1932

Abstract

Immune responses are influenced by not only immune cells but also the tissue microenvironment where these cells reside. Recent advancements in understanding the underlying molecular mechanisms and structures of the epidermal tight junctions (TJs) and stratum corneum (SC) have significantly enhanced our knowledge of skin barrier functions. TJs, located in the granular layer of the epidermis, are crucial boundary elements in the differentiation process, particularly in the transition from living cells to dead cells. The SC forms from dead keratinocytes via corneoptosis and features three distinct pH zones critical for barrier function and homeostasis. Additionally, the SC–skin microbiota interactions are crucial for modulating immune responses and protecting against pathogens. In this review, we explore how these components contribute both to healthy and disease states. By targeting the skin barrier in therapeutic strategies, we can enhance its integrity, modulate immune responses, and ultimately improve outcomes for patients with inflammatory skin conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082323-030832
2025-04-25
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-082323-030832.html?itemId=/content/journals/10.1146/annurev-immunol-082323-030832&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bieber T. 2022.. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. . Nat. Rev. Drug Discov. 21::2140 Excellent review of the current understanding of the pathophysiology of atopic dermatitis.
    [Crossref] [Google Scholar]
  2. 2.
    Langan SM, Irvine AD, Weidinger S. 2020.. Atopic dermatitis. . Lancet 396::34560
    [Crossref] [Google Scholar]
  3. 3.
    Ständer S. 2021.. Atopic dermatitis. . N. Engl. J. Med. 384::113643
    [Crossref] [Google Scholar]
  4. 4.
    Silverberg JI, Barbarot S, Gadkari A, Simpson EL, Weidinger S, et al. 2021.. Atopic dermatitis in the pediatric population: a cross-sectional, international epidemiologic study. . Ann. Allergy Asthma Immunol. 126::41728.e2
    [Crossref] [Google Scholar]
  5. 5.
    Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, et al. 2018.. Epidemiology of atopic dermatitis in adults: results from an international survey. . Allergy 73::128493
    [Crossref] [Google Scholar]
  6. 6.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, et al. 2006.. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. . Nat. Genet. 38::44146 First study to demonstrate that filaggrin mutations are significant genetic risk factors for atopic dermatitis.
    [Crossref] [Google Scholar]
  7. 7.
    Irvine AD, McLean WH, Leung DY. 2011.. Filaggrin mutations associated with skin and allergic diseases. . N. Engl. J. Med. 365::131527
    [Crossref] [Google Scholar]
  8. 8.
    Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, et al. 2012.. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. . J. Allergy Clin. Immunol. 129::153846.e6
    [Crossref] [Google Scholar]
  9. 9.
    Kezic S, O'Regan GM, Yau N, Sandilands A, Chen H, et al. 2011.. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. . Allergy 66::93440
    [Crossref] [Google Scholar]
  10. 10.
    Kubo A, Amagai M. 2019.. Skin barrier. . In Fitzpatrick's Dermatology, ed. S Kang, M Amagai, AL Bruckner, AH Enk, DJ Margolis, AJ McMichael, JS Orringer , pp. 20631. New York:: McGraw-Hill Educ. , 9th ed..
    [Google Scholar]
  11. 11.
    Kubo A, Nagao K, Amagai M. 2012.. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. . J. Clin. Investig. 122::44047
    [Crossref] [Google Scholar]
  12. 12.
    Matsui T, Kadono-Maekubo N, Suzuki Y, Furuichi Y, Shiraga K, et al. 2021.. A unique mode of keratinocyte death requires intracellular acidification. . PNAS 118::e2020722118 Demonstrated that SG1 cell death requires intracellular Ca2+ elevation and subsequent rapid intracellular acidification.
    [Crossref] [Google Scholar]
  13. 13.
    Yokouchi M, Atsugi T, van Logtestijn M, Tanaka RJ, Kajimura M, et al. 2016.. Epidermal cell turnover across tight junctions based on Kelvin's tetrakaidecahedron cell shape. . eLife 5::e19593 Epidermal cell turnover across tight junctions is based on Kelvin's tetrakaidecahedron cell shape.
    [Crossref] [Google Scholar]
  14. 14.
    Allen TD, Potten CS. 1976.. Significance of cell shape in tissue architecture. . Nature 264::54547
    [Crossref] [Google Scholar]
  15. 15.
    Yokouchi M, Kubo A. 2018.. Maintenance of tight junction barrier integrity in cell turnover and skin diseases. . Exp. Dermatol. 27::87683
    [Crossref] [Google Scholar]
  16. 16.
    Tsukita S, Furuse M, Itoh M. 2001.. Multifunctional strands in tight junctions. . Nat. Rev. Mol. Cell Biol. 2::28593
    [Crossref] [Google Scholar]
  17. 17.
    Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, et al. 2014.. Crystal structure of a claudin provides insight into the architecture of tight junctions. . Science 344::3047
    [Crossref] [Google Scholar]
  18. 18.
    Tsukita S, Tanaka H, Tamura A. 2019.. The claudins: from tight junctions to biological systems. . Trends Biochem. Sci. 44::14152
    [Crossref] [Google Scholar]
  19. 19.
    Van Itallie CM, Anderson JM. 2014.. Architecture of tight junctions and principles of molecular composition. . Semin. Cell Dev. Biol. 36::15765
    [Crossref] [Google Scholar]
  20. 20.
    Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, et al. 2002.. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1–deficient mice. . J. Cell Biol. 156::1099111
    [Crossref] [Google Scholar]
  21. 21.
    Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. 2009.. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. . J. Exp. Med. 206::293746 Demonstrated that Langerhans cells elongate their dendrites to penetrate tight junctions and survey the extracellular environments beyond the tight junction barrier.
    [Crossref] [Google Scholar]
  22. 22.
    Yoshida K, Yokouchi M, Nagao K, Ishii K, Amagai M, Kubo A. 2013.. Functional tight junction barrier localizes in the second layer of the stratum granulosum of human epidermis. . J. Dermatol. Sci. 71::8999
    [Crossref] [Google Scholar]
  23. 23.
    Tokumasu R, Yamaga K, Yamazaki Y, Murota H, Suzuki K, et al. 2016.. Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. . PNAS 113::E406168
    [Crossref] [Google Scholar]
  24. 24.
    Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, et al. 2004.. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. . Gastroenterology 127::138690
    [Crossref] [Google Scholar]
  25. 25.
    Atsugi T, Yokouchi M, Hirano T, Hirabayashi A, Nagai T, et al. 2020.. Holocrine secretion occurs outside the tight junction barrier in multicellular glands: lessons from claudin-1–deficient mice. . J. Investig. Dermatol. 140::298308.e5
    [Crossref] [Google Scholar]
  26. 26.
