosis in the BM-liver-thymus-spleen humanized mouse model. . JCI Insight 3::e120430
    [Crossref] [Google Scholar]
  131. 131.
    Strom SC, Davila J, Grompe M. 2010.. Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. . Methods Mol. Biol. 640::491509
    [Crossref] [Google Scholar]
  132. 132.
    Gutti TL, Knibbe JS, Makarov E, Zhang J, Yannam GR, et al. 2014.. Human hepatocytes and hematolymphoid dual reconstitution in treosulfan-conditioned uPA-NOG mice. . Am. J. Pathol. 184::1019
    [Crossref] [Google Scholar]
  133. 133.
    Yuan L, Liu X, Zhang L, Li X, Zhang Y, et al. 2018.. A chimeric humanized mouse model by engrafting the human induced pluripotent stem cell-derived hepatocyte-like cell for the chronic hepatitis B virus infection. . Front. Microbiol. 9::908
    [Crossref] [Google Scholar]
  134. 134.
    Bissig KD, Wieland SF, Tran P, Isogawa M, Le TT, et al. 2010.. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. . J. Clin. Investig. 120::92430
    [Crossref] [Google Scholar]
  135. 135.
    Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, et al. 2018.. P450-humanized and human liver chimeric mouse models for studying xenobiotic metabolism and toxicity. . Drug Metab. Dispos. 46::173444
    [Crossref] [Google Scholar]
  136. 136.
    Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, et al. 2007.. Robust expansion of human hepatocytes in Fah//Rag2//Il2rg/ mice. . Nat. Biotechnol. 25::90310
    [Crossref] [Google Scholar]
  137. 137.
    Bissig KD, Le TT, Woods NB, Verma IM. 2007.. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. . PNAS 104::2050711
    [Crossref] [Google Scholar]
  138. 138.
    Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M, et al. 2011.. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. . Biochem. Biophys. Res. Commun. 405::40510
    [Crossref] [Google Scholar]
  139. 139.
    Dagur RS, Wang W, Cheng Y, Makarov E, Ganesan M, et al. 2018.. Human hepatocyte depletion in the presence of HIV-1 infection in dual reconstituted humanized mice. . Biol. Open 7::bio029785
    [Crossref] [Google Scholar]
  140. 140.
    Dagur RS, Wang W, Makarov E, Sun Y, Poluektova LY. 2019.. Establishment of the dual humanized TK-NOG mouse model for HIV-associated liver pathogenesis. . J. Vis. Exp. 151::e58645
    [Google Scholar]
  141. 141.
    Wilson EM, Bial J, Tarlow B, Bial G, Jensen B, et al. 2014.. Extensive double humanization of both liver and hematopoiesis in FRGN mice. . Stem Cell Res. 13::40412
    [Crossref] [Google Scholar]
  142. 142.
    Kaffe E, Roulis M, Zhao J, Qu R, Sefik E, et al. 2023.. Humanized mouse liver reveals endothelial control of essential hepatic metabolic functions. . Cell 186::3793809.e26
    [Crossref] [Google Scholar]
  143. 143.
    Rickinson AB, Kieff E. 2007.. Epstein-Barr virus. . In Fields Virology, ed. DM Knipe, PM Howley, DE Griffin, RA Lamb, MA Martin, B Roizman, SE Straus , pp. 2655700. Philadelphia:: Lippincott Williams & Wilkins
    [Google Scholar]
  144. 144.
    Thorley-Lawson DA. 2005.. EBV persistence and latent infection in vivo. . In Epstein-Barr Virus, ed. ES Robertson , pp. 30957. Wymondham, UK:: Caister Academic
    [Google Scholar]
  145. 145.
    Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. 2009.. HIV-associated lymphomas and gamma-herpesviruses. . Blood 113::121324
    [Crossref] [Google Scholar]
  146. 146.
