1932

Abstract

Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved T cells that recognize microbial metabolites. They are abundant in humans and conserved during mammalian evolution, which suggests that they have important nonredundant functions. In this article, we discuss the evolutionary conservation of MAIT cells and describe their original developmental process. MAIT cells exert a wide variety of effector functions, from killing infected cells and promoting inflammation to repairing tissues. We provide insights into these functions and discuss how they result from the context of stimulation encountered by MAIT cells in different tissues and pathological settings. We describe how MAIT cell numbers and features are modified in disease states, focusing mainly on in vivo models. Lastly, we discuss emerging strategies to manipulate MAIT cells for therapeutic purposes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082323-025943
2025-04-25
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-082323-025943.html?itemId=/content/journals/10.1146/annurev-immunol-082323-025943&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. 2015.. The burgeoning family of unconventional T cells. . Nat. Immunol. 16:(11):111423
    [Crossref] [Google Scholar]
  2. 2.
    Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, et al. 1999.. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib–restricted α/β T cell subpopulation in mammals. . J. Exp. Med. 189:(12):190721
    [Crossref] [Google Scholar]
  3. 3.
    Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, et al. 2003.. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. . Nature 422:(6928):16469
    [Crossref] [Google Scholar]
  4. 4.
    Corbett AJ, Eckle SBG, Birkinshaw RW, Liu L, Patel O, et al. 2014.. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. . Nature 509:(7500):36165 Reports the discovery of the most potent bacterial MAIT cell ligand.
    [Crossref] [Google Scholar]
  5. 5.
    Mondot S, Boudinot P, Lantz O. 2016.. MAIT, MR1, microbes and riboflavin: a paradigm for the co-evolution of invariant TCRs and restricting MHCI-like molecules?. Immunogenetics 68:(8):53748
    [Crossref] [Google Scholar]
  6. 6.
    Legoux F, Salou M, Lantz O. 2020.. MAIT cell development and functions: the microbial connection. . Immunity 53:(4):71023
    [Crossref] [Google Scholar]
  7. 7.
    Boudinot P, Mondot S, Jouneau L, Teyton L, Lefranc M-P, Lantz O. 2016.. Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals. . PNAS 113::E298392
    [Crossref] [Google Scholar]
  8. 8.
    Provine NM, Klenerman P. 2020.. MAIT cells in health and disease. . Annu. Rev. Immunol. 38::20328
    [Crossref] [Google Scholar]
  9. 9.
    Dias J, Leeansyah E, Sandberg JK. 2017.. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. . PNAS 114:(27):E543443
    [Crossref] [Google Scholar]
  10. 10.
    Garner LC, Amini A, FitzPatrick MEB, Lett MJ, Hess GF, et al. 2023.. Single-cell analysis of human MAIT cell transcriptional, functional and clonal diversity. . Nat. Immunol. 24:(9):156578 Analyzes the human MAIT cell transcriptome and TCR repertoire from the blood and liver.
    [Crossref] [Google Scholar]
  11. 11.
    Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, et al. 2015.. Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. . PLOS Pathog. 11:(8):e1005072
    [Crossref] [Google Scholar]
  12. 12.
    Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SBG, et al. 2015.. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. . J. Exp. Med. 212:(7):1095108
    [Crossref] [Google Scholar]
  13. 13.
    Salou M, Legoux F, Gilet J, Darbois A, du Halgouet A, et al. 2019.. A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. . J. Exp. Med. 216:(1):13351
    [Crossref] [Google Scholar]
  14. 14.
    Gherardin NA, Keller AN, Woolley RE, Le Nours J, Ritchie DS, et al. 2016.. Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition. . Immunity 44:(1):3245
    [Crossref] [Google Scholar]
  15. 15.
    Gherardin NA, Souter MNT, Koay H-F, Mangas KM, Seemann T, et al. 2018.. Human blood MAIT cell subsets defined using MR1 tetramers. . Immunol. Cell Biol. 96:(5):50725
    [Crossref] [Google Scholar]
  16. 16.
    Savage AK, Constantinides MG, Han J, Picard D, Martin E, et al. 2008.. The transcription factor PLZF directs the effector program of the NKT cell lineage. . Immunity 29:(3):391403
    [Crossref] [Google Scholar]
  17. 17.
    Seach N, Guerri L, Le Bourhis L, Mburu Y, Cui Y, et al. 2013.. Double-positive thymocytes select mucosal-associated invariant T cells. . J. Immunol. 191:(12):60029
    [Crossref] [Google Scholar]
  18. 18.
    Koay H-F, Gherardin NA, Xu C, Seneviratna R, Zhao Z, et al. 2019.. Diverse MR1-restricted T cells in mice and humans. . Nat. Commun. 10:(1):2243
    [Crossref] [Google Scholar]
  19. 19.
    Martin E, Treiner E, Duban L, Guerri L, Laude H, et al. 2009.. Stepwise development of MAIT cells in mouse and human. . PLOS Biol. 7:(3):e1000054
    [Crossref] [Google Scholar]
  20. 20.
    Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, et al. 2011.. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17–secreting T cells. . Blood 117:(4):125059
    [Crossref] [Google Scholar]
  21. 21.
    Khuzwayo S, Mthembu M, Meermeier EW, Prakadan SM, Kazer SW, et al. 2021.. MR1-restricted MAIT cells from the human lung mucosal surface have distinct phenotypic, functional, and transcriptomic features that are preserved in HIV infection. . Front. Immunol. 12::631410
    [Crossref] [Google Scholar]
  22. 22.
    Ben Youssef G, Tourret M, Salou M, Ghazarian L, Houdouin V, et al. 2018.. Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. . J. Exp. Med. 215:(2):45979
    [Crossref] [Google Scholar]
  23. 23.
    Leeansyah E, Loh L, Nixon DF, Sandberg JK. 2014.. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. . Nat. Commun. 5::3143
    [Crossref] [Google Scholar]
  24. 24.
    Fergusson JR, Smith KE, Fleming VM, Rajoriya N, Newell EW, et al. 2014.. CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages. . Cell Rep. 9:(3):107588
    [Crossref] [Google Scholar]
  25. 25.
    Zheng C, Zheng L, Yoo J-K, Guo H, Zhang Y, et al. 2017.. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. . Cell 169:(7):134256.e16
    [Crossref] [Google Scholar]
  26. 26.
    Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L, et al. 2015.. Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation. . J. Clin. Investig. 125:(11):417185
    [Crossref] [Google Scholar]
  27. 27.
    Bugaut H, El Morr Y, Mestdagh M, Darbois A, Paiva RA, et al. 2024.. A conserved transcriptional program for MAIT cells across mammalian evolution. . J. Exp. Med. 221:(2):e20231487 Reveals an evolutionarily conserved transcriptional program of MAIT cells across mammalian evolution.
    [Crossref] [Google Scholar]
  28. 28.
    Huang S, Martin E, Kim S, Yu L, Soudais C, et al. 2009.. MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. . PNAS 106:(20):829095
    [Crossref] [Google Scholar]
  29. 29.
    Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, et al. 2010.. Antimicrobial activity of mucosal-associated invariant T cells. . Nat. Immunol. 11:(8):7018
    [Crossref] [Google Scholar]
  30. 30.
    Edmans MD, Connelley TK, Morgan S, Pediongco TJ, Jayaraman S, et al. 2024.. MAIT cell-MR1 reactivity is highly conserved across multiple divergent species. . J. Biol. Chem. 300::107338
    [Crossref] [Google Scholar]
  31. 31.
