1932

Abstract

CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell–intrinsic and –extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082223-044122
2025-04-25
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-082223-044122.html?itemId=/content/journals/10.1146/annurev-immunol-082223-044122&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bruni D, Angell HK, Galon J. 2020.. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. . Nat. Rev. Cancer 20::66280
    [Crossref] [Google Scholar]
  2. 2.
    Giles JR, Globig AM, Kaech SM, Wherry EJ. 2023.. CD8+ T cells in the cancer–immunity cycle. . Immunity 56::223153
    [Crossref] [Google Scholar]
  3. 3.
    Baessler A, Vignali DAA. 2024.. T cell exhaustion. . Annu. Rev. Immunol. 42::179206
    [Crossref] [Google Scholar]
  4. 4.
    Philip M, Schietinger A. 2022.. CD8+ T cell differentiation and dysfunction in cancer. . Nat. Rev. Immunol. 22::20923
    [Crossref] [Google Scholar]
  5. 5.
    Speiser DE, Chijioke O, Schaeuble K, Munz C. 2023.. CD4+ T cells in cancer. . Nat. Cancer 4::31729
    [Crossref] [Google Scholar]
  6. 6.
    Togashi Y, Shitara K, Nishikawa H. 2019.. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. . Nat. Rev. Clin. Oncol. 16::35671
    [Crossref] [Google Scholar]
  7. 7.
    Bawden E, Gebhardt T. 2023.. The multifaceted roles of CD4+ T cells and MHC class II in cancer surveillance. . Curr. Opin. Immunol. 83::102345
    [Crossref] [Google Scholar]
  8. 8.
    Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, et al. 2023.. Immune checkpoint therapy—current perspectives and future directions. . Cell 186:(8):165269
    [Crossref] [Google Scholar]
  9. 9.
    Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. 2023.. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. . Signal. Transduct. Target. Ther. 8::320
    [Crossref] [Google Scholar]
  10. 10.
    Zheng L, Qin S, Si W, Wang A, Xing B, et al. 2021.. Pan-cancer single-cell landscape of tumor-infiltrating T cells. . Science 374::abe6474
    [Crossref] [Google Scholar]
  11. 11.
    van der Leun AM, Thommen DS, Schumacher TN. 2020.. CD8+ T cell states in human cancer: insights from single-cell analysis. . Nat. Rev. Cancer 20::21832
    [Crossref] [Google Scholar]
  12. 12.
    Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, et al. 2019.. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. . Cell 175::9981013.e20
    [Crossref] [Google Scholar]
  13. 13.
    Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, et al. 2019.. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. . Cell 176::77589.e18
    [Crossref] [Google Scholar]
  14. 14.
    Guo X, Zhang Y, Zheng L, Zheng C, Song J, et al. 2018.. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. . Nat. Med. 24::97885
    [Crossref] [Google Scholar]
  15. 15.
    Oliveira G, Stromhaug K, Klaeger S, Kula T, Frederick DT, et al. 2021.. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. . Nature 596::11925
    [Crossref] [Google Scholar]
  16. 16.
    Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, et al. 2016.. T cell factor 1–expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. . Immunity 45::41527
    [Crossref] [Google Scholar]
  17. 17.
    He R, Hou S, Liu C, Zhang A, Bai Q, et al. 2016.. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. . Nature 537::41228
    [Crossref] [Google Scholar]
  18. 18.
    Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, et al. 2016.. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. . Nature 537::41721
    [Crossref] [Google Scholar]
  19. 19.
    Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, et al. 2019.. Author correction: Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. . Nat. Immunol. 20::1556
    [Crossref] [Google Scholar]
  20. 20.
    Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, et al. 2019.. Intratumoral TCF-1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. . Immunity 50::195211.e10
    [Crossref] [Google Scholar]
  21. 21.
    Blackburn SD, Shin H, Freeman GJ, Wherry EJ. 2008.. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. . PNAS 105::1501621
    [Crossref] [Google Scholar]
  22. 22.
    Albelda SM. 2024.. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. . Nat. Rev. Clin. Oncol. 21::4766
    [Crossref] [Google Scholar]
  23. 23.
    Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, et al. 1998.. Viral immune evasion due to persistence of activated T cells without effector function. . J. Exp. Med. 188::220513
    [Crossref] [Google Scholar]
  24. 24.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, et al. 2006.. Restoring function in exhausted CD8 T cells during chronic viral infection. . Nature 439::68287
    [Crossref] [Google Scholar]
  25. 25.
    Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, et al. 1998.. Induction and exhaustion of lymphocytic choriomeningitis virus–specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I–peptide complexes. . J. Exp. Med. 187::138393
    [Crossref] [Google Scholar]
  26. 26.
    Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, et al. 2007.. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-BET transcription factor. . Immunity 27::28195
    [Crossref] [Google Scholar]
  27. 27.
    Chung HK, McDonald B, Kaech SM. 2021.. The architectural design of CD8+ T cell responses in acute and chronic infection: parallel structures with divergent fates. . J. Exp. Med. 218::e20201730
    [Crossref] [Google Scholar]
  28. 28.
    Buggert M, Price DA, Mackay LK, Betts MR. 2023.. Human circulating and tissue-resident memory CD8+ T cells. . Nat. Immunol. 24::107686
    [Crossref] [Google Scholar]
  29. 29.
    Christo SN, Park SL, Mueller SN, Mackay LK. 2024.. The multifaceted role of tissue-resident memory T cells. . Annu. Rev. Immunol. 42::31745
    [Crossref] [Google Scholar]
  30. 30.
    Christo SN, Evrard M, Park SL, Gandolfo LC, Burn TN, et al. 2021.. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. . Nat. Immunol. 22::114051
    [Crossref] [Google Scholar]
  31. 31.
    Lan X, Zebley CC, Youngblood B. 2023.. Cellular and molecular waypoints along the path of T cell exhaustion. . Sci. Immunol. 8::eadg3868
    [Crossref] [Google Scholar]
  32. 32.
    Chen Y, Zander R, Khatun A, Schauder DM, Cui W. 2018.. Transcriptional and epigenetic regulation of effector and memory CD8 T cell differentiation. . Front. Immunol. 9::2826
    [Crossref] [Google Scholar]
  33. 33.
    Mackay LK, Minnich M, Kragten NA, Liao Y, Nota B, et al. 2016.. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. . Science 352::45963
    [Crossref] [Google Scholar]
  34. 34.
    Milner JJ, Toma C, Yu B, Zhang K, Omilusik K, et al. 2017.. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. . Nature 552::25357
    [Crossref] [Google Scholar]
  35. 35.
    Mackay LK, Wynne-Jones E, Freestone D, Pellicci DG, Mielke LA, et al. 2015.. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. . Immunity 43::110111
    [Crossref] [Google Scholar]
  36. 36.
    Kaech SM, Cui W. 2012.. Transcriptional control of effector and memory CD8+ T cell differentiation. . Nat. Rev. Immunol. 12::74961
    [Crossref] [Google Scholar]
  37. 37.
    Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, et al. 2013.. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. . Nat. Immunol. 14::1294301
    [Crossref] [Google Scholar]
  38. 38.
    Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, et al. 2012.. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. . J. Immunol. 188::486675
    [Crossref] [Google Scholar]
  39. 39.
    Zhang N, Bevan MJ. 2013.. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention.. Immunity 39::68796
    [Crossref] [Google Scholar]
  40. 40.
    Mackay LK, Wynne-Jones E, Freestone D, Pellicci DG, Mielke LA, et al. 2015.. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. . Immunity 43::110111
    [Crossref] [Google Scholar]
  41. 41.
    Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. 1993.. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. . Nature 362::75861
    [Crossref] [Google Scholar]
  42. 42.
    Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. 2021.. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. . Nat. Immunol. 22::80919
    [Crossref] [Google Scholar]
  43. 43.
    Liu R, Li HF, Li S. 2024.. PD-1-mediated inhibition of T cell activation: mechanisms and strategies for cancer combination immunotherapy. . Cell Insight 3::100146
    [Crossref] [Google Scholar]
  44. 44.
    Sharpe AH, Pauken KE. 2018.. The diverse functions of the PD1 inhibitory pathway. . Nat. Rev. Immunol. 18::15367
    [Crossref] [Google Scholar]
  45. 45.
    Hui E, Cheung J, Zhu J, Su X, Taylor MJ, et al. 2017.. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. . Science 355::142833
    [Crossref] [Google Scholar]
  46. 46.
    Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, et al. 2016.. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. . Immunity 45::35873
    [Crossref] [Google Scholar]
  47. 47.
    Kallies A, Zehn D, Utzschneider DT. 2020.. Precursor exhausted T cells: key to successful immunotherapy?. Nat. Rev. Immunol. 20::12836
    [Crossref] [Google Scholar]
  48. 48.
    Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, et al. 1999.. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus–infected macaques. . J. Exp. Med. 189::99198
    [Crossref] [Google Scholar]
  49. 49.
    Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, et al. 1999.. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. . Science 283::85760
    [Crossref] [Google Scholar]
  50. 50.
    Frebel H, Nindl V, Schuepbach RA, Braunschweiler T, Richter K, et al. 2012.. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. . J. Exp. Med. 209::248599
    [Crossref] [Google Scholar]
  51. 51.
    Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ. 2015.. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. . J. Exp. Med. 212::112537
    [Crossref] [Google Scholar]
  52. 52.
    Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, et al. 2019.. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. . Nature 571::21118
    [Crossref] [Google Scholar]
  53. 53.
    Scott AC, Dundar F, Zumbo P, Chandran SS, Klebanoff CA, et al. 2019.. TOX is a critical regulator of tumour-specific T cell differentiation. . Nature 571::27074
    [Crossref] [Google Scholar]
  54. 54.
    Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, et al. 2019.. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. . Nature 571::26569
    [Crossref] [Google Scholar]
  55. 55.
    Speiser DE, Utzschneider DT, Oberle SG, Munz C, Romero P, Zehn D. 2014.. T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?. Nat. Rev. Immunol. 14::76874
    [Crossref] [Google Scholar]
  56. 56.
    Zehn D, Thimme R, Lugli E, de Almeida GP, Oxenius A. 2022.. ‘ Stem-like’ precursors are the fount to sustain persistent CD8+ T cell responses. . Nat. Immunol. 23::83647
    [Crossref] [Google Scholar]
  57. 57.
    Wu T, Ji Y, Moseman EA, Xu HC, Manglani M, et al. 2016.. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. . Sci. Immunol. 1::aai8593
    [Crossref] [Google Scholar]
  58. 58.
    Brummelman J, Mazza EMC, Alvisi G, Colombo FS, Grilli A, et al. 2018.. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. . J. Exp. Med. 215::252035
    [Crossref] [Google Scholar]
  59. 59.
    Utzschneider DT, Gabriel SS, Chisanga D, Gloury R, Gubser PM, et al. 2020.. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. . Nat. Immunol. 21::125666
    [Crossref] [Google Scholar]
  60. 60.
    Hudson WH, Gensheimer J, Hashimoto M, Wieland A, Valanparambil RM, et al. 2019.. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. . Immunity 51::104358.e4
    [Crossref] [Google Scholar]
  61. 61.
    Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, et al. 2020.. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. . Immunity 52::82541.e8
    [Crossref] [Google Scholar]
  62. 62.
    Daniel B, Yost KE, Hsiung S, Sandor K, Xia Y, et al. 2022.. Divergent clonal differentiation trajectories of T cell exhaustion. . Nat. Immunol. 23::161427
    [Crossref] [Google Scholar]
  63. 63.
    Giles JR, Ngiow SF, Manne S, Baxter AE, Khan O, et al. 2022.. Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics. . Nat. Immunol. 23::160013
    [Crossref] [Google Scholar]
  64. 64.
    Zander R, Schauder D, Xin G, Nguyen C, Wu X, et al. 2019.. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. . Immunity 51::102842.e4
    [Crossref] [Google Scholar]
  65. 65.
    Kasmani MY, Zander R, Chung HK, Chen Y, Khatun A. 2023.. Clonal lineage tracing reveals mechanisms skewing CD8+ T cell fate decisions in chronic infection. . J. Exp. Med. 220::e20220679
    [Crossref] [Google Scholar]
  66. 66.
    Sandu I, Cerletti D, Oetiker N, Borsa M, Wagen F, et al. 2020.. Landscape of exhausted virus-specific CD8 T cells in chronic LCMV infection. . Cell Rep. 32::108078
    [Crossref] [Google Scholar]
  67. 67.
    Tsui C, Kretschmer L, Rapelius S, Gabriel SS, Chisanga D, et al. 2022.. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. . Nature 609::35460
    [Crossref] [Google Scholar]
  68. 68.
    Anadon CM, Yu X, Hanggi K, Biswas S, Chaurio RA, et al. 2022.. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. . Cancer Cell 40::54557.e13
    [Crossref] [Google Scholar]
  69. 69.
    Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, et al. 2011.. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. . J. Clin. Investig. 121::235060
    [Crossref] [Google Scholar]
  70. 70.
    Schietinger A, Philip M, Krisnawan VE, Chiu EY, Delrow JJ, et al. 2016.. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. . Immunity 45::389401
    [Crossref] [Google Scholar]
  71. 71.
    Philip M, Fairchild L, Sun L, Horste EL, Camara S, et al. 2017.. Chromatin states define tumour-specific T cell dysfunction and reprogramming. . Nature 545::45256
    [Crossref] [Google Scholar]
  72. 72.
    Philip M, Schietinger A. 2019.. Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections. . Curr. Opin. Immunol. 58::98103
    [Crossref] [Google Scholar]
  73. 73.
    Anderson KG, Stromnes IM, Greenberg PD. 2017.. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. . Cancer Cell 31::31125
    [Crossref] [Google Scholar]
  74. 74.
    Speiser DE, Ho PC, Verdeil G. 2016.. Regulatory circuits of T cell function in cancer. . Nat. Rev. Immunol. 16::599611
    [Crossref] [Google Scholar]
  75. 75.
    Kurtulus S, Madi A, Escobar G, Klapholz M, Nyman J, et al. 2019.. Checkpoint blockade immunotherapy induces dynamic changes in PD-1CD8+ tumor-infiltrating T cells. . Immunity 50::18194.e6
    [Crossref] [Google Scholar]
  76. 76.
    Casado JG, Soto R, DelaRosa O, Peralbo E, Muñoz-Villanueva MD, et al. 2005.. CD8 T cells expressing NK associated receptors are increased in melanoma patients and display an effector phenotype. . Cancer Immunol. Immunother. 54::116271
    [Crossref] [Google Scholar]
  77. 77.
    Pai JA, Hellmann MD, Sauter JL, Mattar M, Rizvi H, et al. 2023.. Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade. . Cancer Cell 41::77690.e7
    [Crossref] [Google Scholar]
  78. 78.
    Vignali PDA, DePeaux K, Watson MJ, Ye C, Ford BR, et al. 2023.. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. . Nat. Immunol. 24::26779
    [Crossref] [Google Scholar]
  79. 79.