    Wedderburn N, Edwards JMB, Desgranges C, Fontaine C, Cohen B, de Thé G. 1984.. Infectious mononucleosis-like response in common marmosets infected with Epstein-Barr virus. . J. Infect. Dis. 150::87882
    [Crossref] [Google Scholar]
  147. 147.
    Shope T, Dechairo D, Miller G. 1973.. Malignant lymphoma in cottontop marmosets after inoculation with Epstein-Barr virus. . PNAS 70::248791
    [Crossref] [Google Scholar]
  148. 148.
    Hong J, Zhong L, Liu L, Wu Q, Zhang W, et al. 2023.. Non-overlapping epitopes on the gHgL-gp42 complex for the rational design of a triple-antibody cocktail against EBV infection. . Cell Rep. Med. 4::101296
    [Crossref] [Google Scholar]
  149. 149.
    Malhi H, Homad LJ, Wan YH, Poudel B, Fiala B, et al. 2022.. Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge. . Cell Rep. Med. 3::100658
    [Crossref] [Google Scholar]
  150. 150.
    Volk V, Theobald SJ, Danisch S, Khailaie S, Kalbarczyk M, et al. 2020.. PD-1 blockade aggravates Epstein-Barr virus+ post-transplant lymphoproliferative disorder in humanized mice resulting in central nervous system involvement and CD4+ T cell dysregulations. . Front. Oncol. 10::614876
    [Crossref] [Google Scholar]
  151. 151.
    Bilger A, Plowshay J, Ma S, Nawandar D, Barlow EA, et al. 2017.. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)-induced lymphoproliferative disease and lytic viral replication. . Oncotarget 8::4426680
    [Crossref] [Google Scholar]
  152. 152.
    Dittmer DP, Damania B. 2016.. Kaposi sarcoma-associated herpesvirus: immunobiology, oncogenesis, and therapy. . J. Clin. Investig. 126::316575
    [Crossref] [Google Scholar]
  153. 153.
    Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. 2016.. Dengue infection. . Nat. Rev. Dis. Primers 2::16055
    [Crossref] [Google Scholar]
  154. 154.
    Umakanth M, Suganthan N. 2020.. Unusual manifestations of dengue fever: a review on expanded dengue syndrome. . Cureus 12::e10678
    [Google Scholar]
  155. 155.
    Mota J, Rico-Hesse R. 2009.. Humanized mice show clinical signs of dengue fever according to infecting virus genotype. . J. Virol. 83::863845
    [Crossref] [Google Scholar]
  156. 156.
    Jangalwe S, Shultz LD, Mathew A, Brehm MA. 2016.. Improved B cell development in humanized NOD-scid IL2Rγnull mice transgenically expressing human stem cell factor, granulocyte-macrophage colony-stimulating factor and interleukin-3. . Immun. Inflamm. Dis. 4::42740
    [Crossref] [Google Scholar]
  157. 157.
    Musso D, Gubler DJ. 2016.. Zika virus. . Clin. Microbiol. Rev. 29::487524
    [Crossref] [Google Scholar]
  158. 158.
    de Paula Freitas B, Ventura CV, Maia M, Belfort R Jr. 2017.. Zika virus and the eye. . Curr. Opin. Ophthalmol. 28::59599
    [Crossref] [Google Scholar]
  159. 159.
    Yepez JB, Murati FA, Pettito M, Penaranda CF, de Yepez J, et al. 2017.. Ophthalmic manifestations of congenital Zika syndrome in Colombia and Venezuela. . JAMA Ophthalmol. 135::44045
    [Crossref] [Google Scholar]
  160. 160.
    Hamer DH, Wilson ME, Jean J, Chen LH. 2017.. Epidemiology, prevention, and potential future treatments of sexually transmitted Zika virus infection. . Curr. Infect. Dis. Rep. 19::16
    [Crossref] [Google Scholar]
  161. 161.