    Rozemuller E, Eckle SBG, McLaughlin I, Penning M, Mulder W, et al. 2021.. MR1 encompasses at least six allele groups with coding region alterations. . HLA 98:(6):50916
    [Crossref] [Google Scholar]
  32. 32.
    Howson LJ, Awad W, Von Borstel A, Lim HJ, McWilliam HEG, et al. 2020.. Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1. . Sci. Immunol. 5:(49):eabc9492
    [Crossref] [Google Scholar]
  33. 33.
    Seshadri C, Thuong NTT, Mai NTH, Bang ND, Chau TTH, et al. 2017.. A polymorphism in human MR1 is associated with mRNA expression and susceptibility to tuberculosis. . Genes Immun. 18:(1):814
    [Crossref] [Google Scholar]
  34. 34.
    Mayassi T, Barreiro LB, Rossjohn J, Jabri B. 2021.. A multilayered immune system through the lens of unconventional T cells. . Nature 595:(7868):50110
    [Crossref] [Google Scholar]
  35. 35.
    Greene JM, Dash P, Roy S, McMurtrey C, Awad W, et al. 2017.. MR1-restricted mucosal-associated invariant T (MAIT) cells respond to mycobacterial vaccination and infection in nonhuman primates. . Mucosal Immunol. 10:(3):80213
    [Crossref] [Google Scholar]
  36. 36.
    Xiao X, Li K, Ma X, Liu B, He X, et al. 2019.. Mucosal-associated invariant T cells expressing the TRAV1-TRAJ33 chain are present in pigs. . Front. Immunol. 10::2070
    [Crossref] [Google Scholar]
  37. 37.
    Leeansyah E, Hey YY, Sia WR, Ng JHJ, Gulam MY, et al. 2020.. MR1-restricted T cells with MAIT-like characteristics are functionally conserved in the pteropid bat Pteropus alecto. . iScience 23:(12):101876
    [Crossref] [Google Scholar]
  38. 38.
    Lefranc MP, Giudicelli V, Ginestoux C, Bodmer J, Müller W, et al. 1999.. IMGT, the international ImMunoGeneTics database. . Nucleic Acids Res. 27:(1):20912
    [Crossref] [Google Scholar]
  39. 39.
    Chen Z, Wang H, D'Souza C, Sun S, Kostenko L, et al. 2016.. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. . Mucosal Immunol. 10::5868
    [Crossref] [Google Scholar]
  40. 40.
    Tao H, Pan Y, Chu S, Li L, Xie J, et al. 2021.. Differential controls of MAIT cell effector polarization by mTORC1/mTORC2 via integrating cytokine and costimulatory signals. . Nat. Commun. 12:(1):2029
    [Crossref] [Google Scholar]
  41. 41.
    Wang H, D'Souza C, Lim XY, Kostenko L, Pediongco TJ, et al. 2018.. MAIT cells protect against pulmonary Legionella longbeachae infection. . Nat. Commun. 9:(1):3350
    [Crossref] [Google Scholar]
  42. 42.
    Zhao Z, Wang H, Shi M, Zhu T, Pediongco T, et al. 2021.. Francisella tularensis induces Th1 like MAIT cells conferring protection against systemic and local infection. . Nat. Commun. 12:(1):4355
    [Crossref] [Google Scholar]
  43. 43.
    McWilliam HEG, Villadangos JA. 2024.. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. . Nat. Rev. Immunol. 24:(3):17892
    [Crossref] [Google Scholar]
  44. 44.
    Awad W, Ciacchi L, McCluskey J, Fairlie DP, Rossjohn J. 2023.. Molecular insights into metabolite antigen recognition by mucosal-associated invariant T cells. . Curr. Opin. Immunol. 83::102351
    [Crossref] [Google Scholar]
  45. 45.
    Huang S, Gilfillan S, Cella M, Miley MJ, Lantz O, et al. 2005.. Evidence for MR1 antigen presentation to mucosal-associated invariant T cells. . J. Biol. Chem. 280:(22):2118393
    [Crossref] [Google Scholar]
  46. 46.
    McWilliam HEG, Eckle SBG, Theodossis A, Liu L, Chen Z, et al. 2016.. The intracellular pathway for the presentation of vitamin B–related antigens by the antigen-presenting molecule MR1. . Nat. Immunol. 17:(5):53137
    [Crossref] [Google Scholar]
  47. 47.
    Soudais C, Samassa F, Sarkis M, Le Bourhis L, Bessoles S, et al. 2015.. In vitro and in vivo analysis of the Gram-negative bacteria–derived riboflavin precursor derivatives activating mouse MAIT cells. . J. Immunol. 194:(10):464149
    [Crossref] [Google Scholar]
  48. 48.
    Lim HJ, Wubben JM, Garcia CP, Cruz-Gomez S, Deng J, et al. 2022.. A specialized tyrosine-based endocytosis signal in MR1 controls antigen presentation to MAIT cells. . J. Cell Biol. 221:(12):e202110125
    [Crossref] [Google Scholar]
  49. 49.
    McWilliam HEG, Mak JYW, Awad W, Zorkau M, Cruz-Gomez S, et al. 2020.. Endoplasmic reticulum chaperones stabilize ligand-receptive MR1 molecules for efficient presentation of metabolite antigens. . PNAS 117:(40):2497485
    [Crossref] [Google Scholar]
  50. 50.
    Awad W, Ler GJM, Xu W, Keller AN, Mak JYW, et al. 2020.. The molecular basis underpinning the potency and specificity of MAIT cell antigens. . Nat. Immunol. 21:(4):40011
    [Crossref] [Google Scholar]
  51. 51.
    Reantragoon R, Kjer-Nielsen L, Patel O, Chen Z, Illing PT, et al. 2012.. Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. . J. Exp. Med. 209:(4):76174
    [Crossref] [Google Scholar]
  52. 52.
    Keller AN, Eckle SBG, Xu W, Liu L, Hughes VA, et al. 2017.. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. . Nat. Immunol. 18:(4):40211
    [Crossref] [Google Scholar]
  53. 53.
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, et al. 2012.. MR1 presents microbial vitamin B metabolites to MAIT cells. . Nature 491:(7426):71723
    [Crossref] [Google Scholar]
  54. 54.
    Murayama G, Chiba A, Suzuki H, Nomura A, Mizuno T, et al. 2019.. A critical role for mucosal-associated invariant T cells as regulators and therapeutic targets in systemic lupus erythematosus. . Front. Immunol. 10::2681
    [Crossref] [Google Scholar]
  55. 55.
    Salio M, Awad W, Veerapen N, Gonzalez-Lopez C, Kulicke C, et al. 2020.. Ligand-dependent downregulation of MR1 cell surface expression. . PNAS 117:(19):1046575
    [Crossref] [Google Scholar]
  56. 56.
    Harriff MJ, McMurtrey C, Froyd CA, Jin H, Cansler M, et al. 2018.. MR1 displays the microbial metabolome driving selective MR1-restricted T cell receptor usage. . Sci. Immunol. 3:(25):eaao2556
    [Crossref] [Google Scholar]
  57. 57.
    Matsuoka T, Hattori A, Oishi S, Araki M, Ma B, et al. 2023.. Establishment of an MR1 presentation reporter screening system and identification of phenylpropanoid derivatives as MR1 ligands. . J. Med. Chem. 66:(17):1252035
    [Crossref] [Google Scholar]
  58. 58.