    Canale FP, Ramello MC, Núñez N, Bossio SN, Piaggio E, et al. 2018.. CD39 expression defines cell exhaustion in tumor-infiltrating CD8+ T cells. . Cancer Res. 78::11528
    [Crossref] [Google Scholar]
  80. 80.
    Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, et al. 2018.. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. . Nature 557::57579
    [Crossref] [Google Scholar]
  81. 81.
    Duhen T, Duhen R, Montler R, Moses J, Moudgil T, et al. 2018.. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. . Nat. Commun. 9::2724
    [Crossref] [Google Scholar]
  82. 82.
    Jansen CS, Prokhnevska N, Master VA, Sanda MG, Carlisle JW, et al. 2019.. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. . Nature 576::46570
    [Crossref] [Google Scholar]
  83. 83.
    Eberhardt CS, Kissick HT, Patel MR, Cardenas MA, Prokhnevska N, et al. 2021.. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. . Nature 597::27984
    [Crossref] [Google Scholar]
  84. 84.
    Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, et al. 2020.. The PD-1/PD-L1 checkpoint restrains T cell immunity in tumor-draining lymph nodes. . Cancer Cell 38::685700.e8
    [Crossref] [Google Scholar]
  85. 85.
    Connolly KA, Kuchroo M, Venkat A, Khatun A, Wang J, et al. 2021.. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. . Sci. Immunol. 6::eabg7836
    [Crossref] [Google Scholar]
  86. 86.
    Liu B, Hu X, Feng K, Gao R, Xue Z, et al. 2022.. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. . Nat. Cancer 3::10821
    [Crossref] [Google Scholar]
  87. 87.
    Yamauchi T, Hoki T, Oba T, Jain V, Chen H, et al. 2021.. T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors. . Nat. Commun. 12::1402
    [Crossref] [Google Scholar]
  88. 88.
    Yamauchi T, Hoki T, Oba T, Saito H, Attwood K, et al. 2020.. CX3CR1CD8+ T cells are critical in antitumor efficacy but functionally suppressed in the tumor microenvironment. . JCI Insight 5::e133920
    [Crossref] [Google Scholar]
  89. 89.
    Park SL, Gebhardt T, Mackay LK. 2019.. Tissue-resident memory T cells in cancer immunosurveillance. . Trends Immunol. 40::73547
    [Crossref] [Google Scholar]
  90. 90.
    Amsen D, van Gisbergen K, Hombrink P, van Lier RAW. 2018.. Tissue-resident memory T cells at the center of immunity to solid tumors. . Nat. Immunol. 19::53846
    [Crossref] [Google Scholar]
  91. 91.
    Gavil NV, Scott MC, Weyu E, Smith OC, O'Flanagan SD, et al. 2023.. Chronic antigen in solid tumors drives a distinct program of T cell residence. . Sci. Immunol. 8::eadd5976
    [Crossref] [Google Scholar]
  92. 92.
    Virassamy B, Caramia F, Savas P, Sant S, Wang J, et al. 2023.. Intratumoral CD8+ T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer. . Cancer Cell 41::585601.e8
    [Crossref] [Google Scholar]
  93. 93.
    Caushi JX, Zhang J, Ji Z, Vaghasia A, Zhang B, et al. 2021.. Author correction: Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. . Nature 598::E1
    [Crossref] [Google Scholar]
  94. 94.
    Clarke J, Panwar B, Madrigal A, Singh D, Gujar R, et al. 2019.. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. . J. Exp. Med. 216::212849
    [Crossref] [Google Scholar]
  95. 95.
    Corgnac S, Malenica I, Mezquita L, Auclin E, Voilin E, et al. 2020.. CD103+CD8+ TRM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with Tc17. . Cell Rep. Med. 1::100127
    [Crossref] [Google Scholar]
  96. 96.
    Ganesan A-P, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, et al. 2017.. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. . Nat. Immunol. 18::94050
    [Crossref] [Google Scholar]
  97. 97.
    Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G, et al. 2015.. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. . J. Immunol. 194::347586
    [Crossref] [Google Scholar]
  98. 98.
    Wang ZQ, Milne K, Derocher H, Webb JR, Nelson BH, Watson PH. 2016.. CD103 and intratumoral immune response in breast cancer. . Clin. Cancer Res. 22::629097
    [Crossref] [Google Scholar]
  99. 99.
    Banchereau R, Chitre AS, Scherl A, Wu TD, Patil NS, et al. 2021.. Intratumoral CD103+ CD8+ T cells predict response to PD-L1 blockade. . J. Immunother. Cancer 9::e002231
    [Crossref] [Google Scholar]
  100. 100.
    Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, et al. 2018.. Publisher correction: Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. . Nat. Med. 24::1941
    [Crossref] [Google Scholar]
  101. 101.
    Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, et al. 2018.. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naive melanoma patients and expand significantly during anti-PD-1 treatment. . Clin. Cancer Res. 24::303645
    [Crossref] [Google Scholar]
  102. 102.
    Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH. 2014.. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. . Clin. Cancer Res. 20::43444
    [Crossref] [Google Scholar]
  103. 103.
    Malik BT, Byrne KT, Vella JL, Zhang P, Shabaneh TB, et al. 2017.. Resident memory T cells in the skin mediate durable immunity to melanoma. . Sci. Immunol. 2::eaam6346
    [Crossref] [Google Scholar]
  104. 104.
    Weeden CE, Gayevskiy V, Marceaux C, Batey D, Tan T, et al. 2023.. Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non–small cell lung cancer. . Cancer Cell 41::83752.e6
    [Crossref] [Google Scholar]
  105. 105.
    Enamorado M, Iborra S, Priego E, Cueto FJ, Quintana JA, et al. 2017.. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. . Nat. Commun. 8::16073
    [Crossref] [Google Scholar]
  106. 106.
    Park SL, Buzzai A, Rautela J, Hor JL, Hochheiser K, et al. 2019.. Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. . Nature 565::36671
    [Crossref] [Google Scholar]
  107. 107.
    Nizard M, Roussel H, Diniz MO, Karaki S, Tran T, et al. 2017.. Induction of resident memory T cells enhances the efficacy of cancer vaccine. . Nat. Commun. 8::15221
    [Crossref] [Google Scholar]
  108. 108.
    Molodtsov AK, Khatwani N, Vella JL, Lewis KA, Zhao Y, et al. 2021.. Resident memory CD8+ T cells in regional lymph nodes mediate immunity to metastatic melanoma. . Immunity 54::211732.e7
    [Crossref] [Google Scholar]
  109. 109.
    Lowery FJ, Krishna S, Yossef R, Parikh NB, Chatani PD, et al. 2022.. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. . Science 375::87784
    [Crossref] [Google Scholar]
  110. 110.
    Burger ML, Cruz AM, Crossland GE, Gaglia G, Ritch CC, et al. 2021.. Antigen dominance hierarchies shape TCF-1+ progenitor CD8 T cell phenotypes in tumors. . Cell 184::49965014.e26
    [Crossref] [Google Scholar]
  111. 111.
    Kumar BV, Ma W, Miron M, Granot T, Guyer RS, et al. 2017.. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. . Cell Rep. 20::292134
    [Crossref] [Google Scholar]
  112. 112.
    Park SL, Zaid A, Hor JL, Christo SN, Prier JE, et al. 2018.. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. . Nat. Immunol. 19::18391
    [Crossref] [Google Scholar]
  113. 113.
    Hombrink P, Helbig C, Backer RA, Piet B, Oja AE, et al. 2016.. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. . Nat. Immunol. 17::146778
    [Crossref] [Google Scholar]
  114. 114.
    Zhang L, Yu X, Zheng L, Zhang Y, Li Y, et al. 2018.. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. . Nature 564::26872
    [Crossref] [Google Scholar]
  115. 115.