    D'Ortenzio E, Matheron S, de Lamballerie X, Hubert B, Piorkowski G, et al. 2016.. Evidence of sexual transmission of Zika virus. . N. Engl. J. Med. 374::219598
    [Crossref] [Google Scholar]
  162. 162.
    Mead PS, Duggal NK, Hook SA, Delorey M, Fischer M, et al. 2018.. Zika virus shedding in semen of symptomatic infected men. . N. Engl. J. Med. 378::137785
    [Crossref] [Google Scholar]
  163. 163.
    Smith DR, Hollidge B, Daye S, Zeng X, Blancett C, et al. 2017.. Neuropathogenesis of Zika virus in a highly susceptible immunocompetent mouse model after antibody blockade of type I interferon. . PLOS Negl. Trop. Dis. 11::e0005296
    [Crossref] [Google Scholar]
  164. 164.
    Aliota MT, Caine EA, Walker EC, Larkin KE, Camacho E, Osorio JE. 2016.. Characterization of lethal Zika virus infection in AG129 mice. . PLOS Negl. Trop. Dis. 10::e0004682
    [Crossref] [Google Scholar]
  165. 165.
    Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, et al. 2016.. Characterization of a novel murine model to study Zika virus. . Am. J. Trop. Med. Hyg. 94::136269
    [Crossref] [Google Scholar]
  166. 166.
    Miner JJ, Sene A, Richner JM, Smith AM, Santeford A, et al. 2016.. Zika virus infection in mice causes panuveitis with shedding of virus in tears. . Cell Rep. 16::320818
    [Crossref] [Google Scholar]
  167. 167.
    Julander JG, Siddharthan V, Evans J, Taylor R, Tolbert K, et al. 2017.. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. . Antivir. Res. 137::1422
    [Crossref] [Google Scholar]
  168. 168.
    Min CK, Shakya AK, Lee BJ, Streblow DN, Caposio P, Yurochko AD. 2020.. The differentiation of human cytomegalovirus infected-monocytes is required for viral replication. . Front. Cell. Infect. Microbiol. 10::368
    [Crossref] [Google Scholar]
  169. 169.
    Pickles RJ, DeVincenzo JP. 2015.. Respiratory syncytial virus (RSV) and its propensity for causing bronchiolitis. . J. Pathol. 235::26676
    [Crossref] [Google Scholar]
  170. 170.
    Welliver TP, Garofalo RP, Hosakote Y, Hintz KH, Avendano L, et al. 2007.. Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. . J. Infect. Dis. 195::112636
    [Crossref] [Google Scholar]
  171. 171.
    Cui J, Li F, Shi ZL. 2019.. Origin and evolution of pathogenic coronaviruses. . Nat. Rev. Microbiol. 17::18192
    [Crossref] [Google Scholar]
  172. 172.
    Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, et al. 2020.. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. . Cell 181::27180.e8
    [Crossref] [Google Scholar]
  173. 173.
    Knight AC, Montgomery SA, Fletcher CA, Baxter VK. 2021.. Mouse models for the study of SARS-CoV-2 infection. . Comp. Med. 71::38397
    [Crossref] [Google Scholar]
  174. 174.
    WHO (World Health Organ.). 2017.. Global Hepatitis Report, 2017. Geneva:: WHO. https://www.who.int/publications-detail-redirect/9789241565455
    [Google Scholar]
  175. 175.
    Te HS, Jensen DM. 2010.. Epidemiology of hepatitis B and C viruses: a global overview. . Clin. Liver Dis. 14::121
    [Crossref] [Google Scholar]
  176. 176.
    Ding Q, von Schaewen M, Ploss A. 2014.. The impact of hepatitis C virus entry on viral tropism. . Cell Host Microbe 16::56268
    [Crossref] [Google Scholar]
  177. 177.
    Sun S, Li J. 2017.. Humanized chimeric mouse models of hepatitis B virus infection. . Int. J. Infect. Dis. 59::13136
    [Crossref] [Google Scholar]
  178. 178.