    Ito E, Inuki S, Izumi Y, Takahashi M, Dambayashi Y, et al. 2024.. Sulfated bile acid is a host-derived ligand for MAIT cells. . Sci. Immunol. 9:(91):eade6924
    [Crossref] [Google Scholar]
  59. 59.
    Mak JYW, Xu W, Reid RC, Corbett AJ, Meehan BS, et al. 2017.. Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells. . Nat. Commun. 8:(1):14599
    [Crossref] [Google Scholar]
  60. 60.
    Mak JYW, Rivero RJD, Hoang HN, Lim XY, Deng J, et al. 2024.. Potent immunomodulators developed from an unstable bacterial metabolite of vitamin B2 biosynthesis. . Angew. Chem. Int. Ed. 63::e202400632 Describes the synthesis of a new stable MAIT cell agonist with potency comparable to that of 5OPRU.
    [Crossref] [Google Scholar]
  61. 61.
    Schmaler M, Colone A, Spagnuolo J, Zimmermann M, Lepore M, et al. 2018.. Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation. . Mucosal Immunol. 11:(4):106070
    [Crossref] [Google Scholar]
  62. 62.
    El Morr Y, Fürstenheim M, Mestdagh M, Franciszkiewicz K, Salou M, et al. 2024.. MAIT cells monitor intestinal dysbiosis and contribute to host protection during colitis. . Sci. Immunol. 9:(96):eadi8954 Analyzes the bidirectional relationship between the gut microbiota and MAIT cells.
    [Crossref] [Google Scholar]
  63. 63.
    Salou M, Legoux F, Lantz O. 2021.. MAIT cell development in mice and humans. . Mol. Immunol. 130::3136
    [Crossref] [Google Scholar]
  64. 64.
    Pellicci DG, Koay H-F, Berzins SP. 2020.. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. . Nat. Rev. Immunol. 20:(12):75670
    [Crossref] [Google Scholar]
  65. 65.
    Legoux F, Gilet J, Procopio E, Echasserieau K, Bernardeau K, Lantz O. 2019.. Molecular mechanisms of lineage decisions in metabolite-specific T cells. . Nat. Immunol. 20:(9):124455
    [Crossref] [Google Scholar]
  66. 66.
    Koay H-F, Gherardin NA, Enders A, Loh L, Mackay LK, et al. 2016.. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. . Nat. Immunol. 17:(11):130011
    [Crossref] [Google Scholar]
  67. 67.
    Li W, Kim M-G, Gourley TS, McCarthy BP, Sant'Angelo DB, Chang C-H. 2005.. An alternate pathway for CD4 T cell development: thymocyte-expressed MHC class II selects a distinct T cell population. . Immunity 23:(4):37586
    [Crossref] [Google Scholar]
  68. 68.
    Georgiev H, Peng C, Huggins MA, Jameson SC, Hogquist KA. 2021.. Classical MHC expression by DP thymocytes impairs the selection of non-classical MHC restricted innate-like T cells. . Nat. Commun. 12:(1):2308
    [Crossref] [Google Scholar]
  69. 69.
    Lee YJ, Jeon YK, Kang BH, Chung DH, Park C-G, et al. 2010.. Generation of PLZF+ CD4+ T cells via MHC class II–dependent thymocyte–thymocyte interaction is a physiological process in humans. . J. Exp. Med. 207:(1):23746
    [Crossref] [Google Scholar]
  70. 70.
    Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, et al. 2007.. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. . Immunity 27:(5):75162
    [Crossref] [Google Scholar]
  71. 71.
    Seiler MP, Mathew R, Liszewski MK, Spooner CJ, Barr K, et al. 2012.. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. . Nat. Immunol. 13:(3):26471
    [Crossref] [Google Scholar]
  72. 72.
    Koay H-F, Su S, Amann-Zalcenstein D, Daley SR, Comerford I, et al. 2019.. A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. . Sci. Immunol. 4::eaay6039
    [Crossref] [Google Scholar]
  73. 73.
    Lu Y, Zhong M-C, Qian J, Calderon V, Cruz Tleugabulova M, et al. 2019.. SLAM receptors foster iNKT cell development by reducing TCR signal strength after positive selection. . Nat. Immunol. 20:(4):44757
    [Crossref] [Google Scholar]
  74. 74.
    Bortoluzzi S, Dashtsoodol N, Engleitner T, Drees C, Helmrath S, et al. 2021.. Brief homogeneous TCR signals instruct common iNKT progenitors whose effector diversification is characterized by subsequent cytokine signaling. . Immunity 54:(11):2497513.e9
    [Crossref] [Google Scholar]
  75. 75.
    Mao A-P, Constantinides MG, Mathew R, Zuo Z, Chen X, et al. 2016.. Multiple layers of transcriptional regulation by PLZF in NKT-cell development. . PNAS 113:(27):76027
    [Crossref] [Google Scholar]
  76. 76.
    Thomas SY, Scanlon ST, Griewank KG, Constantinides MG, Savage AK, et al. 2011.. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1–ICAM-1 interactions. . J. Exp. Med. 208:(6):117988
    [Crossref] [Google Scholar]
  77. 77.
    Chandra S, Ascui G, Riffelmacher T, Chawla A, Ramírez-Suástegui C, et al. 2023.. Transcriptomes and metabolism define mouse and human MAIT cell populations. . Sci. Immunol. 8:(89):eabn8531
    [Crossref] [Google Scholar]
  78. 78.
    Legoux F, Bellet D, Daviaud C, El Morr Y, Darbois A, et al. 2019.. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. . Science 366:(6464):49499 Demonstrates the connection between MAIT cell development and the microbiota.
    [Crossref] [Google Scholar]
  79. 79.
    Constantinides MG, Link VM, Tamoutounour S, Wong AC, Perez-Chaparro PJ, et al. 2019.. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. . Science 366:(6464):eaax6624
    [Crossref] [Google Scholar]
  80. 80.
    Krovi SH, Zhang J, Michaels-Foster MJ, Brunetti T, Loh L, et al. 2020.. Thymic iNKT single cell analyses unmask the common developmental program of mouse innate T cells. . Nat. Commun. 11:(1):6238
    [Crossref] [Google Scholar]
  81. 81.
    Baranek T, Lebrigand K, de Amat Herbozo C, Gonzalez L, Bogard G, et al. 2020.. High dimensional single-cell analysis reveals iNKT cell developmental trajectories and effector fate decision. . Cell Rep. 32:(10):108116
    [Crossref] [Google Scholar]
  82. 82.
    Lee M, Lee E, Han SK, Choi YH, Kwon D, et al. 2020.. Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells. . Nat. Commun. 11:(1):4367
    [Crossref] [Google Scholar]
  83. 83.
    Benlagha K, Wei DG, Veiga J, Teyton L, Bendelac A. 2005.. Characterization of the early stages of thymic NKT cell development. . J. Exp. Med. 202:(4):48592
    [Crossref] [Google Scholar]
  84. 84.
    Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. 2013.. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. . Nat. Immunol. 14:(11):114654
    [Crossref] [Google Scholar]
  85. 85.
    Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, et al. 2024.. Unraveling the phenotypic states of human innate-like T cells: comparative insights with conventional T cells and mouse models. . Cell Rep. 43::114705
    [Crossref] [Google Scholar]
  86. 86.
    Karnaukhov VK, Le Gac A-L, Bilonda Mutala L, Darbois A, Perrin L, et al. 2024.. Innate-like T cell subset commitment in the murine thymus is independent of TCR characteristics and occurs during proliferation. . PNAS 121:(14):e2311348121
    [Crossref] [Google Scholar]
  87. 87.