    Kabashima K, Honda T, Ginhoux F, Egawa G. 2019.. The immunological anatomy of the skin. . Nat. Rev. Immunol. 19::1930
    [Crossref] [Google Scholar]
  27. 27.
    Wood LC, Jackson SM, Elias PM, Grunfeld C, Feingold KR. 1992.. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. . J. Clin. Investig. 90::48287
    [Crossref] [Google Scholar]
  28. 28.
    Nishijima T, Tokura Y, Imokawa G, Seo N, Furukawa F, Takigawa M. 1997.. Altered permeability and disordered cutaneous immunoregulatory function in mice with acute barrier disruption. . J. Investig. Dermatol. 109::17582
    [Crossref] [Google Scholar]
  29. 29.
    Yoshida K, Kubo A, Fujita H, Yokouchi M, Ishii K, et al. 2014.. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. . J. Allergy Clin. Immunol. 134::85664
    [Crossref] [Google Scholar]
  30. 30.
    Ouchi T, Kubo A, Yokouchi M, Adachi T, Kobayashi T, et al. 2011.. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. . J. Exp. Med. 208::260713
    [Crossref] [Google Scholar]
  31. 31.
    Homey B, Steinhoff M, Ruzicka T, Leung DY. 2006.. Cytokines and chemokines orchestrate atopic skin inflammation. . J. Allergy Clin. Immunol. 118::17889
    [Crossref] [Google Scholar]
  32. 32.
    Beck LA, Cork MJ, Amagai M, De Benedetto A, Kabashima K, et al. 2022.. Type 2 inflammation contributes to skin barrier dysfunction in atopic dermatitis. . JID Innov. 2::100131
    [Crossref] [Google Scholar]
  33. 33.
    Kim BS, Wang K, Siracusa MC, Saenz SA, Brestoff JR, et al. 2014.. Basophils promote innate lymphoid cell responses in inflamed skin. . J. Immunol. 193::371725
    [Crossref] [Google Scholar]
  34. 34.
    Mashiko S, Mehta H, Bissonnette R, Sarfati M. 2017.. Increased frequencies of basophils, type 2 innate lymphoid cells and Th2 cells in skin of patients with atopic dermatitis but not psoriasis. . J. Dermatol. Sci. 88::16774
    [Crossref] [Google Scholar]
  35. 35.
    Hardman CS, Chen YL, Salimi M, Jarrett R, Johnson D, et al. 2017.. CD1a presentation of endogenous antigens by group 2 innate lymphoid cells. . Sci. Immunol. 2::eaan5918
    [Crossref] [Google Scholar]
  36. 36.
    Leyva-Castillo JM, Hener P, Michea P, Karasuyama H, Chan S, et al. 2013.. Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. . Nat. Commun. 4::2847
    [Crossref] [Google Scholar]
  37. 37.
    Hönzke S, Wallmeyer L, Ostrowski A, Radbruch M, Mundhenk L, et al. 2016.. Influence of Th2 cytokines on the cornified envelope, tight junction proteins, and ß-defensins in filaggrin-deficient skin equivalents. . J. Investig. Dermatol. 136::63139
    [Crossref] [Google Scholar]
  38. 38.
    Gruber R, Börnchen C, Rose K, Daubmann A, Volksdorf T, et al. 2015.. Diverse regulation of claudin-1 and claudin-4 in atopic dermatitis. . Am. J. Pathol. 185::277789
    [Crossref] [Google Scholar]
  39. 39.
    Takahashi S, Ishida A, Kubo A, Kawasaki H, Ochiai S, et al. 2019.. Homeostatic pruning and activity of epidermal nerves are dysregulated in barrier-impaired skin during chronic itch development. . Sci. Rep. 9::8625 Epidermal nerve endings undergo pruning to maintain their position below tight junctions in normal skin.
    [Crossref] [Google Scholar]
  40. 40.
    Mackenzie JC. 1969.. Ordered structure of the stratum corneum of mammalian skin. . Nature 222::88182
    [Crossref] [Google Scholar]
  41. 41.
    Thomson W. 1887.. LXIII. On the division of space with minimum partitional area. . Lond. Edinb. Dublin Philos. Mag. J. Sci. 24::50314
    [Crossref] [Google Scholar]
  42. 42.
    Alibardi L. 2003.. Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes. . J. Exp. Zool. B Mol. Dev. Evol. 298::1241
    [Crossref] [Google Scholar]
  43. 43.
    Eckhart L, Ehrlich F, Tschachler E. 2019.. A stress response program at the origin of evolutionary innovation in the skin. . Evol. Bioinform. 15::1176934319862246
    [Crossref] [Google Scholar]
  44. 44.
    Akiyama M. 2021.. Acylceramide is a key player in skin barrier function: insight into the molecular mechanisms of skin barrier formation and ichthyosis pathogenesis. . FEBS J. 288::211930
    [Crossref] [Google Scholar]
  45. 45.
    Takeichi T, Hirabayashi T, Miyasaka Y, Kawamoto A, Okuno Y, et al. 2020.. SDR9C7 catalyzes critical dehydrogenation of acylceramides for skin barrier formation. . J. Clin. Investig. 130::890903
    [Crossref] [Google Scholar]
  46. 46.
    Ohno Y, Nakamura T, Iwasaki T, Katsuyama A, Ichikawa S, Kihara A. 2023.. Determining the structure of protein-bound ceramides, essential lipids for skin barrier function. . iScience 26::108248
    [Crossref] [Google Scholar]
  47. 47.
    Ishida-Yamamoto A, Kishibe M. 2011.. Involvement of corneodesmosome degradation and lamellar granule transportation in the desquamation process. . Med. Mol. Morphol. 44::16
    [Crossref] [Google Scholar]
  48. 48.
    Dyring-Andersen B, Løvendorf MB, Coscia F, Santos A, Møller LBP, et al. 2020.. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. . Nat. Commun. 11::5587
    [Crossref] [Google Scholar]
  49. 49.
    Fukuda K, Ito Y, Furuichi Y, Matsui T, Horikawa H, et al. 2024.. Three stepwise pH progressions in stratum corneum for homeostatic maintenance of the skin. . Nat. Commun. 15::4062 The first demonstration that corneocytes undergo differentiation, which results in the development of three distinct stratum corneum–pH zones with different functions.
    [Crossref] [Google Scholar]
  50. 50.
    Quiroz FG, Fiore VF, Levorse J, Polak L, Wong E, et al. 2020.. Liquid-liquid phase separation drives skin barrier formation. . Science 367::eaax9554
    [Crossref] [Google Scholar]
  51. 51.
    Mackay JA, Callahan DJ, Fitzgerald KN, Chilkoti A. 2010.. Quantitative model of the phase behavior of recombinant pH-responsive elastin-like polypeptides. . Biomacromolecules 11::287379
    [Crossref] [Google Scholar]
  52. 52.
