1932

Abstract

T lymphocytes are essential for immune responses to pathogens and tumors. Their ability to rapidly clonally expand and differentiate to effector cells following infection, and then to curb effector function following infection clearance, is fundamental for adaptive immunity. Proteome remodeling in response to immune activation is a fundamental mechanism that allows T cells to swiftly reprogram for acquisition of effector function and is possible only because antigen receptor– and cytokine-driven signal transduction pathways can trigger massive increases in protein synthesis. Equally, the ability to repress protein synthesis supports a return to quiescence once pathogens are cleared to avoid autoimmunity and to generate memory T cell populations. This review discusses what is known about T cell proteomes and the regulatory mechanisms that control protein synthesis in T cells. The focus is on how this fundamental process is dynamically controlled to ensure immune homeostasis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082323-035253
2025-04-25
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-082323-035253.html?itemId=/content/journals/10.1146/annurev-immunol-082323-035253&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ron-Harel N, Santos D, Ghergurovich JM, Sage PT, Reddy A, et al. 2016.. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. . Cell Metab. 24:(1):10417
    [Crossref] [Google Scholar]
  2. 2.
    Araki K, Morita M, Bederman AG, Konieczny BT, Kissick HT, et al. 2017.. Translation is actively regulated during the differentiation of CD8+ effector T cells. . Nat. Immunol. 18::104657
    [Crossref] [Google Scholar]
  3. 3.
    Tan H, Yang K, Li Y, Shaw TI, Wang Y, et al. 2017.. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. . Immunity 46:(3):488503
    [Crossref] [Google Scholar]
  4. 4.
    Howden AJM, Hukelmann JL, Brenes A, Spinelli L, Sinclair LV, et al. 2019.. Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. . Nat. Immunol. 20:(11):154254
    [Crossref] [Google Scholar]
  5. 5.
    Wolf T, Jin W, Zoppi G, Vogel IA, Akhmedov M, et al. 2020.. Dynamics in protein translation sustaining T cell preparedness. . Nat. Immunol. 21:(8):92737
    [Crossref] [Google Scholar]
  6. 6.
    Brenes AJ, Lamond AI, Cantrell DA. 2023.. The immunological proteome resource. . Nat. Immunol. 24:(5):731
    [Crossref] [Google Scholar]
  7. 7.
    Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, et al. 2016.. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. . Cell 167:(3):82942.e13
    [Crossref] [Google Scholar]
  8. 8.
    Marchingo JM, Sinclair LV, Howden AJ, Cantrell DA. 2020.. Quantitative analysis of how Myc controls T cell proteomes and metabolic pathways during T cell activation. . eLife 9::e1046
    [Crossref] [Google Scholar]
  9. 9.
    Hukelmann JL, Anderson KE, Sinclair LV, Grzes KM, Murillo AB, et al. 2016.. The cytotoxic T cell proteome and its shaping by the kinase mTOR. . Nat. Immunol. 17:(1):10412
    [Crossref] [Google Scholar]
  10. 10.
    Salerno F, Engels S, van den Biggelaar M, van Alphen FPJ, Guislain A, et al. 2018.. Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. . Nat. Immunol. 19:(8):82837
    [Crossref] [Google Scholar]
  11. 11.
    Petkau G, Mitchell TJ, Chakraborty K, Bell SE, D'Angeli V, et al. 2022.. The timing of differentiation and potency of CD8 effector function is set by RNA binding proteins. . Nat. Commun. 13::2274
    [Crossref] [Google Scholar]
  12. 12.
    Matheson LS, Petkau G, Sáenz-Narciso B, D'Angeli V, McHugh J, et al. 2022.. Multiomics analysis couples mRNA turnover and translational control of glutamine metabolism to the differentiation of the activated CD4+ T cell. . Sci. Rep. 12::19657
    [Crossref] [Google Scholar]
  13. 13.
    Yu D, Tan AH-M, Hu X, Athanasopoulos V, Simpson N, et al. 2007.. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. . Nature 450:(7167):299303
    [Crossref] [Google Scholar]
  14. 14.
    Vogel KU, Edelmann SL, Jeltsch KM, Bertossi A, Heger K, et al. 2013.. Roquin paralogs 1 and 2 redundantly repress the ICOS and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. . Immunity 38:(4):65568
    [Crossref] [Google Scholar]
  15. 15.
    Pratama A, Ramiscal RR, Silva DG, Das SK, Athanasopoulos V, et al. 2013.. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. . Immunity 38:(4):66980
    [Crossref] [Google Scholar]
  16. 16.
    Tavernier SJ, Athanasopoulos V, Verloo P, Behrens G, Staal J, et al. 2019.. A human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation. . Nat. Commun. 10::4779
    [Crossref] [Google Scholar]
  17. 17.