    Mielke LA, Liao Y, Clemens EB, Firth MA, Duckworth B, et al. 2019.. TCF-1 limits the formation of Tc17 cells via repression of the MAF–RORγt axis. . J. Exp. Med. 216:(7):168299
    [Crossref] [Google Scholar]
  88. 88.
    Winter SJ, Kunze-Schumacher H, Imelmann E, Grewers Z, Osthues T, Krueger A. 2019.. MicroRNA miR-181a/b-1 controls MAIT cell development. . Immunol. Cell Biol. 97:(2):190202
    [Crossref] [Google Scholar]
  89. 89.
    Patton T, Zhao Z, Lim XY, Eddy E, Wang H, et al. 2023.. RIPK3 controls MAIT cell accumulation during development but not during infection. . Cell Death Dis. 14:(2):111
    [Crossref] [Google Scholar]
  90. 90.
    Allende ML, Zhou D, Kalkofen DN, Benhamed S, Tuymetova G, et al. 2008.. S1P1 receptor expression regulates emergence of NKT cells in peripheral tissues. . FASEB J. 22:(1):30715
    [Crossref] [Google Scholar]
  91. 91.
    Wang H, Hogquist KA. 2018.. CCR7 defines a precursor for murine iNKT cells in thymus and periphery. . eLife 7::e34793
    [Crossref] [Google Scholar]
  92. 92.
    Sobel AL, Melamed J, Haas D, LeBlanc G, Cirone A, Constantinides MG. 2024.. Antibiotic use in early life subsequently impairs MAIT cell-mediated immunity. . bioRxiv 05.10.593643. https://doi.org/10.1101/2024.05.10.593643
  93. 93.
    Alferink J, Tafuri A, Vestweber D, Hallmann R, Hämmerling GJ, Arnold B. 1998.. Control of neonatal tolerance to tissue antigens by peripheral T cell trafficking. . Science 282:(5392):133841
    [Crossref] [Google Scholar]
  94. 94.
    du Halgouet A, Darbois A, Alkobtawi M, Mestdagh M, Alphonse A, et al. 2023.. Role of MR1-driven signals and amphiregulin on the recruitment and repair function of MAIT cells during skin wound healing. . Immunity 56:(1):7892. e6 Shows the tissue repair properties of MAIT cells in skin wound healing.
    [Crossref] [Google Scholar]
  95. 95.
    Voillet V, Buggert M, Slichter CK, Berkson JD, Mair F, et al. 2018.. Human MAIT cells exit peripheral tissues and recirculate via lymph in steady state conditions. . JCI Insight 3:(7):e98487
    [Crossref] [Google Scholar]
  96. 96.
    Bister J, Crona Guterstam Y, Strunz B, Dumitrescu B, Haij Bhattarai K, et al. 2021.. Human endometrial MAIT cells are transiently tissue resident and respond to Neisseria gonorrhoeae. . Mucosal Immunol. 14:(2):35765
    [Crossref] [Google Scholar]
  97. 97.
    FitzPatrick MEB, Provine NM, Garner LC, Powell K, Amini A, et al. 2021.. Human intestinal tissue-resident memory T cells comprise transcriptionally and functionally distinct subsets. . Cell Rep. 34:(3):108661
    [Crossref] [Google Scholar]
  98. 98.
    Ataide MA, Knöpper K, Cruz de Casas P, Ugur M, Eickhoff S, et al. 2022.. Lymphatic migration of unconventional T cells promotes site-specific immunity in distinct lymph nodes. . Immunity 55:(10):181328.e9
    [Crossref] [Google Scholar]
  99. 99.
    Stolley JM, Johnston TS, Soerens AG, Beura LK, Rosato PC, et al. 2020.. Retrograde migration supplies resident memory T cells to lung-draining LN after influenza infection. . J. Exp. Med. 217:(8):e20192197
    [Crossref] [Google Scholar]
  100. 100.
    Heim TA, Schultz AC, Delclaux I, Cristaldi V, Churchill MJ, et al. 2024.. Lymphatic vessel transit seeds cytotoxic resident memory T cells in skin draining lymph nodes. . Sci. Immunol. 9:(96):eadk8141
    [Crossref] [Google Scholar]
  101. 101.
    Zikherman J, Parameswaran R, Weiss A. 2012.. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. . Nature 489:(7414):16064
    [Crossref] [Google Scholar]
  102. 102.
    Leng T, Akther HD, Hackstein C-P, Powell K, King T, et al. 2019.. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. . Cell Rep. 28:(12):307791.e5
    [Crossref] [Google Scholar]
  103. 103.
    Lamichhane R, Munro F, Harrop TWR, de la Harpe SM, Dearden PK, et al. 2021.. Human liver-derived MAIT cells differ from blood MAIT cells in their metabolism and response to TCR-independent activation. . Eur. J. Immunol. 51:(4):87992
    [Crossref] [Google Scholar]
  104. 104.
    Hinks TSC, Marchi E, Jabeen M, Olshansky M, Kurioka A, et al. 2019.. Activation and in vivo evolution of the MAIT cell transcriptome in mice and humans reveals tissue repair functionality. . Cell Rep. 28:(12):324962.e5
    [Crossref] [Google Scholar]
  105. 105.
    Xiao M-H, Wu S, Liang P, Ma D, Zhang J, et al. 2024.. Mucosal-associated invariant T cells promote ductular reaction through amphiregulin in biliary atresia. . eBioMedicine 103::105138
    [Crossref] [Google Scholar]
  106. 106.
    Jo J, Tan AT, Ussher JE, Sandalova E, Tang X-Z, et al. 2014.. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. . PLOS Pathog. 10:(6):e1004210
    [Crossref] [Google Scholar]
  107. 107.
    Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R, et al. 2014.. CD161++CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. . Eur. J. Immunol. 44:(1):195203
    [Crossref] [Google Scholar]
  108. 108.
    van Wilgenburg B, Loh L, Chen Z, Pediongco TJ, Wang H, et al. 2018.. MAIT cells contribute to protection against lethal influenza infection in vivo. . Nat. Commun. 9:(1):4706
    [Crossref] [Google Scholar]
  109. 109.
    van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, et al. 2016.. MAIT cells are activated during human viral infections. . Nat. Commun. 7::11653
    [Crossref] [Google Scholar]
  110. 110.
    Lamichhane R, Schneider M, de la Harpe SM, Harrop TWR, Hannaway RF, et al. 2019.. TCR- or cytokine-activated CD8+ mucosal-associated invariant T cells are rapid polyfunctional effectors that can coordinate immune responses. . Cell Rep. 28:(12):306176.e5
    [Crossref] [Google Scholar]
  111. 111.
    Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, et al. 2015.. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. . Mucosal Immunol. 8:(2):42940
    [Crossref] [Google Scholar]
  112. 112.
    Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, et al. 2013.. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. . PLOS Pathog. 9:(10):e1003681
    [Crossref] [Google Scholar]
  113. 113.
    Provine NM, Amini A, Garner LC, Spencer AJ, Dold C, et al. 2021.. MAIT cell activation augments adenovirus vector vaccine immunogenicity. . Science 371:(6528):52126
    [Crossref] [Google Scholar]
  114. 114.
    López-Rodríguez JC, Hancock SJ, Li K, Crotta S, Barrington C, et al. 2023.. Type I interferons drive MAIT cell functions against bacterial pneumonia. . J. Exp. Med. 220:(10):e20230037 Demonstrates that type I interferon signaling mediated MAIT cell protection against bacterial pneumonia.