    Matsui T, Miyamoto K, Kubo A, Kawasaki H, Ebihara T, et al. 2011.. SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. . EMBO Mol. Med. 3::32033
    [Crossref] [Google Scholar]
  53. 53.
    Shiokawa D, Tanuma S. 2001.. Characterization of human DNase I family endonucleases and activation of Dnase γ during apoptosis. . Biochemistry 40::14352
    [Crossref] [Google Scholar]
  54. 54.
    Eckhart L, Fischer H, Barken KB, Tolker-Nielsen T, Tschachler E. 2007.. Dnase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. . Br. J. Dermatol. 156::134245
    [Crossref] [Google Scholar]
  55. 55.
    Fischer H, Buchberger M, Napirei M, Tschachler E, Eckhart L. 2017.. Inactivation of Dnase1L2 and Dnase2 in keratinocytes suppresses DNA degradation during epidermal cornification and results in constitutive parakeratosis. . Sci. Rep. 7::6433
    [Crossref] [Google Scholar]
  56. 56.
    Simpson CL, Tokito MK, Uppala R, Sarkar MK, Gudjonsson JE, Holzbaur ELF. 2021.. NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. . Cell Rep. 34::108689
    [Crossref] [Google Scholar]
  57. 57.
    Akiyama M. 2017.. Corneocyte lipid envelope (CLE), the key structure for skin barrier function and ichthyosis pathogenesis. . J. Dermatol. Sci. 88::39
    [Crossref] [Google Scholar]
  58. 58.
    Candi E, Schmidt R, Melino G. 2005.. The cornified envelope: a model of cell death in the skin. . Nat. Rev. Mol. Cell Biol. 6::32840
    [Crossref] [Google Scholar]
  59. 59.
    Elias PM, Cullander C, Mauro T, Rassner U, Kömüves L, et al. 1998.. The secretory granular cell: the outermost granular cell as a specialized secretory cell. . J. Investig. Dermatol. Symp. Proc. 3::87100
    [Crossref] [Google Scholar]
  60. 60.
    Egawa G, Kabashima K. 2018.. Barrier dysfunction in the skin allergy. . Allergol. Int. 67::311
    [Crossref] [Google Scholar]
  61. 61.
    Oji V, Eckl KM, Aufenvenne K, Nätebus M, Tarinski T, et al. 2010.. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. . Am. J. Hum. Genet. 87::27481
    [Crossref] [Google Scholar]
  62. 62.
    Yoshida T, Beck LA, De Benedetto A. 2022.. Skin barrier defects in atopic dermatitis: from old idea to new opportunity. . Allergol. Int. 71::313
    [Crossref] [Google Scholar]
  63. 63.
    Samuelov L, Sarig O, Harmon RM, Rapaport D, Ishida-Yamamoto A, et al. 2013.. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. . Nat. Genet. 45::124448
    [Crossref] [Google Scholar]
  64. 64.
    Breiden B, Sandhoff K. 2014.. The role of sphingolipid metabolism in cutaneous permeability barrier formation. . Biochim. Biophys. Acta 1841::44152
    [Crossref] [Google Scholar]
  65. 65.
    Kawana M, Miyamoto M, Ohno Y, Kihara A. 2020.. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. . J. Lipid Res. 61::88495
    [Crossref] [Google Scholar]
  66. 66.
    Weerheim A, Ponec M. 2001.. Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. . Arch. Dermatol. Res. 293::19199
    [Crossref] [Google Scholar]
  67. 67.
    Jobard F, Lefèvre C, Karaduman A, Blanchet-Bardon C, Emre S, et al. 2002.. Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. . Hum. Mol. Genet. 11::10713
    [Crossref] [Google Scholar]
  68. 68.
    Muñoz-Garcia A, Thomas CP, Keeney DS, Zheng Y, Brash AR. 2014.. The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. . Biochim. Biophys. Acta 1841::4018
    [Crossref] [Google Scholar]
  69. 69.
    Chiba T, Thomas CP, Calcutt MW, Boeglin WE, O'Donnell VB, Brash AR. 2016.. The precise structures and stereochemistry of trihydroxy-linoleates esterified in human and porcine epidermis and their significance in skin barrier function: implication of an epoxide hydrolase in the transformations of linoleate. . J. Biol. Chem. 291::1454054
    [Crossref] [Google Scholar]
  70. 70.
    Aldahmesh MA, Mohamed JY, Alkuraya HS, Verma IC, Puri RD, et al. 2011.. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. . Am. J. Hum. Genet. 89::74550
    [Crossref] [Google Scholar]
  71. 71.
    Sassa T, Ohno Y, Suzuki S, Nomura T, Nishioka C, et al. 2013.. Impaired epidermal permeability barrier in mice lacking Elovl1, the gene responsible for very-long-chain fatty acid production. . Mol. Cell. Biol. 33::278796
    [Crossref] [Google Scholar]
  72. 72.
    Ohno Y, Nakamichi S, Ohkuni A, Kamiyama N, Naoe A, et al. 2015.. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. . PNAS 112::770712
    [Crossref] [Google Scholar]
  73. 73.
    Richard G. 2001.. Autosomal recessive congenital ichthyosis. . In GeneReviews®, ed. MP Adam, J Feldman, GM Mirzaa, RA Pagon, SE Wallace, A Amemiya . Seattle:: Univ. Wash.
    [Google Scholar]
  74. 74.
    Ishikawa J, Narita H, Kondo N, Hotta M, Takagi Y, et al. 2010.. Changes in the ceramide profile of atopic dermatitis patients. . J. Investig. Dermatol. 130::251114
    [Crossref] [Google Scholar]
  75. 75.
    Li Q, Fang H, Dang E, Wang G. 2020.. The role of ceramides in skin homeostasis and inflammatory skin diseases. . J. Dermatol. Sci. 97::28
    [Crossref] [Google Scholar]
  76. 76.
    Kanoh H, Ishitsuka A, Fujine E, Matsuhaba S, Nakamura M, et al. 2019.. IFN-γ reduces epidermal barrier function by affecting fatty acid composition of ceramide in a mouse atopic dermatitis model. . J. Immunol. Res. 2019::3030268
    [Crossref] [Google Scholar]
  77. 77.
    Danso MO, van Drongelen V, Mulder A, van Esch J, Scott H, et al. 2014.. TNF-α and Th2 cytokines induce atopic dermatitis–like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. . J. Investig. Dermatol. 134::194150
    [Crossref] [Google Scholar]
  78. 78.
    Sasaki T, Shiohama A, Kubo A, Kawasaki H, Ishida-Yamamoto A, et al. 2013.. A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. . J. Allergy Clin. Immunol. 132::111120.e4
    [Crossref] [Google Scholar]
  79. 79.