    Maurice NJ, McElrath MJ, Andersen-Nissen E, Frahm N, Prlic M. 2019.. CXCR3 enables recruitment and site-specific bystander activation of memory CD8+ T cells. . Nat. Commun. 10::4987
    [Crossref] [Google Scholar]
  116. 116.
    Verdegaal EM, de Miranda NF, Visser M, Harryvan T, van Buuren MM, et al. 2016.. Neoantigen landscape dynamics during human melanoma–T cell interactions. . Nature 536::9195
    [Crossref] [Google Scholar]
  117. 117.
    Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, et al. 2012.. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. . Nature 482::4004
    [Crossref] [Google Scholar]
  118. 118.
    Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, et al. 2017.. Evolution of neoantigen landscape during immune checkpoint blockade in non–small cell lung cancer. . Cancer Discov. 7::26476
    [Crossref] [Google Scholar]
  119. 119.
    Rosato PC, Wijeyesinghe S, Stolley JM, Nelson CE, Davis RL, et al. 2019.. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. . Nat. Commun. 10::567
    [Crossref] [Google Scholar]
  120. 120.
    Utzschneider DT, Alfei F, Roelli P, Barras D, Chennupati V, et al. 2016.. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. . J. Exp. Med. 213::181934
    [Crossref] [Google Scholar]
  121. 121.
    Gebhardt T, Park SL, Parish IA. 2023.. Stem-like exhausted and memory CD8+ T cells in cancer. . Nat. Rev. Cancer 23::78098
    [Crossref] [Google Scholar]
  122. 122.
    Gabriel SS, Tsui C, Chisanga D, Weber F, Llano-Leon M, et al. 2021.. Transforming growth factor β–regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection. . Immunity 54::1698714.e5
    [Crossref] [Google Scholar]
  123. 123.
    Hu Y, Hudson WH, Kissick HT, Medina CB, Baptista AP, et al. 2022.. TGF-β regulates the stem-like state of PD-1+ TCF-1+ virus-specific CD8 T cells during chronic infection. . J. Exp. Med. 219::e20211574
    [Crossref] [Google Scholar]
  124. 124.
    Park BV, Freeman ZT, Ghasemzadeh A, Chattergoon MA, Rutebemberwa A, et al. 2016.. TGFβ1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. . Cancer Discov. 6::136681
    [Crossref] [Google Scholar]
  125. 125.
    Sun Q, Cai D, Liu D, Zhao X, Li R, et al. 2023.. BCL6 promotes a stem-like CD8+ T cell program in cancer via antagonizing BLIMP1. . Sci. Immunol. 8::eadh1306
    [Crossref] [Google Scholar]
  126. 126.
    Jung IY, Noguera-Ortega E, Bartoszek R, Collins SM, Williams E, et al. 2023.. Tissue-resident memory CAR T cells with stem-like characteristics display enhanced efficacy against solid and liquid tumors. . Cell Rep. Med. 4::101053
    [Crossref] [Google Scholar]
  127. 127.
    Curtsinger JM, Mescher MF. 2010.. Inflammatory cytokines as a third signal for T cell activation. . Curr. Opin. Immunol. 22::33340
    [Crossref] [Google Scholar]
  128. 128.
    Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, et al. 2013.. Blockade of chronic type I interferon signaling to control persistent LCMV infection. . Science 340::2027
    [Crossref] [Google Scholar]
  129. 129.
    Chen W, Teo JMN, Yau SW, Wong MY, Lok CN, et al. 2022.. Chronic type I interferon signaling promotes lipid-peroxidation-driven terminal CD8+ T cell exhaustion and curtails anti-PD-1 efficacy. . Cell Rep. 41::111647
    [Crossref] [Google Scholar]
  130. 130.
    Zhen A, Rezek V, Youn C, Lam B, Chang N, et al. 2017.. Targeting type I interferon–mediated activation restores immune function in chronic HIV infection. . J. Clin. Investig. 127::26068
    [Crossref] [Google Scholar]
  131. 131.
    Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, et al. 2013.. Persistent LCMV infection is controlled by blockade of type I interferon signaling. . Science 340::20711
    [Crossref] [Google Scholar]
  132. 132.
    Lukhele S, Rabbo DA, Guo M, Shen J, Elsaesser HJ, et al. 2022.. The transcription factor IRF2 drives interferon-mediated CD8+ T cell exhaustion to restrict anti-tumor immunity. . Immunity 55::236985.e10
    [Crossref] [Google Scholar]
  133. 133.
    Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, et al. 2016.. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. . Cell 167::154054.e12
    [Crossref] [Google Scholar]
  134. 134.
    Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB. 2006.. Interleukin-10 determines viral clearance or persistence in vivo. . Nat. Med. 12::13019
    [Crossref] [Google Scholar]
  135. 135.
    Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, et al. 2006.. Resolution of a chronic viral infection after interleukin-10 receptor blockade. . J. Exp. Med. 203::246172
    [Crossref] [Google Scholar]
  136. 136.
    Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, et al. 2019.. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. . Nat. Immunol. 20::72435
    [Crossref] [Google Scholar]
  137. 137.
    Naing A, Infante JR, Papadopoulos KP, Chan IH, Shen C, et al. 2018.. PEGylated IL-10 (pegilodecakin) induces systemic immune activation, CD8+ T cell invigoration and polyclonal T cell expansion in cancer patients. . Cancer Cell 34::77591.e3
    [Crossref] [Google Scholar]
  138. 138.
    Guo Y, Xie YQ, Gao M, Zhao Y, Franco F, et al. 2021.. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. . Nat. Immunol. 22::74656
    [Crossref] [Google Scholar]
  139. 139.
    Niederlova V, Tsyklauri O, Kovar M, Stepanek O. 2023.. IL-2-driven CD8+ T cell phenotypes: implications for immunotherapy. . Trends Immunol. 44::890901
    [Crossref] [Google Scholar]
  140. 140.
    Beltra JC, Bourbonnais S, Bedard N, Charpentier T, Boulange M, et al. 2016.. IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection. . PNAS 113::E544453
    [Crossref] [Google Scholar]
  141. 141.
    Liu Y, Zhou N, Zhou L, Wang J, Zhou Y, et al. 2021.. IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor. . Nat. Immunol. 22::35869
    [Crossref] [Google Scholar]
  142. 142.
    Hashimoto M, Araki K, Cardenas MA, Li P, Jadhav RR, et al. 2022.. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. . Nature 610::17381
    [Crossref] [Google Scholar]
  143. 143.
    West EE, Jin HT, Rasheed AU, Penaloza-Macmaster P, Ha SJ, et al. 2013.. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. . J. Clin. Investig. 123::260415
    [Crossref] [Google Scholar]
  144. 144.
    Codarri Deak L, Nicolini V, Hashimoto M, Karagianni M, Schwalie PC, et al. 2022.. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. . Nature 610::16172
    [Crossref] [Google Scholar]
  145. 145.
    Beltra JC, Abdel-Hakeem MS, Manne S, Zhang Z, Huang H, et al. 2023.. Stat5 opposes the transcription factor Tox and rewires exhausted CD8+ T cells toward durable effector-like states during chronic antigen exposure. . Immunity 56::2699718.e11
    [Crossref] [Google Scholar]
  146. 146.
    Chen Y, Zhou P, Gubser PM, Leong YA, He J, et al. 2024.. IL-2 enhances effector function but suppresses follicular localization of CD8+ T cells in chronic infection. . bioRxiv 2024.05.02.592184. https://doi.org/10.1101/2024.05.02.592184
  147. 147.