    [Crossref] [Google Scholar]
  115. 115.
    Pavlovic M, Gross C, Chili C, Secher T, Treiner E. 2020.. MAIT cells display a specific response to type 1 IFN underlying the adjuvant effect of TLR7/8 ligands. . Front. Immunol. 11::2097
    [Crossref] [Google Scholar]
  116. 116.
    Tastan C, Karhan E, Zhou W, Fleming E, Voigt AY, et al. 2018.. Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. . Mucosal Immunol. 11:(6):1591605
    [Crossref] [Google Scholar]
  117. 117.
    Vahl JC, Heger K, Knies N, Hein MY, Boon L, et al. 2013.. NKT cell-TCR expression activates conventional T cells in vivo, but is largely dispensable for mature NKT cell biology. . PLOS Biol. 11:(6):e1001589
    [Crossref] [Google Scholar]
  118. 118.
    Franciszkiewicz K, Salou M, Legoux F, Zhou Q, Cui Y, et al. 2016.. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. . Immunol. Rev. 272:(1):12038
    [Crossref] [Google Scholar]
  119. 119.
    Yu H, Yang A, Liu L, Mak JYW, Fairlie DP, Cowley S. 2020.. CXCL16 stimulates antigen-induced MAIT cell accumulation but trafficking during lung infection is CXCR6-independent. . Front. Immunol. 11::1773
    [Crossref] [Google Scholar]
  120. 120.
    Wang H, Kjer-Nielsen L, Shi M, D'Souza C, Pediongco TJ, et al. 2019.. IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection. . Sci. Immunol. 4:(41):eaaw0402
    [Crossref] [Google Scholar]
  121. 121.
    Wang H, Nelson AG, Wang B, Zhao Z, Lim XY, et al. 2022.. The balance of interleukin-12 and interleukin-23 determines the bias of MAIT1 versus MAIT17 responses during bacterial infection. . Immunol. Cell Biol. 100:(7):54761
    [Crossref] [Google Scholar]
  122. 122.
    Shibata K, Shimizu T, Nakahara M, Ito E, Legoux F, et al. 2022.. The intracellular pathogen Francisella tularensis escapes from adaptive immunity by metabolic adaptation. . Life Sci. Alliance 5:(10):e202201441. Correction . 2022.. Life Sci. Alliance 5::e202201733
    [Google Scholar]
  123. 123.
    Cole S, Murray J, Simpson C, Okoye R, Tyson K, et al. 2020.. Interleukin (IL)-12 and IL-18 synergize to promote MAIT cell IL-17A and IL-17F production independently of IL-23 signaling. . Front. Immunol. 11::585134
    [Crossref] [Google Scholar]
  124. 124.
    Kelly J, Minoda Y, Meredith T, Cameron G, Philipp M-S, et al. 2019.. Chronically stimulated human MAIT cells are unexpectedly potent IL-13 producers. . Immunol. Cell Biol. 97:(8):68999
    [Crossref] [Google Scholar]
  125. 125.
    Vorkas CK, Krishna C, Li K, Aube J, Fitzgerald DW, et al. 2022.. Single-cell transcriptional profiling reveals signatures of helper, effector, and regulatory MAIT cells during homeostasis and activation. . J. Immunol. 208:(5):104256
    [Crossref] [Google Scholar]
  126. 126.
    Böttcher K, Rombouts K, Saffioti F, Roccarina D, Rosselli M, et al. 2018.. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. . Hepatology 68:(1):17286
    [Crossref] [Google Scholar]
  127. 127.
    Gibbs A, Leeansyah E, Introini A, Paquin-Proulx D, Hasselrot K, et al. 2016.. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. . Mucosal Immunol. 10::3545
    [Crossref] [Google Scholar]
  128. 128.
    Sobkowiak MJ, Davanian H, Heymann R, Gibbs A, Emgård J, et al. 2019.. Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17. . Eur. J. Immunol. 49:(1):13343
    [Crossref] [Google Scholar]
  129. 129.
    Slichter CK, McDavid A, Miller HW, Finak G, Seymour BJ, et al. 2016.. Distinct activation thresholds of human conventional and innate-like memory T cells. . JCI Insight 1:(8):e86292
    [Crossref] [Google Scholar]
  130. 130.
    Sundstrom P, Ahlmanner F, Akeus P, Sundquist M, Alsen S, et al. 2015.. Human mucosa-associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-γ. . J. Immunol. 195:(7):347281
    [Crossref] [Google Scholar]
  131. 131.
    Crowl JT, Heeg M, Ferry A, Milner JJ, Omilusik KD, et al. 2022.. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. . Nat. Immunol. 23:(7):112131
    [Crossref] [Google Scholar]
  132. 132.
    Machado L, Relaix F, Mourikis P. 2021.. Stress relief: emerging methods to mitigate dissociation-induced artefacts. . Trends Cell Biol. 31:(11):88897
    [Crossref] [Google Scholar]
  133. 133.
    Konecny AJ, Huang Y, Setty M, Prlic M. 2024.. Signals that control MAIT cell function in healthy and inflamed human tissues. . Immunol. Rev. 323:(1):13849
    [Crossref] [Google Scholar]
  134. 134.
    Yvorra T, Steinmetz A, Retailleau P, Lantz O, Schmidt F. 2021.. Synthesis, biological evaluation and molecular modelling of new potent clickable analogues of 5-OP-RU for their use as chemical probes for the study of MAIT cell biology. . Eur. J. Med. Chem. 211::113066
    [Crossref] [Google Scholar]
  135. 135.
    Godfrey DI, Koay H-F, McCluskey J, Gherardin NA. 2019.. The biology and functional importance of MAIT cells. . Nat. Immunol. 20:(9):111028
    [Crossref] [Google Scholar]
  136. 136.
    Salio M. 2022.. Unconventional MAIT cell responses to bacterial infections. . Semin. Immunol. 61–64::101663
    [Crossref] [Google Scholar]
  137. 137.
    Salou M, Franciszkiewicz K, Lantz O. 2017.. MAIT cells in infectious diseases. . Curr. Opin. Immunol. 48::714
    [Crossref] [Google Scholar]
  138. 138.
    Parrot T, Gorin J-B, Ponzetta A, Maleki KT, Kammann T, et al. 2020.. MAIT cell activation and dynamics associated with COVID-19 disease severity. . Sci. Immunol. 5:(51):eabe1670
    [Crossref] [Google Scholar]
  139. 139.
    Jouan Y, Guillon A, Gonzalez L, Perez Y, Boisseau C, et al. 2020.. Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. . J. Exp. Med. 217:(12):e20200872
    [Crossref] [Google Scholar]
  140. 140.
    Flament H, Rouland M, Beaudoin L, Toubal A, Bertrand L, et al. 2021.. Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. . Nat. Immunol. 22:(3):32235
    [Crossref] [Google Scholar]
  141. 141.
    Lee CH, Zhang HH, Singh SP, Koo L, Kabat J, et al. 2018.. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. . eLife 7::e32532
    [Crossref] [Google Scholar]
  142. 142.
    Hackstein C-P, Klenerman P. 2022.. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination. . Semin. Immunol. 61–64::101661
    [Crossref] [Google Scholar]
  143. 143.
    Sandberg JK, Leeansyah E, Eller MA, Shacklett BL, Paquin-Proulx D. 2023.. The emerging role of MAIT cell responses in viral infections. . J. Immunol. 211:(4):51117
    [Crossref] [Google Scholar]
  144. 144.