    Saunders SP, Goh CS, Brown SJ, Palmer CN, Porter RM, et al. 2013.. Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in human subjects. . J. Allergy Clin. Immunol. 132::112129
    [Crossref] [Google Scholar]
  80. 80.
    Morimoto A, Fukuda K, Ito Y, Tahara U, Sasaki T, et al. 2022.. Microbiota-independent spontaneous dermatitis associated with increased sebaceous lipid production in Tmem79-deficient mice. . J. Investig. Dermatol. 142::286472.e6
    [Crossref] [Google Scholar]
  81. 81.
    Ito Y, Sasaki T, Li Y, Tanoue T, Sugiura Y, et al. 2021.. Staphylococcus cohnii is a potentially biotherapeutic skin commensal alleviating skin inflammation. . Cell Rep. 35::109052 Staphylococcus cohnii activates host glucocorticoid-related pathways and induces anti-inflammatory genes in the skin.
    [Crossref] [Google Scholar]
  82. 82.
    Ishida-Yamamoto A, Iizuka H. 1998.. Structural organization of cornified cell envelopes and alterations in inherited skin disorders. . Exp. Dermatol. 7::110
    [Crossref] [Google Scholar]
  83. 83.
    Kim BE, Howell MD, Guttman-Yassky E, Gilleaudeau PM, Cardinale IR, et al. 2011.. TNF-α downregulates filaggrin and loricrin through c-Jun N-terminal kinase: role for TNF-α antagonists to improve skin barrier. . J. Investig. Dermatol. 131::127279. Correction . 2011.. J. Investig. Dermatol. 131::1388
    [Google Scholar]
  84. 84.
    Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, et al. 2009.. Cytokine modulation of atopic dermatitis filaggrin skin expression. . J. Allergy Clin. Immunol. 124::R712
    [Crossref] [Google Scholar]
  85. 85.
    Kim JH, Bae HC, Ko NY, Lee SH, Jeong SH, et al. 2015.. Thymic stromal lymphopoietin downregulates filaggrin expression by signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) phosphorylation in keratinocytes. . J. Allergy Clin. Immunol. 136::2058.e9
    [Crossref] [Google Scholar]
  86. 86.
    Gutowska-Owsiak D, Schaupp AL, Salimi M, Selvakumar TA, McPherson T, et al. 2012.. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. . Exp. Dermatol. 21::10410
    [Crossref] [Google Scholar]
  87. 87.
    Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. 2005.. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. . J. Immunol. 174::3695702
    [Crossref] [Google Scholar]
  88. 88.
    Gutowska-Owsiak D, Schaupp AL, Salimi M, Taylor S, Ogg GS. 2011.. Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes. . Br. J. Dermatol. 165::49298
    [Crossref] [Google Scholar]
  89. 89.
    Archer NK, Jo JH, Lee SK, Kim D, Smith B, et al. 2019.. Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. . J. Allergy Clin. Immunol. 143::142643.e6
    [Crossref] [Google Scholar]
  90. 90.
    Kezic S, O'Regan GM, Lutter R, Jakasa I, Koster ES, et al. 2012.. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. . J. Allergy Clin. Immunol. 129::103139.e1
    [Crossref] [Google Scholar]
  91. 91.
    Goleva E, Berdyshev E, Leung DY. 2019.. Epithelial barrier repair and prevention of allergy. . J. Clin. Investig. 129::146374
    [Crossref] [Google Scholar]
  92. 92.
    Thyssen JP, Kezic S. 2014.. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. . J. Allergy Clin. Immunol. 134::79299
    [Crossref] [Google Scholar]
  93. 93.
    Paller AS, Renert-Yuval Y, Suprun M, Esaki H, Oliva M, et al. 2017.. An IL-17–dominant immune profile is shared across the major orphan forms of ichthyosis. . J. Allergy Clin. Immunol. 139::15265
    [Crossref] [Google Scholar]
  94. 94.
    Malik K, He H, Huynh TN, Tran G, Mueller K, et al. 2019.. Ichthyosis molecular fingerprinting shows profound TH17 skewing and a unique barrier genomic signature. . J. Allergy Clin. Immunol. 143::60418
    [Crossref] [Google Scholar]
  95. 95.
    Czarnowicki T, He H, Leonard A, Malik K, Magidi S, et al. 2018.. The major orphan forms of ichthyosis are characterized by systemic T-cell activation and Th-17/Tc-17/Th-22/Tc-22 polarization in blood. . J. Investig. Dermatol. 138::215767
    [Crossref] [Google Scholar]
  96. 96.
    Kim M, Mikhaylov D, Rangel SM, Pavel AB, He H, et al. 2022.. Transcriptomic analysis of the major orphan ichthyosis subtypes reveals shared immune and barrier signatures. . J. Investig. Dermatol. 142::236374.e18
    [Crossref] [Google Scholar]
  97. 97.
    Lefferdink R, Rangel SM, Chima M, Ibler E, Pavel AB, et al. 2023.. Secukinumab responses vary across the spectrum of congenital ichthyosis in adults. . Arch. Dermatol. Res. 315::30515
    [Crossref] [Google Scholar]
  98. 98.
    Albela H, Ting IPL, Lee TS, Ooi D, Leong KF. 2024.. Secukinumab therapy for paediatric patients with various phenotypes of congenital ichthyosis. . Clin. Exp. Dermatol. 49::92022
    [Crossref] [Google Scholar]
  99. 99.
    Richter T, Peuckert C, Sattler M, Koenig K, Riemann I, et al. 2004.. Dead but highly dynamic – The stratum corneum is divided into three hydration zones. . Skin Pharmacol. Physiol. 17::24657
    [Crossref] [Google Scholar]
  100. 100.
    Kubo A, Ishizaki I, Kubo A, Kawasaki H, Nagao K, et al. 2013.. The stratum corneum comprises three layers with distinct metal-ion barrier properties. . Sci. Rep. 3::1731
    [Crossref] [Google Scholar]
  101. 101.
    Narangifard A, Wennberg CL, den Hollander L, Iwai I, Han H, et al. 2021.. Molecular reorganization during the formation of the human skin barrier studied in situ. . J. Investig. Dermatol. 141::124353.e6
    [Crossref] [Google Scholar]
  102. 102.
    Norlén L, Lundborg M, Wennberg C, Narangifard A, Daneholt B. 2022.. The skin's barrier: a cryo-EM based overview of its architecture and stepwise formation. . J. Investig. Dermatol. 142::28592
    [Crossref] [Google Scholar]
  103. 103.
    Manabe M, Sanchez M, Sun TT, Dale BA. 1991.. Interaction of filaggrin with keratin filaments during advanced stages of normal human epidermal differentiation and in ichthyosis vulgaris. . Differentiation 48::4350
    [Crossref] [Google Scholar]
  104. 104.