    Dandri M, Burda MR, Torok E, Pollok JM, Iwanska A, et al. 2001.. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. . Hepatology 33::98188
    [Crossref] [Google Scholar]
  179. 179.
    Kosaka K, Hiraga N, Imamura M, Yoshimi S, Murakami E, et al. 2013.. A novel TK-NOG based humanized mouse model for the study of HBV and HCV infections. . Biochem. Biophys. Res. Commun. 441::23035
    [Crossref] [Google Scholar]
  180. 180.
    Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, et al. 2001.. Hepatitis C virus replication in mice with chimeric human livers. . Nat. Med. 7::92733
    [Crossref] [Google Scholar]
  181. 181.
    Kruse RL, Shum T, Tashiro H, Barzi M, Yi Z, et al. 2018.. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice. . Cytotherapy 20::697705
    [Crossref] [Google Scholar]
  182. 182.
    Cheng L, Li F, Bility MT, Murphy CM, Su L. 2015.. Modeling hepatitis B virus infection, immunopathology and therapy in mice. . Antivir. Res. 121::18
    [Crossref] [Google Scholar]
  183. 183.
    Lempp FA, Volz T, Cameroni E, Benigni F, Zhou J, et al. 2023.. Potent broadly neutralizing antibody VIR-3434 controls hepatitis B and D virus infection and reduces HBsAg in humanized mice. . J. Hepatol. 79::112938
    [Crossref] [Google Scholar]
  184. 184.
    Hogan G, Winer BY, Ahodantin J, Sellau J, Huang T, et al. 2023.. Persistent hepatitis B virus and HIV coinfections in dually humanized mice engrafted with human liver and immune system. . J. Med. Virol. 95::e28930
    [Crossref] [Google Scholar]
  185. 185.
    Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, et al. 2004.. Development of a human adaptive immune system in cord blood cell-transplanted mice. . Science 304::1047
    [Crossref] [Google Scholar]
  186. 186.
    Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, et al. 2005.. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. . Blood 106::156573
    [Crossref] [Google Scholar]
  187. 187.
    Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, et al. 2005.. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. . J. Immunol. 174::647789
    [Crossref] [Google Scholar]
  188. 188.
    Garcia JV. 2016.. In vivo platforms for analysis of HIV persistence and eradication. . J. Clin. Investig. 126::42431
    [Crossref] [Google Scholar]
  189. 189.
    Zhang C, Zaman LA, Poluektova LY, Gorantla S, Gendelman HE, Dash PK. 2023.. Humanized mice for studies of HIV-1 persistence and elimination. . Pathogens 12::879
    [Crossref] [Google Scholar]
  190. 190.
    Carrillo MA, Zhen A, Mu W, Rezek V, Martin H, et al. 2024.. Stem cell-derived CAR T cells show greater persistence, trafficking, and viral control compared to ex vivo transduced CAR T cells. . Mol. Ther. 32::100015
    [Crossref] [Google Scholar]
  191. 191.
    Maldini CR, Claiborne DT, Okawa K, Chen T, Dopkin DL, et al. 2020.. Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. . Nat. Med. 26::177687
    [Crossref] [Google Scholar]
  192. 192.
    Brown ME, Zhou Y, McIntosh BE, Norman IG, Lou HE, et al. 2018.. A humanized mouse model generated using surplus neonatal tissue. . Stem Cell Rep. 10::117583
    [Crossref] [Google Scholar]
  193. 193.
    Mian SA, Anjos-Afonso F, Bonnet D. 2020.. Advances in human immune system mouse models for studying human hematopoiesis and cancer immunotherapy. . Front. Immunol. 11::619236
    [Crossref] [Google Scholar]
  194. 194.
    Wunderlich M, Chou FS, Sexton C, Presicce P, Chougnet CA, et al. 2018.. Improved multilineage human hematopoietic reconstitution and function in NSGS mice. . PLOS ONE 13::e0209034
    [Crossref] [Google Scholar]
  195. 195.