    Meierovics A, Yankelevich W-JC, Cowley SC. 2013.. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. . PNAS 110:(33):E311928 Shows the protective role of MAIT cells during a lung infection.
    [Crossref] [Google Scholar]
  145. 145.
    Chua W-J, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH. 2012.. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. . Infect. Immun. 80:(9):325667
    [Crossref] [Google Scholar]
  146. 146.
    Sakala IG, Kjer-Nielsen L, Eickhoff CS, Wang X, Blazevic A, et al. 2015.. Functional heterogeneity and antimycobacterial effects of mouse mucosal-associated invariant T cells specific for riboflavin metabolites. . J. Immunol. 195:(2):587601
    [Crossref] [Google Scholar]
  147. 147.
    Georgel P, Radosavljevic M, Macquin C, Bahram S. 2011.. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. . Mol. Immunol. 48:(5):76975
    [Crossref] [Google Scholar]
  148. 148.
    Preciado-Llanes L, Aulicino A, Canals R, Moynihan PJ, Zhu X, et al. 2020.. Evasion of MAIT cell recognition by the African Salmonella Typhimurium ST313 pathovar that causes invasive disease. . PNAS 117:(34):2071728
    [Crossref] [Google Scholar]
  149. 149.
    Hartmann N, McMurtrey C, Sorensen ML, Huber ME, Kurapova R, et al. 2018.. Riboflavin metabolism variation among clinical isolates of Streptococcus pneumoniae results in differential activation of mucosal-associated invariant T cells. . Am. J. Respir. Cell Mol. Biol. 58:(6):76776
    [Crossref] [Google Scholar]
  150. 150.
    Meierovics AI, Cowley SC. 2016.. MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection. . J. Exp. Med. 213:(12):2793809
    [Crossref] [Google Scholar]
  151. 151.
    Youngs J, Provine NM, Lim N, Sharpe HR, Amini A, et al. 2021.. Identification of immune correlates of fatal outcomes in critically ill COVID-19 patients. . PLOS Pathog. 17:(9):e1009804
    [Crossref] [Google Scholar]
  152. 152.
    Loh L, Wang Z, Sant S, Koutsakos M, Jegaskanda S, et al. 2016.. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18–dependent activation. . PNAS 113:(36):1013338
    [Crossref] [Google Scholar]
  153. 153.
    COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium. 2022.. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. . Cell 185:(5):91638.e58
    [Crossref] [Google Scholar]
  154. 154.
    McSharry BP, Samer C, McWilliam HEG, Ashley CL, Yee MB, et al. 2020.. Virus-mediated suppression of the antigen presentation molecule MR1. . Cell Rep. 30:(9):294862.e4
    [Crossref] [Google Scholar]
  155. 155.
    Purohit SK, Samer C, McWilliam HEG, Traves R, Steain M, et al. 2023.. Varicella zoster virus impairs expression of the nonclassical major histocompatibility complex class I–related gene protein (MR1). . J. Infect. Dis. 227:(3):391401
    [Crossref] [Google Scholar]
  156. 156.
    Samer C, McWilliam HEG, McSharry BP, Velusamy T, Burchfield JG, et al. 2024.. Multi-targeted loss of the antigen presentation molecule MR1 during HSV-1 and HSV-2 infection. . iScience 27:(2):108801
    [Crossref] [Google Scholar]
  157. 157.
    Mattner J, DeBord KL, Ismail N, Goff RD, Cantu C, et al. 2005.. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. . Nature 434:(7032):52529
    [Crossref] [Google Scholar]
  158. 158.
    Zhang X, Li S, Lason W, Greco M, Klenerman P, Hinks TSC. 2025.. MAIT cells protect against sterile lung injury. . Cell Rep. 44:115275
    [Google Scholar]
  159. 159.
    Linehan JL, Harrison OJ, Han S-J, Byrd AL, Vujkovic-Cvijin I, et al. 2018.. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. . Cell 172:(4):78496.e18
    [Crossref] [Google Scholar]
  160. 160.
    Konieczny P, Xing Y, Sidhu I, Subudhi I, Mansfield KP, et al. 2022.. Interleukin-17 governs hypoxic adaptation of injured epithelium. . Science 377:(6602):eabg9302
    [Crossref] [Google Scholar]
  161. 161.
    Rouxel O, Da Silva J, Beaudoin L, Nel I, Tard C, et al. 2017.. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. . Nat. Immunol. 18:(12):132131
    [Crossref] [Google Scholar]
  162. 162.
    Yasutomi Y, Chiba A, Haga K, Murayama G, Makiyama A, et al. 2022.. Activated mucosal-associated invariant T cells have a pathogenic role in a murine model of inflammatory bowel disease. . Cell. Mol. Gastroenterol. Hepatol. 13:(1):8193
    [Crossref] [Google Scholar]
  163. 163.
    Zhang Y, Bailey JT, Xu E, Singh K, Lavaert M, et al. 2022.. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. . Nat. Immunol. 23:(12):171425
    [Crossref] [Google Scholar]
  164. 164.
    Henderson NC, Rieder F, Wynn TA. 2020.. Fibrosis: from mechanisms to medicines. . Nature 587:(7835):55566
    [Crossref] [Google Scholar]
  165. 165.
    Mabire M, Hegde P, Hammoutene A, Wan J, Caër C, et al. 2023.. MAIT cell inhibition promotes liver fibrosis regression via macrophage phenotype reprogramming. . Nat. Commun. 14:(1):1830
    [Crossref] [Google Scholar]
  166. 166.
    Hegde P, Weiss E, Paradis V, Wan J, Mabire M, et al. 2018.. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. . Nat. Commun. 9:(1):2146
    [Crossref] [Google Scholar]
  167. 167.
    Zaiss DMW, Gause WC, Osborne LC, Artis D. 2015.. Emerging functions of Amphiregulin in orchestrating immunity, inflammation, and tissue repair. . Immunity 42:(2):21626
    [Crossref] [Google Scholar]
  168. 168.
    Harrison OJ, Linehan JL, Shih H-Y, Bouladoux N, Han S-J, et al. 2019.. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. . Science 363:(6422):eaat6280
    [Crossref] [Google Scholar]
  169. 169.
    Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, et al. 2015.. A distinct function of regulatory T cells in tissue protection. . Cell 162:(5):107889
    [Crossref] [Google Scholar]
  170. 170.
    Panduro M, Benoist C, Mathis D. 2016.. Tissue Tregs. . Annu. Rev. Immunol. 34::60933
    [Crossref] [Google Scholar]
  171. 171.
    Ribot JC, Lopes N, Silva-Santos B. 2021.. γδ T cells in tissue physiology and surveillance. . Nat. Rev. Immunol. 21:(4):22132
    [Crossref] [Google Scholar]
  172. 172.
    Vence L, Palucka AK, Fay JW, Ito T, Liu Y-J, et al. 2007.. Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. . PNAS 104:(52):2088489
    [Crossref] [Google Scholar]
  173. 173.
    Carolan E, Tobin LM, Mangan BA, Corrigan M, Gaoatswe G, et al. 2015.. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. . J. Immunol. 194:(12):577580
    [Crossref] [Google Scholar]
  174. 174.
    Talvard-Balland N, Lambert M, Chevalier MF, Minet N, Salou M, et al. 2024.. Human MAIT cells inhibit alloreactive T cell responses and protect against acute graft-versus-host disease. . JCI Insight 9:(5):e166310
    [Google Scholar]
  175. 175.