    Watt FM. 1989.. Terminal differentiation of epidermal keratinocytes. . Curr. Opin. Cell Biol. 1::110715
    [Crossref] [Google Scholar]
  105. 105.
    Miyai M, Matsumoto Y, Yamanishi H, Yamamoto-Tanaka M, Tsuboi R, Hibino T. 2014.. Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. . J. Investig. Dermatol. 134::166574
    [Crossref] [Google Scholar]
  106. 106.
    Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, et al. 2007.. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. . Mol. Biol. Cell 18::360719
    [Crossref] [Google Scholar]
  107. 107.
    Ovaere P, Lippens S, Vandenabeele P, Declercq W. 2009.. The emerging roles of serine protease cascades in the epidermis. . Trends Biochem. Sci. 34::45363
    [Crossref] [Google Scholar]
  108. 108.
    Sugawara T, Iwamoto N, Akashi M, Kojima T, Hisatsune J, et al. 2013.. Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. . J. Dermatol. Sci. 70::1218
    [Crossref] [Google Scholar]
  109. 109.
    Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, et al. 2000.. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. . Nat. Genet. 25::14142
    [Crossref] [Google Scholar]
  110. 110.
    Williams MR, Cau L, Wang Y, Kaul D, Sanford JA, et al. 2020.. Interplay of Staphylococcal and host proteases promotes skin barrier disruption in Netherton syndrome. . Cell Rep. 30::292333.e7
    [Crossref] [Google Scholar]
  111. 111.
    Briggman JV, Bank HL, Bigelow JB, Graves JS, Spicer SS. 1981.. Structure of the tight junctions of the human eccrine sweat gland. . Am. J. Anat. 162::35768
    [Crossref] [Google Scholar]
  112. 112.
    Yamaga K, Murota H, Tamura A, Miyata H, Ohmi M, et al. 2018.. Claudin-3 loss causes leakage of sweat from the sweat gland to contribute to the pathogenesis of atopic dermatitis. . J. Investig. Dermatol. 138::127987
    [Crossref] [Google Scholar]
  113. 113.
    Murota H, Yamaga K, Ono E, Murayama N, Yokozeki H, Katayama I. 2019.. Why does sweat lead to the development of itch in atopic dermatitis?. Exp. Dermatol. 28::141621
    [Crossref] [Google Scholar]
  114. 114.
    Sperling LC. 1991.. Hair anatomy for the clinician. . J. Am. Acad. Dermatol. 25::117
    [Crossref] [Google Scholar]
  115. 115.
    Gu LH, Coulombe PA. 2007.. Keratin expression provides novel insight into the morphogenesis and function of the companion layer in hair follicles. . J. Investig. Dermatol. 127::106173
    [Crossref] [Google Scholar]
  116. 116.
    Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. 2003.. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. . J. Cell Biol. 163::60923
    [Crossref] [Google Scholar]
  117. 117.
    Zorn-Kruppa M, Vidal-y-Sy S, Houdek P, Wladykowski E, Grzybowski S, et al. 2018.. Tight junction barriers in human hair follicles – role of claudin-1. . Sci. Rep. 8::12800
    [Crossref] [Google Scholar]
  118. 118.
    Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, et al. 2012.. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. . Nat. Immunol. 13::74452
    [Crossref] [Google Scholar]
  119. 119.
    Scharschmidt TC, Vasquez KS, Pauli ML, Leitner EG, Chu K, et al. 2017.. Commensal microbes and hair follicle morphogenesis coordinately drive Treg migration into neonatal skin. . Cell Host Microbe 21::46777.e5
    [Crossref] [Google Scholar]
  120. 120.
    Ali N, Zirak B, Rodriguez RS, Pauli ML, Truong HA, et al. 2017.. Regulatory T cells in skin facilitate epithelial stem cell differentiation. . Cell 169::111929.e11
    [Crossref] [Google Scholar]
  121. 121.
    Liu Z, Hu X, Liang Y, Yu J, Li H, et al. 2022.. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche. . Nat. Immunol. 23::108697
    [Crossref] [Google Scholar]
  122. 122.
    Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, et al. 2015.. Hair follicle–derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. . Nat. Med. 21::127279
    [Crossref] [Google Scholar]
  123. 123.
    Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. 2012.. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. . Immunity 36::87384
    [Crossref] [Google Scholar]
  124. 124.
    Richmond JM, Strassner JP, Zapata L Jr., Garg M, Riding RL, et al. 2018.. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. . Sci. Transl. Med. 10::aam7710
    [Crossref] [Google Scholar]
  125. 125.
    Kobayashi T, Voisin B, Kim DY, Kennedy EA, Jo JH, et al. 2019.. Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. . Cell 176::98297.e16
    [Crossref] [Google Scholar]
  126. 126.
    Kobayashi T, Naik S, Nagao K. 2019.. Choreographing immunity in the skin epithelial barrier. . Immunity 50::55265 A comprehensive review of the interplay between immune cells, hair follicles, neurons, and commensal microbes.
    [Crossref] [Google Scholar]
  127. 127.
    Sakamoto K, Jin SP, Goel S, Jo JH, Voisin B, et al. 2021.. Disruption of the endopeptidase ADAM10-Notch signaling axis leads to skin dysbiosis and innate lymphoid cell-mediated hair follicle destruction. . Immunity 54::232137.e10
    [Crossref] [Google Scholar]
  128. 128.
    Masopust D, Soerens AG. 2019.. Tissue-resident T cells and other resident leukocytes. . Annu. Rev. Immunol. 37::52146
    [Crossref] [Google Scholar]
  129. 129.
    Mueller SN, Mackay LK. 2016.. Tissue-resident memory T cells: local specialists in immune defence. . Nat. Rev. Immunol. 16::7989
    [Crossref] [Google Scholar]
  130. 130.
    Evrard M, Becht E, Fonseca R, Obers A, Park SL, et al. 2023.. Single-cell protein expression profiling resolves circulating and resident memory T cell diversity across tissues and infection contexts. . Immunity 56::166480.e9
    [Crossref] [Google Scholar]
  131. 131.
    Christo SN, Park SL, Mueller SN, Mackay LK. 2024.. The multifaceted role of tissue-resident memory T cells. . Annu. Rev. Immunol. 42::31745
    [Crossref] [Google Scholar]
  132. 132.
    Park SL, Buzzai A, Rautela J, Hor JL, Hochheiser K, et al. 2019.. Tissue-resident memory CD8+ T cells promote melanoma–immune equilibrium in skin. . Nature 565::36671
    [Crossref] [Google Scholar]
  133. 133.
    Ryan GE, Harris JE, Richmond JM. 2021.. Resident memory T cells in autoimmune skin diseases. . Front. Immunol. 12::652191
    [Crossref] [Google Scholar]
  134. 134.