    Ito R, Takahashi T, Katano I, Kawai K, Kamisako T, et al. 2013.. Establishment of a human allergy model using human IL-3/GM-CSF–transgenic NOG mice. . J. Immunol. 191::289099
    [Crossref] [Google Scholar]
  196. 196.
    Aryee KE, Burzenski LM, Yao LC, Keck JG, Greiner DL, et al. 2022.. Enhanced development of functional human NK cells in NOD-scid-IL2rgnull mice expressing human IL15. . FASEB J. 36::e22476
    [Crossref] [Google Scholar]
  197. 197.
    Katano I, Nishime C, Ito R, Kamisako T, Mizusawa T, et al. 2017.. Long-term maintenance of peripheral blood derived human NK cells in a novel human IL-15-transgenic NOG mouse. . Sci. Rep. 7::17230
    [Crossref] [Google Scholar]
  198. 198.
    Board NL, Yuan Z, Wu F, Moskovljevic M, Ravi M, et al. 2024.. Bispecific antibodies promote natural killer cell-mediated elimination of HIV-1 reservoir cells. . Nat. Immunol. 25::46270
    [Crossref] [Google Scholar]
  199. 199.
    Prevost J, Anand SP, Rajashekar JK, Zhu L, Richard J, et al. 2022.. HIV-1 Vpu restricts Fc-mediated effector functions in vivo. . Cell Rep. 41::111624
    [Crossref] [Google Scholar]
  200. 200.
    Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, et al. 2014.. Development and function of human innate immune cells in a humanized mouse model. . Nat. Biotechnol. 32::36472
    [Crossref] [Google Scholar]
  201. 201.
    Sungur CM, Wang Q, Ozanturk AN, Gao H, Schmitz AJ, et al. 2022.. Human NK cells confer protection against HIV-1 infection in humanized mice. . J. Clin. Investig. 132::e162694
    [Crossref] [Google Scholar]
  202. 202.
    Chen Q, Khoury M, Chen J. 2009.. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. . PNAS 106::2178388
    [Crossref] [Google Scholar]
  203. 203.
    Yoshihara S, Li Y, Xia J, Li W, Fujimori Y, Yang Y-G. 2015.. Stem cell factor, GM-CSF, and IL-3-transgenic humanized mice develop fatal hemophagocytic lymphohistiocytosis. . Exp. Hematol. 43::S48
    [Crossref] [Google Scholar]
  204. 204.
    Shultz LD, Keck J, Burzenski L, Jangalwe S, Vaidya S, et al. 2019.. Humanized mouse models of immunological diseases and precision medicine. . Mamm. Genome 30::12342
    [Crossref] [Google Scholar]
  205. 205.
    Martinov T, McKenna KM, Tan WH, Collins EJ, Kehret AR, et al. 2021.. Building the next generation of humanized hemato-lymphoid system mice. . Front. Immunol. 12::643852
    [Crossref] [Google Scholar]
  206. 206.
    Jung C, Hugot JP, Barreau F. 2010.. Peyer's Patches: the immune sensors of the intestine. . Int. J. Inflamm. 2010::823710
    [Google Scholar]
  207. 207.
    Li Y, Masse-Ranson G, Garcia Z, Bruel T, Kok A, et al. 2018.. A human immune system mouse model with robust lymph node development. . Nat. Methods 15::62330
    [Crossref] [Google Scholar]
  208. 208.
    Yan H, Bhagwat B, Sanden D, Willingham A, Tan A, et al. 2019.. Evaluation of a TGN1412 analogue using in vitro assays and two immune humanized mouse models. . Toxicol. Appl. Pharmacol. 372::5769
    [Crossref] [Google Scholar]
  209. 209.
    Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, et al. 2023.. Humanized mouse models for immuno-oncology research. . Nat. Rev. Clin. Oncol. 20::192206
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-082223-035718
Loading
/content/journals/10.1146/annurev-immunol-082223-035718
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error