    Ye L, Pan J, Pasha MA, Shen X, D'Souza SS, et al. 2020.. Mucosal-associated invariant T cells restrict allergic airway inflammation. . J. Allergy Clin. Immunol. 145:(5):146973.e4
    [Crossref] [Google Scholar]
  176. 176.
    Petley EV, Koay H-F, Henderson MA, Sek K, Todd KL, et al. 2021.. MAIT cells regulate NK cell-mediated tumor immunity. . Nat. Commun. 12:(1):4746
    [Crossref] [Google Scholar]
  177. 177.
    Ruf B, Bruhns M, Babaei S, Kedei N, Ma L, et al. 2023.. Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin. . Cell 186:(17):3686705.e32
    [Crossref] [Google Scholar]
  178. 178.
    Yan J, Allen S, McDonald E, Das I, Mak JYW, et al. 2020.. MAIT cells promote tumor initiation, growth, and metastases via tumor MR1. . Cancer Discov. 10:(1):12441
    [Crossref] [Google Scholar]
  179. 179.
    D'Souza C, Pediongco T, Wang H, Scheerlinck J-PY, Kostenko L, et al. 2018.. Mucosal-associated invariant T cells augment immunopathology and gastritis in chronic Helicobacter pylori infection. . J. Immunol. 200:(5):190116
    [Crossref] [Google Scholar]
  180. 180.
    Rashu R, Ninkov M, Wardell CM, Benoit JM, Wang NI, et al. 2023.. Targeting the MR1-MAIT cell axis improves vaccine efficacy and affords protection against viral pathogens. . PLOS Pathog. 19:(6):e1011485
    [Crossref] [Google Scholar]
  181. 181.
    Jensen O, Trivedi S, Meier JD, Fairfax KC, Hale JS, Leung DT. 2022.. A subset of follicular helper-like MAIT cells can provide B cell help and support antibody production in the mucosa. . Sci. Immunol. 7:(67):eabe8931
    [Crossref] [Google Scholar]
  182. 182.
    Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B, et al. 2018.. Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells. . Cell 172:(3):51733.e20
    [Crossref] [Google Scholar]
  183. 183.
    Gnirck A-C, Philipp M-S, Waterhölter A, Wunderlich M, Shaikh N, et al. 2023.. Mucosal-associated invariant T cells contribute to suppression of inflammatory myeloid cells in immune-mediated kidney disease. . Nat. Commun. 14:(1):7372
    [Crossref] [Google Scholar]
  184. 184.
    Yamana S, Shibata K, Hasegawa E, Arima M, Shimokawa S, et al. 2022.. Mucosal-associated invariant T cells have therapeutic potential against ocular autoimmunity. . Mucosal Immunol. 15:(2):35161
    [Crossref] [Google Scholar]
  185. 185.
    Riffelmacher T, Paynich Murray M, Wientjens C, Chandra S, Cedillo-Castelán V, et al. 2023.. Divergent metabolic programmes control two populations of MAIT cells that protect the lung. . Nat. Cell Biol. 25:(6):87791 Characterizes and defines antigen-experienced MAIT cells.
    [Crossref] [Google Scholar]
  186. 186.
    Johnson DN, Ruan Z, Petley EV, Devi S, Holz LE, et al. 2022.. Differential location of NKT and MAIT cells within lymphoid tissue. . Sci. Rep. 12:(1):4034
    [Crossref] [Google Scholar]
  187. 187.
    Toubal A, Kiaf B, Beaudoin L, Cagninacci L, Rhimi M, et al. 2020.. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. . Nat. Commun. 11:(1):3755
    [Crossref] [Google Scholar]
  188. 188.
    Sakai S, Kauffman KD, Oh S, Nelson CE, Barry CE III, Barber DL. 2021.. MAIT cell-directed therapy of Mycobacterium tuberculosis infection. . Mucosal Immunol. 14:(1):199208
    [Crossref] [Google Scholar]
  189. 189.
    Vorkas CK, Levy O, Skular M, Li K, Aubé J, Glickman MS. 2020.. Efficient 5-OP-RU-induced enrichment of mucosa-associated invariant T cells in the murine lung does not enhance control of aerosol Mycobacterium tuberculosis infection. . Infect. Immun. 89:(1):e00524-20
    [Crossref] [Google Scholar]
  190. 190.
    Yu H, Yang A, Derrick S, Mak JYW, Liu L, et al. 2020.. Artificially induced MAIT cells inhibit M. bovis BCG but not M. tuberculosis during in vivo pulmonary infection. . Sci. Rep. 10:(1):13579
    [Crossref] [Google Scholar]
  191. 191.
    Cheng OJ, Lebish EJ, Jensen O, Jacenik D, Trivedi S, et al. 2024.. Mucosal-associated invariant T cells modulate innate immune cells and inhibit colon cancer growth. . Scand. J. Immunol. 100::e13391
    [Crossref] [Google Scholar]
  192. 192.
    Ruf B, Catania VV, Wabitsch S, Ma C, Diggs LP, et al. 2021.. Activating mucosal-associated invariant T cells induces a broad antitumor response. . Cancer Immunol. Res. 9:(9):102434
    [Crossref] [Google Scholar]
  193. 193.
    Cornel AM, van der Sman L, van Dinter JT, Arrabito M, Dunnebach E, et al. 2024.. Targeting pediatric cancers via T-cell recognition of the monomorphic MHC class I-related protein MR1. . J. Immunother. Cancer 12:(3):e007538
    [Crossref] [Google Scholar]
  194. 194.
    Lange J, Anderson RJ, Marshall AJ, Chan STS, Bilbrough TS, et al. 2020.. The chemical synthesis, stability, and activity of MAIT cell prodrug agonists that access MR1 in recycling endosomes. . ACS Chem. Biol. 15:(2):43745
    [Crossref] [Google Scholar]
  195. 195.
    Nelson AG, Wang H, Dewar PM, Eddy EM, Li S, et al. 2023.. Synthetic 5-amino-6-D-ribitylaminouracil paired with inflammatory stimuli facilitates MAIT cell expansion in vivo. . Front. Immunol. 14::1109759
    [Crossref] [Google Scholar]
  196. 196.
    Jensen O, Trivedi S, Li K, Aubé J, Hale JS, et al. 2022.. Use of a MAIT activating ligand, 5-OP-RU, as a mucosal adjuvant in a murine model of Vibrio cholerae O1 vaccination. . Pathog. Immun. 7:(1):12244
    [Crossref] [Google Scholar]
  197. 197.
    Sakai S, Lora NE, Kauffman KD, Dorosky DE, Oh S, et al. 2021.. Functional inactivation of pulmonary MAIT cells following 5-OP-RU treatment of non-human primates. . Mucosal Immunol. 14:(5):105566
    [Crossref] [Google Scholar]
  198. 198.
    Pankhurst TE, Buick KH, Lange JL, Marshall AJ, Button KR, et al. 2023.. MAIT cells activate dendritic cells to promote TFH cell differentiation and induce humoral immunity. . Cell Rep. 42:(4):112310
    [Crossref] [Google Scholar]
  199. 199.
    Burn OK, Pankhurst TE, Painter GF, Connor LM, Hermans IF. 2021.. Harnessing NKT cells for vaccination. . Oxf. Open Immunol. 2:(1):iqab013
    [Crossref] [Google Scholar]
  200. 200.