    Tokura Y, Phadungsaksawasdi P, Kurihara K, Fujiyama T, Honda T. 2020.. Pathophysiology of skin resident memory T cells. . Front. Immunol. 11::618897
    [Crossref] [Google Scholar]
  135. 135.
    Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. 2012.. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. . Nature 483::22731
    [Crossref] [Google Scholar]
  136. 136.
    Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, et al. 2006.. The vast majority of CLA+ T cells are resident in normal skin. . J. Immunol. 176::443139
    [Crossref] [Google Scholar]
  137. 137.
    Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, et al. 2015.. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. . Sci. Transl. Med. 7::279ra39
    [Crossref] [Google Scholar]
  138. 138.
    Beura LK, Fares-Frederickson NJ, Steinert EM, Scott MC, Thompson EA, et al. 2019.. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. . J. Exp. Med. 216::121429
    [Crossref] [Google Scholar]
  139. 139.
    Kumar BV, Ma W, Miron M, Granot T, Guyer RS, et al. 2017.. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. . Cell Rep. 20::292134
    [Crossref] [Google Scholar]
  140. 140.
    Evrard M, Wynne-Jones E, Peng C, Kato Y, Christo SN, et al. 2022.. Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. . J. Exp. Med. 219::e20210116
    [Crossref] [Google Scholar]
  141. 141.
    Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, et al. 2013.. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. . Nat. Immunol. 14::1294301
    [Crossref] [Google Scholar]
  142. 142.
    Mackay LK, Wynne-Jones E, Freestone D, Pellicci DG, Mielke LA, et al. 2015.. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. . Immunity 43::110111
    [Crossref] [Google Scholar]
  143. 143.
    Aluwihare P, Mu Z, Zhao Z, Yu D, Weinreb PH, et al. 2009.. Mice that lack activity of αvβ6- and αvβ8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. . J. Cell Sci. 122::22732
    [Crossref] [Google Scholar]
  144. 144.
    Mohammed J, Beura LK, Bobr A, Astry B, Chicoine B, et al. 2016.. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. . Nat. Immunol. 17::41421
    [Crossref] [Google Scholar]
  145. 145.
    Yang Z, Mu Z, Dabovic B, Jurukovski V, Yu D, et al. 2007.. Absence of integrin-mediated TGFβ1 activation in vivo recapitulates the phenotype of TGFβ1-null mice. . J. Cell Biol. 176::78793
    [Crossref] [Google Scholar]
  146. 146.
    Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, et al. 2012.. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. . J. Immunol. 188::486675
    [Crossref] [Google Scholar]
  147. 147.
    Sheridan BS, Pham QM, Lee YT, Cauley LS, Puddington L, Lefrançois L. 2014.. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. . Immunity 40::74757
    [Crossref] [Google Scholar]
  148. 148.
    Pan Y, Tian T, Park CO, Lofftus SY, Mei S, et al. 2017.. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. . Nature 543::25256
    [Crossref] [Google Scholar]
  149. 149.
    Frizzell H, Fonseca R, Christo SN, Evrard M, Cruz-Gomez S, et al. 2020.. Organ-specific isoform selection of fatty acid–binding proteins in tissue-resident lymphocytes. . Sci. Immunol. 5::eaay9283
    [Crossref] [Google Scholar]
  150. 150.
    Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang SC, et al. 2017.. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. . Immunity 46::287300
    [Crossref] [Google Scholar]
  151. 151.
    Harrison OJ, Linehan JL, Shih HY, Bouladoux N, Han SJ, et al. 2019.. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. . Science 363::eaat6280
    [Crossref] [Google Scholar]
  152. 152.
    Linehan JL, Harrison OJ, Han SJ, Byrd AL, Vujkovic-Cvijin I, et al. 2018.. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. . Cell 172::78496.e18
    [Crossref] [Google Scholar]
  153. 153.
    Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, et al. 2015.. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. . Nature 520::1048
    [Crossref] [Google Scholar]
  154. 154.
    Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO. 2004.. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. . J. Exp. Med. 199::73136
    [Crossref] [Google Scholar]
  155. 155.
    Boniface K, Jacquemin C, Darrigade AS, Dessarthe B, Martins C, et al. 2018.. Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3. . J. Investig. Dermatol. 138::35564
    [Crossref] [Google Scholar]
  156. 156.
    Cheuk S, Wikén M, Blomqvist L, Nylén S, Talme T, et al. 2014.. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. . J. Immunol. 192::311120
    [Crossref] [Google Scholar]
  157. 157.
    Park SL, Christo SN, Wells AC, Gandolfo LC, Zaid A, et al. 2023.. Divergent molecular networks program functionally distinct CD8+ skin-resident memory T cells. . Science 382::107379
    [Crossref] [Google Scholar]
  158. 158.
    Slouha E, Rezazadah A, Farahbod K, Gerts A, Clunes LA, Kollias TF. 2023.. Type-2 diabetes mellitus and the gut microbiota: systematic review. . Cureus 15::e49740
    [Google Scholar]
  159. 159.
    Honda K, Littman DR. 2016.. The microbiota in adaptive immune homeostasis and disease. . Nature 535::7584
    [Crossref] [Google Scholar]
  160. 160.
    Glassner KL, Abraham BP, Quigley EMM. 2020.. The microbiome and inflammatory bowel disease. . J. Allergy Clin. Immunol. 145::1627
    [Crossref] [Google Scholar]
  161. 161.
    Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. 2021.. Microbiome and cancer. . Cancer Cell 39::131741
    [Crossref] [Google Scholar]
  162. 162.
    Kotsiliti E. 2022.. Gut microbiome and autism spectrum disorder. . Nat. Rev. Gastroenterol. Hepatol. 19::6
    [Crossref] [Google Scholar]
  163. 163.
    Oh J, Byrd AL, Park M, NISC Comp. Seq. Prog., Kong HH, Segre JA. 2016.. Temporal stability of the human skin microbiome. . Cell 165::85466
    [Crossref] [Google Scholar]
  164. 164.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, et al. 2009.. Topographical and temporal diversity of the human skin microbiome. . Science 324::119092
    [Crossref] [Google Scholar]
  165. 165.
    Oh J, Byrd AL, Deming C, Conlan S, Kong HH, Segre JA. 2014.. Biogeography and individuality shape function in the human skin metagenome. . Nature 514::5964
    [Crossref] [Google Scholar]
  166. 166.
    Grice EA, Segre JA. 2011.. The skin microbiome. . Nat. Rev. Microbiol. 9::24453
    [Crossref] [Google Scholar]
  167. 167.
    Belkaid Y, Segre JA. 2014.. Dialogue between skin microbiota and immunity. . Science 346::95459
    [Crossref] [Google Scholar]
  168. 168.
    Byrd AL, Belkaid Y, Segre JA. 2018.. The human skin microbiome. . Nat. Rev. Microbiol. 16::14355
    [Crossref] [Google Scholar]
  169. 169.