    Hashimoto M, Ramalingam SS, Ahmed R. 2024.. Harnessing CD8 T cell responses using PD-1–IL-2 combination therapy. . Trends Cancer 10::33246
    [Crossref] [Google Scholar]
  148. 148.
    Deng S, Sun Z, Qiao J, Liang Y, Liu L, et al. 2020.. Targeting tumors with IL-21 reshapes the tumor microenvironment by proliferating PD-1intTim-3CD8+ T cells. . JCI Insight 5::e132000
    [Crossref] [Google Scholar]
  149. 149.
    Li Y, Bleakley M, Yee C. 2005.. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. . J. Immunol. 175::226169
    [Crossref] [Google Scholar]
  150. 150.
    Wiede F, Lu KH, Du X, Zeissig MN, Xu R, et al. 2022.. PTP1B is an intracellular checkpoint that limits T-cell and CAR T-cell antitumor immunity. . Cancer Discov. 12::75273
    [Crossref] [Google Scholar]
  151. 151.
    LaFleur MW, Nguyen TH, Coxe MA, Miller BC, Yates KB, et al. 2019.. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. . Nat. Immunol. 20::133547
    [Crossref] [Google Scholar]
  152. 152.
    Wiede F, Shields BJ, Chew SH, Kyparissoudis K, van Vliet C, et al. 2011.. T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. . J. Clin. Investig. 121::475874
    [Crossref] [Google Scholar]
  153. 153.
    Wiede F, Lu KH, Du X, Liang S, Hochheiser K, et al. 2020.. PTPN2 phosphatase deletion in T cells promotes anti-tumour immunity and CAR T-cell efficacy in solid tumours. . EMBO J. 39::e103637
    [Crossref] [Google Scholar]
  154. 154.
    Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, et al. 2017.. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. . Nature 547::41318
    [Crossref] [Google Scholar]
  155. 155.
    Goh PK, Wiede F, Zeissig MN, Britt KL, Liang S, et al. 2022.. PTPN2 elicits cell autonomous and non–cell autonomous effects on antitumor immunity in triple-negative breast cancer. . Sci. Adv. 8::eabk3338
    [Crossref] [Google Scholar]
  156. 156.
    Liang S, Tran E, Du X, Dong J, Sudholz H, et al. 2023.. A small molecule inhibitor of PTP1B and PTPN2 enhances T cell anti-tumor immunity. . Nat. Commun. 14::4524
    [Crossref] [Google Scholar]
  157. 157.
    Baumgartner CK, Ebrahimi-Nik H, Iracheta-Vellve A, Hamel KM, Olander KE, et al. 2023.. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. . Nature 622::85062
    [Crossref] [Google Scholar]
  158. 158.
    Liou J, Kiefer F, Dang A, Hashimoto A, Cobb MH, et al. 2000.. HPK1 is activated by lymphocyte antigen receptors and negatively regulates AP-1. . Immunity 12::399408
    [Crossref] [Google Scholar]
  159. 159.
    Shui JW, Boomer JS, Han J, Xu J, Dement GA, et al. 2007.. Hematopoietic progenitor kinase 1 negatively regulates T cell receptor signaling and T cell–mediated immune responses. . Nat. Immunol. 8::8491
    [Crossref] [Google Scholar]
  160. 160.
    Si J, Shi X, Sun S, Zou B, Li Y, et al. 2020.. Hematopoietic progenitor kinase 1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell–based immunotherapies. . Cancer Cell 38::55166.e11
    [Crossref] [Google Scholar]
  161. 161.
    Zhang J, Ren Z, Hu Y, Shang S, Wang R, et al. 2024.. High HPK1+PD-1+TIM-3+CD8+ T cells infiltration predicts poor prognosis to immunotherapy in NSCLC patients. . Int. Immunopharmacol. 127::111363
    [Crossref] [Google Scholar]
  162. 162.
    Hernandez S, Qing J, Thibodeau RH, Du X, Park S, et al. 2018.. The kinase activity of hematopoietic progenitor kinase 1 is essential for the regulation of T cell function. . Cell Rep. 25::8094
    [Crossref] [Google Scholar]
  163. 163.
    Palmer DC, Guittard GC, Franco Z, Crompton JG, Eil RL, et al. 2015.. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. . J. Exp. Med. 212::2095113
    [Crossref] [Google Scholar]
  164. 164.
    Dan L, Liu L, Sun Y, Song J, Yin Q, et al. 2020.. The phosphatase PAC1 acts as a T cell suppressor and attenuates host antitumor immunity. . Nat. Immunol. 21::28797
    [Crossref] [Google Scholar]
  165. 165.
    Zhou P, Shaffer DR, Alvarez Arias DA, Nakazaki Y, Pos W, et al. 2014.. In vivo discovery of immunotherapy targets in the tumour microenvironment. . Nature 506::5257
    [Crossref] [Google Scholar]
  166. 166.
    Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, et al. 2016.. Ionic immune suppression within the tumour microenvironment limits T cell effector function. . Nature 537::53943
    [Crossref] [Google Scholar]
  167. 167.
    Heissmeyer V, Macian F, Im SH, Varma R, Feske S, et al. 2004.. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. . Nat. Immunol. 5::25565
    [Crossref] [Google Scholar]
  168. 168.
    Ou R, Zhang M, Huang L, Moskophidis D. 2008.. Control of virus-specific CD8+ T-cell exhaustion and immune-mediated pathology by E3 ubiquitin ligase Cbl-b during chronic viral infection. . J. Virol. 82::335368
    [Crossref] [Google Scholar]
  169. 169.
    Kumar J, Kumar R, Kumar Singh A, Tsakem EL, Kathania M, et al. 2021.. Deletion of Cbl-b inhibits CD8+ T-cell exhaustion and promotes CAR T-cell function. . J. Immunother. Cancer 9::e001688
    [Crossref] [Google Scholar]
  170. 170.
    Chiang JY, Jang IK, Hodes R, Gu H. 2007.. Ablation of Cbl-b provides protection against transplanted and spontaneous tumors. . J. Clin. Investig. 117::102936
    [Crossref] [Google Scholar]
  171. 171.
    Loeser S, Loser K, Bijker MS, Rangachari M, van der Burg SH, et al. 2007.. Spontaneous tumor rejection by cbl-b-deficient CD8+ T cells. . J. Exp. Med. 204::87991
    [Crossref] [Google Scholar]
  172. 172.
    Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. 2023.. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. . J. Immunother. Cancer 11::e005845
    [Crossref] [Google Scholar]
  173. 173.
    Stanford SM, Bottini N. 2023.. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. . Nat. Rev. Drug Discov. 22::27394
    [Crossref] [Google Scholar]
  174. 174.
    Li W, Zhang L. 2020.. Rewiring mitochondrial metabolism for CD8+ T cell memory formation and effective cancer immunotherapy. . Front. Immunol. 11::1834
    [Crossref] [Google Scholar]
  175. 175.
    Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, et al. 2016.. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. . Immunity 45::7013
    [Crossref] [Google Scholar]
  176. 176.
    Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, et al. 2015.. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. . Nat. Commun. 6::6692
    [Crossref] [Google Scholar]
  177. 177.
    Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, et al. 2015.. Metabolic competition in the tumor microenvironment is a driver of cancer progression. . Cell 162::122941
    [Crossref] [Google Scholar]
  178. 178.
    Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, et al. 2015.. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. . Cell 162::121728
    [Crossref] [Google Scholar]
  179. 179.
    Yu YR, Imrichova H, Wang H, Chao T, Xiao Z, et al. 2020.. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. . Nat. Immunol. 21::154051
    [Crossref] [Google Scholar]
  180. 180.
    Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, et al. 2021.. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. . Nat. Immunol. 22::20515
    [Crossref] [Google Scholar]
  181. 181.
    Ma S, Dahabieh MS, Mann TH, Zhao S, McDonald B, et al. 2025.. Nutrient-driven histone code determines exhausted CD8+ T cell fates. . Science 387::eadj3020
    [Crossref] [Google Scholar]
  182. 182.
    Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, et al. 2019.. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. . PNAS 116::1241015
    [Crossref] [Google Scholar]
  183. 183.
    Liu X, Wang Y, Lu H, Li J, Yan X, et al. 2019.. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. . Nature 567::52529
    [Crossref] [Google Scholar]
  184. 184.
    Man K, Gabriel SS, Liao Y, Gloury R, Preston S, et al. 2017.. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. . Immunity 47::112941.e5
    [Crossref] [Google Scholar]
  185. 185.
    Mognol GP, Spreafico R, Wong V, Scott-Browne JP, Togher S, et al. 2017.. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. . PNAS 114::E277685
    [Crossref] [Google Scholar]
  186. 186.
    Chen J, López-Moyado IF, Seo H, Lio CJ, Hempleman LJ, et al. 2019.. NR4A transcription factors limit CAR T cell function in solid tumours. . Nature 567::53034
    [Crossref] [Google Scholar]
  187. 187.
    Yao C, Sun HW, Lacey NE, Ji Y, Moseman EA, et al. 2019.. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. . Nat. Immunol. 20::890901
    [Crossref] [Google Scholar]
  188. 188.
    Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, et al. 2015.. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. . Immunity 42::26578
    [Crossref] [Google Scholar]
  189. 189.
    Chen Z, Ji Z, Ngiow SF, Manne S, Cai Z, et al. 2019.. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell–fate decision. . Immunity 51::84055.e5
    [Crossref] [Google Scholar]
  190. 190.
    Leong YA, Chen Y, Ong HS, Wu D, Man K, et al. 2016.. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. . Nat. Immunol. 17::118796
    [Crossref] [Google Scholar]
  191. 191.
    Utzschneider DT, Delpoux A, Wieland D, Huang X, Lai CY, et al. 2018.. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1. . Cell Rep. 22::345467
    [Crossref] [Google Scholar]
  192. 192.
    Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, et al. 2014.. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. . Immunity 41::80214
    [Crossref] [Google Scholar]
  193. 193.
    Yao C, Lou G, Sun HW, Zhu Z, Sun Y, et al. 2021.. Author correction: BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. . Nat. Immunol. 22::530
    [Crossref] [Google Scholar]
  194. 194.
    Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, et al. 2012.. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. . Science 338::122025
    [Crossref] [Google Scholar]
  195. 195.
    Gautam S, Fioravanti J, Zhu W, Le Gall JB, Brohawn P, et al. 2019.. The transcription factor c-Myb regulates CD8+ T cell stemness and antitumor immunity. . Nat. Immunol. 20::33749
    [Crossref] [Google Scholar]
  196. 196.
    Jin Y, Hu P, Sun H, Yang C, Zhai J, et al. 2022.. Expression of Id3 represses exhaustion of anti-tumor CD8 T cells in liver cancer. . Mol. Immunol. 144::11726
    [Crossref] [Google Scholar]
  197. 197.
    Doan AE, Mueller KP, Chen AY, Rouin GT, Daniel B, et al. 2024.. FOXO1 is a master regulator of CAR T memory programming. . Science 629::21118
    [Google Scholar]
  198. 198.
    Chan JD, Scheffler CM, Munoz I, Sek K, Lee JN, et al. 2024.. FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy. . Nature 629::20110
    [Crossref] [Google Scholar]
  199. 199.
    Ramsay RG, Gonda TJ. 2008.. MYB function in normal and cancer cells. . Nat. Rev. Cancer 8::52334
    [Crossref] [Google Scholar]
  200. 200.
    Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, et al. 2011.. A human memory T cell subset with stem cell–like properties. . Nat. Med. 17::129097
    [Crossref] [Google Scholar]
  201. 201.
    Kallies A, Xin A, Belz GT, Nutt SL. 2009.. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. . Immunity 31::28395
    [Crossref] [Google Scholar]
  202. 202.
    Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, et al. 2009.. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. . Immunity 31::30920
    [Crossref] [Google Scholar]
  203. 203.
    Yoshikawa T, Wu Z, Inoue S, Kasuya H, Matsushita H, et al. 2022.. Genetic ablation of PRDM1 in antitumor T cells enhances therapeutic efficacy of adoptive immunotherapy. . Blood 139::215672
    [Crossref] [Google Scholar]
  204. 204.
    Li Y, Han M, Wei H, Huang W, Chen Z, et al. 2024.. Id2 epigenetically controls CD8+ T-cell exhaustion by disrupting the assembly of the Tcf3–LSD1 complex. . Cell Mol. Immunol. 21::292308
    [Crossref] [Google Scholar]
  205. 205.
    Kallies A, Good-Jacobson KL. 2017.. Transcription factor T-BET orchestrates lineage development and function in the immune system. . Trends Immunol. 38::28797
    [Crossref] [Google Scholar]
  206. 206.
    Chen Y, Zander RA, Wu X, Schauder DM, Kasmani MY, et al. 2021.. BATF regulates progenitor to cytolytic effector CD8+ T cell transition during chronic viral infection. . Nat. Immunol. 22::9961007
    [Crossref] [Google Scholar]
  207. 207.
    McLane LM, Ngiow SF, Chen Z, Attanasio J, Manne S, et al. 2021.. Role of nuclear localization in the regulation and function of T-BET and Eomes in exhausted CD8 T cells. . Cell Rep. 35::109120
    [Crossref] [Google Scholar]
  208. 208.
    Sun R, Wu Y, Zhou H, Wu Y, Yang Z, et al. 2021.. Eomes impedes durable response to tumor immunotherapy by inhibiting stemness, tissue residency, and promoting the dysfunctional state of intratumoral CD8+ T cells. . Front. Cell Dev. Biol. 9::640224
    [Crossref] [Google Scholar]
  209. 209.
    Kitakaze M, Uemura M, Hara T, Chijimatsu R, Motooka D, et al. 2023.. Cancer-specific tissue-resident memory T-cells express ZNF683 in colorectal cancer. . Br. J. Cancer 128::182837
    [Crossref] [Google Scholar]
  210. 210.
    Milner JJ, Toma C, He Z, Kurd NS, Nguyen QP, et al. 2020.. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. . Immunity 52::80824.e7
    [Crossref] [Google Scholar]
  211. 211.
    Kurd NS, He Z, Louis TL, Milner JJ, Omilusik KD, et al. 2020.. Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. . Sci. Immunol. 5::aaz6894
    [Crossref] [Google Scholar]
  212. 212.
    Li C, Zhu B, Son YM, Wang Z, Jiang L, et al. 2020.. The transcription factor Bhlhe40 programs mitochondrial regulation of resident CD8+ T cell fitness and functionality. . Immunity 52::2012
    [Crossref] [Google Scholar]
  213. 213.
    Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, et al. 2016.. The epigenetic landscape of T cell exhaustion. . Science 354::116569
    [Crossref] [Google Scholar]
  214. 214.
    Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, et al. 2016.. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. . Science 354::116065
    [Crossref] [Google Scholar]
  215. 215.
    Scott-Browne JP, López-Moyado IF, Trifari S, Wong V, Chavez L, et al. 2016.. Dynamic changes in chromatin accessibility occur in CD8+ T cells responding to viral infection. . Immunity 45::132740
    [Crossref] [Google Scholar]
  216. 216.
    Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, et al. 2017.. De novo epigenetic programs inhibit PD-1 blockade–mediated T cell rejuvenation. . Cell 170::14257.e19
    [Crossref] [Google Scholar]
  217. 217.
    Abdel-Hakeem MS, Manne S, Beltra JC, Stelekati E, Chen Z, et al. 2021.. Author correction: Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. . Nat. Immunol. 22::1465
    [Crossref] [Google Scholar]
  218. 218.
    Yates KB, Tonnerre P, Martin GE, Gerdemann U, Al Abosy R, et al. 2021.. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. . Nat. Immunol. 22::102029
    [Crossref] [Google Scholar]
  219. 219.
    Wieland D, Kemming J, Schuch A, Emmerich F, Knolle P, et al. 2017.. TCF-1+ hepatitis C virus–specific CD8+ T cells are maintained after cessation of chronic antigen stimulation. . Nat. Commun. 8::15050
    [Crossref] [Google Scholar]
  220. 220.
    Jadhav RR, Im SJ, Hu B, Hashimoto M, Li P, et al. 2019.. Epigenetic signature of PD-1+ TCF-1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. . PNAS 116::1411318
    [Crossref] [Google Scholar]
  221. 221.
    Baxter AE, Huang H, Giles JR, Chen Z, Wu JE, et al. 2023.. The SWI/SNF chromatin remodeling complexes BAF and PBAF differentially regulate epigenetic transitions in exhausted CD8+ T cells. . Immunity 56::132040.e10
    [Crossref] [Google Scholar]
  222. 222.
    McDonald B, Chick BY, Ahmed NS, Burns M, Ma S, et al. 2023.. Canonical BAF complex activity shapes the enhancer landscape that licenses CD8+ T cell effector and memory fates. . Immunity 56::130319.e5
    [Crossref] [Google Scholar]
  223. 223.
    Belk JA, Yao W, Ly N, Freitas KA, Chen YT, et al. 2022.. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. . Cancer Cell 40::76886.e7
    [Crossref] [Google Scholar]
  224. 224.
    Battistello E, Hixon KA, Comstock DE, Collings CK, Chen X, et al. 2023.. Stepwise activities of mSWI/SNF family chromatin remodeling complexes direct T cell activation and exhaustion. . Mol. Cell 83::121636.e12
    [Crossref] [Google Scholar]
  225. 225.
    Guo A, Huang H, Zhu Z, Chen MJ, Shi H, et al. 2022.. cBAF complex components and MYC cooperate early in CD8+ T cell fate. . Nature 607::13541
    [Crossref] [Google Scholar]
  226. 226.
    Zhang F, Zhou X, DiSpirito JR, Wang C, Wang Y, Shen H. 2014.. Epigenetic manipulation restores functions of defective CD8+ T cells from chronic viral infection. . Mol. Ther. 22::1698706
    [Crossref] [Google Scholar]
  227. 227.
    Zhu M, Han Y, Gu T, Wang R, Si X, et al. 2024.. Class I HDAC inhibitors enhance antitumor efficacy and persistence of CAR-T cells by activation of the Wnt pathway. . Cell Rep. 43::114065
    [Crossref] [Google Scholar]
  228. 228.
    Kang TG, Lan X, Mi T, Chen H, Alli S, et al. 2024.. Epigenetic regulators of clonal hematopoiesis control CD8 T cell stemness during immunotherapy. . Science 386::eadl4492
    [Crossref] [Google Scholar]
  229. 229.
    Prinzing B, Zebley CC, Petersen CT, Fan Y, Anido AA, et al. 2021.. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. . Sci. Transl. Med. 13::eabh0272
    [Crossref] [Google Scholar]
  230. 230.
    Lee M, Li J, Li J, Fang S, Zhang J, et al. 2021.. Tet2 inactivation enhances the antitumor activity of tumor-infiltrating lymphocytes. . Cancer Res. 81::196576
    [Crossref] [Google Scholar]
  231. 231.
    Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, et al. 2018.. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. . Nature 558::30712
    [Crossref] [Google Scholar]
  232. 232.
    Huang Q, Wu X, Wang Z, Chen X, Wang L, et al. 2022.. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. . Cell 185::404966.e25
    [Crossref] [Google Scholar]
  233. 233.
    Dähling S, Mansilla AM, Knöpper K, Grafen A, Utzschneider DT, et al. 2022.. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. . Immunity 55::65670.e8
    [Crossref] [Google Scholar]
  234. 234.
    Im SJ, Konieczny BT, Hudson WH, Masopust D, Ahmed R. 2020.. PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. . PNAS 117::429299
    [Crossref] [Google Scholar]
  235. 235.
    Chen JH, Nieman LT, Spurrell M, Jorgji V, Richieri P, et al. 2023.. Spatial analysis of human lung cancer reveals organized immune hubs enriched for stem-like CD8 T cells and associated with immunotherapy response. . bioRxiv 2023.04.04.535379. https://doi.org/10.1101/2023.04.04.535379
  236. 236.
    Duraiswamy J, Turrini R, Minasyan A, Barras D, Crespo I, et al. 2021.. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. . Cancer Cell 39::162342.e20
    [Crossref] [Google Scholar]
  237. 237.
    Di Pilato M, Kfuri-Rubens R, Pruessmann JN, Ozga AJ, Messemaker M, et al. 2021.. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. . Cell 184::451230.e22
    [Crossref] [Google Scholar]
  238. 238.
    Hua Y, Vella G, Rambow F, Allen E, Antoranz Martinez A, et al. 2022.. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF-1+ T lymphocyte niches through a feed-forward loop. . Cancer Cell 40::160018.e10
    [Crossref] [Google Scholar]
  239. 239.
    Hoch T, Schulz D, Eling N, Martínez Gómez J, Levesque MP, Bodenmiller B. 2022.. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. . Sci. Immunol. 7::eabk1692
    [Crossref] [Google Scholar]
  240. 240.
    Gaglia G, Burger ML, Ritch CC, Rammos D, Dai Y, et al. 2023.. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma. . Cancer Cell 41::87186.e10
    [Crossref] [Google Scholar]
  241. 241.
    Schenkel JM, Herbst RH, Canner D, Li A, Hillman M, et al. 2021.. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. . Immunity 54::233853.e6
    [Crossref] [Google Scholar]
  242. 242.
    Prokhnevska N, Cardenas MA, Valanparambil RM, Sobierajska E, Barwick BG, et al. 2023.. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. . Immunity 56::10724.e5
    [Crossref] [Google Scholar]
  243. 243.
    Rahim MK, Okholm TLH, Jones KB, McCarthy EE, Liu CC, et al. 2023.. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. . Cell 186::112743.e18
    [Crossref] [Google Scholar]
  244. 244.
    Meiser P, Knolle MA, Hirschberger A, de Almeida GP, Bayerl F, et al. 2023.. A distinct stimulatory cDC1 subpopulation amplifies CD8+ T cell responses in tumors for protective anti-cancer immunity. . Cancer Cell 41::1498515.e10
    [Crossref] [Google Scholar]
  245. 245.
    Bayerl F, Meiser P, Donakonda S, Hirschberger A, Lacher SB, et al. 2023.. Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses. . Immunity 56::134158.e11
    [Crossref] [Google Scholar]
  246. 246.
    Magen A, Hamon P, Fiaschi N, Soong BY, Park MD, et al. 2023.. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. . Nat. Med. 29::138999
    [Crossref] [Google Scholar]
  247. 247.
    Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, et al. 2020.. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. . Nature 584::62429
    [Crossref] [Google Scholar]
  248. 248.
    Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, et al. 2020.. B cells and tertiary lymphoid structures promote immunotherapy response. . Nature 577::54955
    [Crossref] [Google Scholar]
  249. 249.
    Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, et al. 2020.. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. . Nature 577::56165
    [Crossref] [Google Scholar]
  250. 250.
    Spranger S, Dai D, Horton B, Gajewski TF. 2017.. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. . Cancer Cell 31::71123.e4
    [Crossref] [Google Scholar]
  251. 251.
    Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, et al. 2016.. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. . Immunity 44::92438
    [Crossref] [Google Scholar]
  252. 252.
    Sánchez-Paulete AR, Cueto FJ, Martínez-López M, Labiano S, Morales-Kastresana A, et al. 2016.. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. . Cancer Discov. 6::7179
    [Crossref] [Google Scholar]
  253. 253.
    Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautes-Fridman C. 2022. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. . Nat. Rev. Clin. Oncol. 19::44157
    [Crossref] [Google Scholar]
  254. 254.
    Li Z, Tuong ZK, Dean I, Willis C, Gaspal F, et al. 2022.. In vivo labeling reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid tissue. . J. Exp. Med. 219::e20210749
    [Crossref] [Google Scholar]
  255. 255.
    Fransen MF, Schoonderwoerd M, Knopf P, Camps MG, Hawinkels LJ, et al. 2018.. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. . JCI Insight 3::e124507
    [Crossref] [Google Scholar]
  256. 256.
    Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, et al. 2017.. Systemic immunity is required for effective cancer immunotherapy. . Cell 168::487502.e15
    [Crossref] [Google Scholar]
  257. 257.
    Francis DM, Manspeaker MP, Schudel A, Sestito LF, O'Melia MJ, et al. 2020.. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. . Sci. Transl. Med. 12::eaay3575
    [Crossref] [Google Scholar]
  258. 258.
    Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, et al. 2017.. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. . Nature 545::6065
    [Crossref] [Google Scholar]
  259. 259.
    Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, et al. 2017.. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. . PNAS 114::499398
    [Crossref] [Google Scholar]
  260. 260.
    Wu TD, Madireddi S, de Almeida PE, Banchereau R, Chen YJ, et al. 2020.. Peripheral T cell expansion predicts tumour infiltration and clinical response. . Nature 579::27478
    [Crossref] [Google Scholar]
  261. 261.
    Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, et al. 2019.. Clonal replacement of tumor-specific T cells following PD-1 blockade. . Nat. Med. 25::125159
    [Crossref] [Google Scholar]
  262. 262.
    Luoma AM, Suo S, Wang Y, Gunasti L, Porter CBM, et al. 2022.. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. . Cell 185::291835.e29
    [Crossref] [Google Scholar]
  263. 263.
    Upadhaya S, Neftelinov ST, Hodge J, Campbell J. 2022.. Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape. . Nat. Rev. Drug Discov. 21::48283
    [Crossref] [Google Scholar]
  264. 264.
    Kamali AN, Bautista JM, Eisenhut M, Hamedifar H. 2023.. Immune checkpoints and cancer immunotherapies: insights into newly potential receptors and ligands. . Ther. Adv. Vaccines Immunother. 11:. https://doi.org/10.1177/25151355231192043
    [Google Scholar]
  265. 265.
    Ribas A, Wolchok JD. 2018.. Cancer immunotherapy using checkpoint blockade. . Science 359::135055
    [Crossref] [Google Scholar]
  266. 266.
    Lelliott EJ, Kong IY, Zethoven M, Ramsbottom KM, Martelotto LG, et al. 2021.. CDK4/6 inhibition promotes antitumor immunity through the induction of T-cell memory. . Cancer Discov. 11::2582601
    [Crossref] [Google Scholar]
  267. 267.
    Verma V, Jafarzadeh N, Boi S, Kundu S, Jiang Z, et al. 2021.. MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects. . Nat. Immunol. 22::5366
    [Crossref] [Google Scholar]
  268. 268.
    Chan JD, Lai J, Slaney CY, Kallies A, Beavis PA, Darcy PK. 2021.. Cellular networks controlling T cell persistence in adoptive cell therapy. . Nat. Rev. Immunol. 21::76984
    [Crossref] [Google Scholar]
  269. 269.
    Alizadeh D, Wong RA, Yang X, Wang D, Pecoraro JR, et al. 2019.. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. . Cancer Immunol. Res. 7::75972
    [Crossref] [Google Scholar]
  270. 270.
    Loschinski R, Böttcher M, Stoll A, Bruns H, Mackensen A, Mougiakakos D. 2018.. IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner. . Oncotarget 9::1312538
    [Crossref] [Google Scholar]
  271. 271.
    Xu Y, Zhang M, Ramos CA, Durett A, Liu E, et al. 2014.. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. . Blood 123::375059
    [Crossref] [Google Scholar]
  272. 272.
    Giuffrida L, Sek K, Henderson MA, House IG, Lai J, et al. 2020.. IL-15 Preconditioning augments CAR T cell responses to checkpoint blockade for improved treatment of solid tumors. . Mol. Ther. 28::237993
    [Crossref] [Google Scholar]
  273. 273.
    Zheng W, O'Hear CE, Alli R, Basham JH, Abdelsamed HA, et al. 2018.. PI3K orchestration of the in vivo persistence of chimeric antigen receptor–modified T cells. . Leukemia 32::115767
    [Crossref] [Google Scholar]
  274. 274.
    Bowers JS, Majchrzak K, Nelson MH, Aksoy BA, Wyatt MM, et al. 2017.. PI3Kδ inhibition enhances the antitumor fitness of adoptively transferred CD8+ T cells. . Front. Immunol. 8::1221
    [Crossref] [Google Scholar]
  275. 275.
    van der Waart AB, van de Weem NM, Maas F, Kramer CS, Kester MG, et al. 2014.. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. . Blood 124::3490500
    [Crossref] [Google Scholar]
  276. 276.
    Sabatino M, Hu J, Sommariva M, Gautam S, Fellowes V, et al. 2016.. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. . Blood 128::51928
    [Crossref] [Google Scholar]
  277. 277.
    Zheng W, Wei J, Zebley CC, Jones LL, Dhungana Y, et al. 2021.. Regnase-1 suppresses TCF-1+ precursor exhausted T-cell formation to limit CAR–T-cell responses against ALL. . Blood 138::12235
    [Crossref] [Google Scholar]
  278. 278.
    Wei J, Long L, Zheng W, Dhungana Y, Lim SA, et al. 2019.. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. . Nature 576::47176
    [Crossref] [Google Scholar]
  279. 279.
    Seo H, González-Avalos E, Zhang W, Ramchandani P, Yang C, et al. 2021.. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. . Nat. Immunol. 22::98395
    [Crossref] [Google Scholar]
  280. 280.
    Lynn RC, Weber EW, Sotillo E, Gennert D, Xu P, et al. 2019.. c-Jun overexpression in CAR T cells induces exhaustion resistance. . Nature 576::293300
    [Crossref] [Google Scholar]
  281. 281.
    Zhang X, Zhang C, Qiao M, Cheng C, Tang N, et al. 2022.. Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells. . Cancer Cell 40::140722.e7
    [Crossref] [Google Scholar]
  282. 282.
    Jain N, Zhao Z, Feucht J, Koche R, Iyer A, et al. 2023.. TET2 guards against unchecked BATF3-induced CAR T cell expansion. . Nature 615::31522
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-082223-044122
Loading
/content/journals/10.1146/annurev-immunol-082223-044122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error