    Tourret M, Talvard-Balland N, Lambert M, Ben Youssef G, Chevalier MF, et al. 2021.. Human MAIT cells are devoid of alloreactive potential: prompting their use as universal cells for adoptive immune therapy. . J. Immunother. Cancer 9:(10):e003123
    [Crossref] [Google Scholar]
  201. 201.
    Parrot T, Healy K, Boulouis C, Sobkowiak MJ, Leeansyah E, et al. 2021.. Expansion of donor-unrestricted MAIT cells with enhanced cytolytic function suitable for TCR redirection. . JCI Insight 6:(5):e140074
    [Crossref] [Google Scholar]
  202. 202.
    Wakao H, Yoshikiyo K, Koshimizu U, Furukawa T, Enomoto K, et al. 2013.. Expansion of functional human mucosal-associated invariant T cells via reprogramming to pluripotency and redifferentiation. . Cell Stem Cell 12:(5):54658
    [Crossref] [Google Scholar]
  203. 203.
    Sugimoto C, Murakami Y, Ishii E, Fujita H, Wakao H. 2022.. Reprogramming and redifferentiation of mucosal-associated invariant T cells reveal tumor inhibitory activity. . eLife 11::e70848
    [Crossref] [Google Scholar]
  204. 204.
    Bohineust A, Tourret M, Derivry L, Caillat-Zucman S. 2021.. Mucosal-associated invariant T (MAIT) cells, a new source of universal immune cells for chimeric antigen receptor (CAR)-cell therapy. . Bull. Cancer 108:(10 Suppl.):S9295
    [Crossref] [Google Scholar]
  205. 205.
    Dogan M, Karhan E, Kozhaya L, Placek L, Chen X, et al. 2022.. Engineering human MAIT cells with chimeric antigen receptors for cancer immunotherapy. . J. Immunol. 209:(8):152331
    [Crossref] [Google Scholar]
  206. 206.
    Bhattacharyya A, Hanafi L-A, Sheih A, Golob JL, Srinivasan S, et al. 2018.. Graft-derived reconstitution of mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation. . Biol. Blood Marrow Transplant. 24:(2):24251
    [Crossref] [Google Scholar]
  207. 207.
    Kawaguchi K, Umeda K, Hiejima E, Iwai A, Mikami M, et al. 2018.. Influence of post-transplant mucosal-associated invariant T cell recovery on the development of acute graft-versus-host disease in allogeneic bone marrow transplantation. . Int. J. Hematol. 108:(1):6675
    [Crossref] [Google Scholar]
  208. 208.
    Konuma T, Kohara C, Watanabe E, Takahashi S, Ozawa G, et al. 2020.. Reconstitution of circulating mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation: its association with the riboflavin synthetic pathway of gut microbiota in cord blood transplant recipients. . J. Immunol. 204:(6):146273
    [Crossref] [Google Scholar]
  209. 209.
    Andrlová H, Miltiadous O, Kousa AI, Dai A, DeWolf S, et al. 2022.. MAIT and Vδ2 unconventional T cells are supported by a diverse intestinal microbiome and correlate with favorable patient outcome after allogeneic HCT. . Sci. Transl. Med. 14:(646):eabj2829
    [Crossref] [Google Scholar]
  210. 210.
    Varelias A, Bunting MD, Ormerod KL, Koyama M, Olver SD, et al. 2018.. Recipient mucosal-associated invariant T cells control GVHD within the colon. . J. Clin. Investig. 128:(5):191936
    [Crossref] [Google Scholar]
  211. 211.
    Solders M, Erkers T, Gorchs L, Poiret T, Remberger M, et al. 2017.. Mucosal-associated invariant T cells display a poor reconstitution and altered phenotype after allogeneic hematopoietic stem cell transplantation. . Front. Immunol. 8::1861
    [Crossref] [Google Scholar]
  212. 212.
    Lepore M, Kalinichenko A, Calogero S, Kumar P, Paleja B, et al. 2017.. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. . eLife 6::e24476
    [Crossref] [Google Scholar]
  213. 213.
    Awad W, Meermeier EW, Sandoval-Romero ML, Le Nours J, Worley AH, et al. 2020.. Atypical TRAV1-2 T cell receptor recognition of the antigen-presenting molecule MR1. . J. Biol. Chem. 295:(42):1444557
    [Crossref] [Google Scholar]
  214. 214.
    Gold MC, McLaren JE, Reistetter JA, Smyk-Pearson S, Ladell K, et al. 2014.. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. . J. Exp. Med. 211:(8):160110
    [Crossref] [Google Scholar]
  215. 215.
    Meermeier EW, Laugel BF, Sewell AK, Corbett AJ, Rossjohn J, et al. 2016.. Human TRAV1–2-negative MR1-restricted T cells detect S. pyogenes and alternatives to MAIT riboflavin-based antigens. . Nat. Commun. 7::12506
    [Crossref] [Google Scholar]
  216. 216.
    Mason D. 1998.. A very high level of crossreactivity is an essential feature of the T-cell receptor. . Immunol. Today 19:(9):395404
    [Crossref] [Google Scholar]
  217. 217.
    Vacchini A, Chancellor A, Yang Q, Colombo R, Spagnuolo J, et al. 2024.. Nucleobase adducts bind MR1 and stimulate MR1-restricted T cells. . Sci. Immunol. 9:(95):eadn0126
    [Crossref] [Google Scholar]
  218. 218.
    Crowther MD, Dolton G, Legut M, Caillaud ME, Lloyd A, et al. 2020.. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. . Nat. Immunol. 21:(2):17885
    [Crossref] [Google Scholar]
  219. 219.
    Cornforth TV, Moyo N, Cole S, Lam EPS, Lobry T, et al. 2024.. Conserved allomorphs of MR1 drive the specificity of MR1-restricted TCRs. . Front. Oncol. 14::1419528
    [Crossref] [Google Scholar]
  220. 220.
    Souter MNT, Awad W, Li S, Pediongco TJ, Meehan BS, et al. 2022.. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. . J. Exp. Med. 219:(9):e20210828
    [Crossref] [Google Scholar]
  221. 221.
    Suliman S, Kjer-Nielsen L, Iwany SK, Tamara KL, Loh L, et al. 2022.. Dual TCR-α expression on mucosal-associated invariant T cells as a potential confounder of TCR interpretation. . J. Immunol. 208:(6):138995
    [Crossref] [Google Scholar]
  222. 222.
    Lu Y, Cao X, Zhang X, Kovalovsky D. 2015.. PLZF controls the development of fetal-derived IL-17+Vγ6+ γδ T cells. . J. Immunol. 195:(9):427381
    [Crossref] [Google Scholar]
  223. 223.
    Harly C, Robert J, Legoux F, Lantz O. 2022.. γδ T, NKT, and MAIT cells during evolution: redundancy or specialized functions?. J. Immunol. 209:(2):21725
    [Crossref] [Google Scholar]
  224. 224.
    Xu C, Li S, Fulford TS, Christo SN, Mackay LK, et al. 2023.. Expansion of MAIT cells in the combined absence of NKT and γδ-T cells. . Mucosal Immunol. 16:(4):44661
    [Crossref] [Google Scholar]
  225. 225.
    Dauphars DJ, Mihai A, Wang L, Zhuang Y, Krangel MS. 2022.. Trav15-dv6 family Tcrd rearrangements diversify the Tcra repertoire. . J. Exp. Med. 219:(2):e20211581
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-082323-025943
Loading
/content/journals/10.1146/annurev-immunol-082323-025943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error