    Dréno B, Araviiskaia E, Berardesca E, Gontijo G, Sanchez Viera M, et al. 2016.. Microbiome in healthy skin, update for dermatologists. . J. Eur. Acad. Dermatol. Venereol. 30::203847
    [Crossref] [Google Scholar]
  170. 170.
    Cogen AL, Nizet V, Gallo RL. 2008.. Skin microbiota: a source of disease or defence?. Br. J. Dermatol. 158::44255
    [Crossref] [Google Scholar]
  171. 171.
    Boxberger M, Cenizo V, Cassir N, La Scola B. 2021.. Challenges in exploring and manipulating the human skin microbiome. . Microbiome 9::125
    [Crossref] [Google Scholar]
  172. 172.
    Roux PF, Oddos T, Stamatas G. 2022.. Deciphering the role of skin surface microbiome in skin health: An integrative multiomics approach reveals three distinct metabolite-microbe clusters. . J. Investig. Dermatol. 142::46979.e5
    [Crossref] [Google Scholar]
  173. 173.
    Uberoi A, Bartow-McKenney C, Zheng Q, Flowers L, Campbell A, et al. 2021.. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. . Cell Host Microbe 29::123548.e8
    [Crossref] [Google Scholar]
  174. 174.
    Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, et al. 2012.. Compartmentalized control of skin immunity by resident commensals. . Science 337::111519
    [Crossref] [Google Scholar]
  175. 175.
    Liu Q, Ranallo R, Rios C, Grice EA, Moon K, Gallo RL. 2023.. Crosstalk between skin microbiota and immune system in health and disease. . Nat. Immunol. 24::89598
    [Crossref] [Google Scholar]
  176. 176.
    Wang G, Sweren E, Liu H, Wier E, Alphonse MP, et al. 2021.. Bacteria induce skin regeneration via IL-1β signaling. . Cell Host Microbe 29::77791.e6
    [Crossref] [Google Scholar]
  177. 177.
    Di Domizio J, Belkhodja C, Chenuet P, Fries A, Murray T, et al. 2020.. The commensal skin microbiota triggers type I IFN–dependent innate repair responses in injured skin. . Nat. Immunol. 21::103445
    [Crossref] [Google Scholar]
  178. 178.
    Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam SJ, et al. 2018.. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. . Sci. Adv. 4::eaao4502
    [Crossref] [Google Scholar]
  179. 179.
    Scharschmidt TC, Vasquez KS, Truong HA, Gearty SV, Pauli ML, et al. 2015.. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. . Immunity 43::101121
    [Crossref] [Google Scholar]
  180. 180.
    Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, et al. 2010.. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. . J. Investig. Dermatol. 130::221121
    [Crossref] [Google Scholar]
  181. 181.
    Tamoutounour S, Han SJ, Deckers J, Constantinides MG, Hurabielle C, et al. 2019.. Keratinocyte-intrinsic MHCII expression controls microbiota-induced Th1 cell responses. . PNAS 116::2364352
    [Crossref] [Google Scholar]
  182. 182.
    Constantinides MG, Link VM, Tamoutounour S, Wong AC, Perez-Chaparro PJ, et al. 2019.. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. . Science 366::eaax6624
    [Crossref] [Google Scholar]
  183. 183.
    Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, et al. 2010.. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. . Nature 465::34649
    [Crossref] [Google Scholar]
  184. 184.
    Zheng Y, Hunt RL, Villaruz AE, Fisher EL, Liu R, et al. 2022.. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. . Cell Host Microbe 30::30113.e9
    [Crossref] [Google Scholar]
  185. 185.
    Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, et al. 2017.. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. . Sci. Transl. Med. 9::eaah4680
    [Crossref] [Google Scholar]
  186. 186.
    Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, et al. 2016.. Human commensals producing a novel antibiotic impair pathogen colonization. . Nature 535::51116
    [Crossref] [Google Scholar]
  187. 187.
    Hannen RF, Michael AE, Jaulim A, Bhogal R, Burrin JM, Philpott MP. 2011.. Steroid synthesis by primary human keratinocytes; implications for skin disease. . Biochem. Biophys. Res. Commun. 404::6267
    [Crossref] [Google Scholar]
  188. 188.
    Ito Y, Amagai M. 2022.. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. . Inflamm. Regen. 42::26 A review of the skin microbiota, the skin microenvironment, and bacteriotherapies for controlling inflammatory skin diseases.
    [Crossref] [Google Scholar]
  189. 189.
    Phan TS, Schink L, Mann J, Merk VM, Zwicky P, et al. 2021.. Keratinocytes control skin immune homeostasis through de novo–synthesized glucocorticoids. . Sci. Adv. 7::eabe0337
    [Crossref] [Google Scholar]
  190. 190.
    Terao M, Itoi S, Matsumura S, Yang L, Murota H, Katayama I. 2016.. Local glucocorticoid activation by 11β-hydroxysteroid dehydrogenase 1 in keratinocytes: the role in hapten-induced dermatitis. . Am. J. Pathol. 186::1499510
    [Crossref] [Google Scholar]
  191. 191.
    Mayser P. 2015.. Medium chain fatty acid ethyl esters – activation of antimicrobial effects by Malassezia enzymes. . Mycoses 58::21519
    [Crossref] [Google Scholar]
  192. 192.
    Bacher P, Hohnstein T, Beerbaum E, Rocker M, Blango MG, et al. 2019.. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. . Cell 176::134055.e15
    [Crossref] [Google Scholar]
  193. 193.
    Miyachi H, Wakabayashi S, Sugihira T, Aoyama R, Saijo S, et al. 2021.. Keratinocyte IL-36 receptor/MyD88 signaling mediates Malassezia-induced IL-17–dependent skin inflammation. . J. Infect. Dis. 223::175365
    [Crossref] [Google Scholar]
  194. 194.
    Park CO, Fu X, Jiang X, Pan Y, Teague JE, et al. 2018.. Staged development of long-lived T-cell receptor αβ TH17 resident memory T-cell population to Candida albicans after skin infection. . J. Allergy Clin. Immunol. 142::64762
    [Crossref] [Google Scholar]
  195. 195.
    Ianiri G, LeibundGut-Landmann S, Dawson TL Jr. 2022.. Malassezia: a commensal, pathogen, and mutualist of human and animal skin. . Annu. Rev. Microbiol. 76::75782
    [Crossref] [Google Scholar]
  196. 196.
    Skowron K, Bauza-Kaszewska J, Kraszewska Z, Wiktorczyk-Kapischke N, Grudlewska-Buda K, et al. 2021.. Human skin microbiome: impact of intrinsic and extrinsic factors on skin microbiota. . Microorganisms 9::543
    [Crossref] [Google Scholar]
  197. 197.
    Geoghegan JA, Irvine AD, Foster TJ. 2018.. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. . Trends Microbiol. 26::48497
    [Crossref] [Google Scholar]
  198. 198.
    Kong HH, Oh J, Deming C, Conlan S, Grice EA, et al. 2012.. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. . Genome Res. 22::85059
    [Crossref] [Google Scholar]
  199. 199.
    Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, et al. 2015.. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. . Immunity 42::75666
    [Crossref] [Google Scholar]
  200. 200.
    Niebuhr M, Gathmann M, Scharonow H, Mamerow D, Mommert S, et al. 2011.. Staphylococcal alpha-toxin is a strong inducer of interleukin-17 in humans. . Infect. Immun. 79::161522
    [Crossref] [Google Scholar]
  201. 201.
    Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-Planillo R, et al. 2013.. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. . Nature 503::397401
    [Crossref] [Google Scholar]
  202. 202.
    Nakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, et al. 2017.. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. . Cell Host Microbe 22::66777.e5
    [Crossref] [Google Scholar]
  203. 203.
    Braun C, Badiou C, Guironnet-Paquet A, Iwata M, Lenief V, et al. 2024.. Staphylococcus aureus–specific skin resident memory T cells protect against bacteria colonization but exacerbate atopic dermatitis–like flares in mice. . J. Allergy Clin. Immunol. 154::355374
    [Crossref] [Google Scholar]
  204. 204.
    Blake KJ, Baral P, Voisin T, Lubkin A, Pinho-Ribeiro FA, et al. 2018.. Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. . Nat. Commun. 9::37
    [Crossref] [Google Scholar]
  205. 205.
    Enamorado M, Kulalert W, Han SJ, Rao I, Delaleu J, et al. 2023.. Immunity to the microbiota promotes sensory neuron regeneration. . Cell 186::60720.e17
    [Crossref] [Google Scholar]
  206. 206.
    Deng L, Costa F, Blake KJ, Choi S, Chandrabalan A, et al. 2023.. S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. . Cell 186::537593.e25
    [Crossref] [Google Scholar]
  207. 207.
    Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, et al. 2005.. The role of nasal carriage in Staphylococcus aureus infections. . Lancet Infect. Dis. 5::75162
    [Crossref] [Google Scholar]
  208. 208.
    Totté JE, van der Feltz WT, Bode LG, van Belkum A, van Zuuren EJ, Pasmans SG. 2016.. A systematic review and meta-analysis on Staphylococcus aureus carriage in psoriasis, acne and rosacea. . Eur. J. Clin. Microbiol. Infect. Dis. 35::106977
    [Crossref] [Google Scholar]
  209. 209.
    Totté JE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SG. 2016.. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. . Br. J. Dermatol. 175::68795
    [Crossref] [Google Scholar]
  210. 210.
    Tham KC, Lefferdink R, Duan K, Lim SS, Wong X, et al. 2022.. Distinct skin microbiome community structures in congenital ichthyosis. . Br. J. Dermatol. 187::55770
    [Crossref] [Google Scholar]
  211. 211.
    Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL. 2013.. The microbiome extends to subepidermal compartments of normal skin. . Nat. Commun. 4::1431
    [Crossref] [Google Scholar]
  212. 212.
    Skelly AN, Sato Y, Kearney S, Honda K. 2019.. Mining the microbiota for microbial and metabolite-based immunotherapies. . Nat. Rev. Immunol. 19::30523
    [Crossref] [Google Scholar]
  213. 213.
    Ito Y, Amagai M. 2023.. Dissecting skin microbiota and microenvironment for the development of therapeutic strategies. . Curr. Opin. Microbiol. 74::102311
    [Crossref] [Google Scholar]
  214. 214.
    San León D, Nogales J. 2022.. Toward merging bottom–up and top–down model-based designing of synthetic microbial communities. . Curr. Opin. Microbiol. 69::102169
    [Crossref] [Google Scholar]
  215. 215.
    Hassall J, Sergaki C. 2022.. Microbiome therapies: why we are not there yet. . Prescriber 33::3940
    [Crossref] [Google Scholar]
  216. 216.
    Lunjani N, Ahearn-Ford S, Dube FS, Hlela C, O'Mahony L. 2021.. Mechanisms of microbe-immune system dialogue within the skin. . Genes Immun. 22::27688
    [Crossref] [Google Scholar]
  217. 217.
    Blanchet-Réthoré S, Bourdès V, Mercenier A, Haddar CH, Verhoeven PO, Andres P. 2017.. Effect of a lotion containing the heat-treated probiotic strain Lactobacillus johnsonii NCC 533 on Staphylococcus aureus colonization in atopic dermatitis. . Clin. Cosmet. Investig. Dermatol. 10::24957
    [Crossref] [Google Scholar]
  218. 218.
    Myles IA, Castillo CR, Barbian KD, Kanakabandi K, Virtaneva K, et al. 2020.. Therapeutic responses to Roseomonas mucosa in atopic dermatitis may involve lipid-mediated TNF-related epithelial repair. . Sci. Transl. Med. 12::eaaz8631
    [Crossref] [Google Scholar]
  219. 219.
    Nakatsuji T, Gallo RL, Shafiq F, Tong Y, Chun K, et al. 2021.. Use of autologous bacteriotherapy to treat Staphylococcus aureus in patients with atopic dermatitis: a randomized double-blind clinical trial. . JAMA Dermatol. 157::97882
    [Crossref] [Google Scholar]
  220. 220.
    Nakatsuji T, Hata TR, Tong Y, Cheng JY, Shafiq F, et al. 2021.. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. . Nat. Med. 27::7009
    [Crossref] [Google Scholar]
  221. 221.
    Butler É, Lundqvist C, Axelsson J. 2020.. Lactobacillus reuteri DSM 17938 as a novel topical cosmetic ingredient: a proof of concept clinical study in adults with atopic dermatitis. . Microorganisms 8::1026
    [Crossref] [Google Scholar]
  222. 222.
    Myles IA, Williams KW, Reckhow JD, Jammeh ML, Pincus NB, et al. 2016.. Transplantation of human skin microbiota in models of atopic dermatitis. . JCI Insight 1::e86955
    [Crossref] [Google Scholar]
  223. 223.
    Williams MR, Costa SK, Zaramela LS, Khalil S, Todd DA, et al. 2019.. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. . Sci. Transl. Med. 11::eaat8329
    [Crossref] [Google Scholar]
  224. 224.
    Silverberg JI, Lio PA, Simpson EL, Li C, Brownell DR, et al. 2023.. Efficacy and safety of topically applied therapeutic ammonia oxidising bacteria in adults with mild-to-moderate atopic dermatitis and moderate-to-severe pruritus: a randomised, double-blind, placebo-controlled, dose-ranging, phase 2b trial. . eClinicalMedicine 60::102002
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-082323-030832
Loading
/content/journals/10.1146/annurev-immunol-082323-030832
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error