    Zhao H, Liu Y, Wang L, Jin G, Zhao X, et al. 2021.. Genome-wide fitness gene identification reveals Roquin as a potent suppressor of CD8 T cell expansion and anti-tumor immunity. . Cell Rep. 37:(10):110083
    [Crossref] [Google Scholar]
  18. 18.
    Behrens G, Heissmeyer V. 2022.. Cooperation of RNA-binding proteins—a focus on Roquin function in T cells. . Front. Immunol. 13::839762
    [Crossref] [Google Scholar]
  19. 19.
    Piccirillo CA, Bjur E, Topisirovic I, Sonenberg N, Larsson O. 2014.. Translational control of immune responses: from transcripts to translatomes. . Nat. Immunol. 15:(6):50311
    [Crossref] [Google Scholar]
  20. 20.
    Merrick WC, Pavitt GD. 2018.. Protein synthesis initiation in eukaryotic cells. . Cold Spring Harb. Perspect. Biol. 10:(12):a033092
    [Crossref] [Google Scholar]
  21. 21.
    Hershey JWB, Sonenberg N, Mathews MB. 2019.. Principles of translational control. . Cold Spring Harb. Perspect. Biol. 11:(9):a032607
    [Crossref] [Google Scholar]
  22. 22.
    Mao X, Green JM, Safer B, Lindsten T, Frederickson RM, et al. 1992.. Regulation of translation initiation factor gene expression during human T cell activation. . J. Biol. Chem. 267:(28):2044450
    [Crossref] [Google Scholar]
  23. 23.
    Sonenberg N, Hinnebusch AG. 2009.. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. . Cell 136:(4):73145
    [Crossref] [Google Scholar]
  24. 24.
    Suzuki C, Garces RG, Edmonds KA, Hiller S, Hyberts SG, et al. 2008.. PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. . PNAS 105:(9):327479
    [Crossref] [Google Scholar]
  25. 25.
    Loh PG, Yang H, Walsh MA, Wang Q, Wang X, et al. 2009.. Structural basis for translational inhibition by the tumour suppressor Pdcd4. . EMBO J. 28:(3):27485
    [Crossref] [Google Scholar]
  26. 26.
    So L, Lee J, Palafox M, Mallya S, Woxland CG, et al. 2016.. The 4E-BP–eIF4E axis promotes rapamycin-sensitive growth and proliferation in lymphocytes. . Sci. Signal. 9:(430):ra57
    [Crossref] [Google Scholar]
  27. 27.
    Galloway A, Cowling VH. 2019.. mRNA cap regulation in mammalian cell function and fate. . Biochim. Biophys. Acta Gene Regul. Mech. 1862:(3):27079
    [Crossref] [Google Scholar]
  28. 28.
    Furuichi Y. 2015.. Discovery of m7G-cap in eukaryotic mRNAs. . Proc. Jpn. Acad. B 91:(8):394409
    [Crossref] [Google Scholar]
  29. 29.
    Cao G, Li H-B, Yin Z, Flavell RA. 2016.. Recent advances in dynamic m6A RNA modification. . Open Biol. 6:(4):160003
    [Crossref] [Google Scholar]
  30. 30.
    Li H-B, Tong J, Zhu S, Batista PJ, Duffy EE, et al. 2017.. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. . Nature 548:(7667):33842
    [Crossref] [Google Scholar]
  31. 31.
    Wang S, Lv W, Li T, Zhang S, Wang H, et al. 2022.. Dynamic regulation and functions of mRNA m6A modification. . Cancer Cell Int. 22:(1):48
    [Crossref] [Google Scholar]
  32. 32.
    Cui L, Ma R, Cai J, Guo C, Chen Z, et al. 2022.. RNA modifications: importance in immune cell biology and related diseases. . Signal Transduct. Target. Ther. 7:(1):334
    [Crossref] [Google Scholar]
  33. 33.
    Zhang Y, Hu W, Li H-B. 2023.. RNA modification–mediated translational control in immune cells. . RNA Biol. 20::60313
    [Crossref] [Google Scholar]
  34. 34.
    Knop K, Gomez-Moreira C, Galloway A, Ditsova D, Cowling VH. 2023.. RAM is upregulated during T cell activation and is required for RNA cap formation and gene expression. . Discov. Immunol. 3:(1):kyad021
    [Crossref] [Google Scholar]
  35. 35.
    Galloway A, Kaskar A, Ditsova D, Atrih A, Yoshikawa H, et al. 2021.. Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation. . Nucleic Acids Res. 49:(12):672238
    [Crossref] [Google Scholar]
  36. 36.
    Guo W, Wang Z, Zhang Y, Li Y, Du Q, et al. 2024.. Mettl3-dependent m6A modification is essential for effector differentiation and memory formation of CD8+ T cells. . Sci. Bull. 69:(1):8296
    [Crossref] [Google Scholar]
  37. 37.
    Lu S, Wei X, Zhu H, Hu Z, Zheng M, et al. 2023.. m6A methyltransferase METTL3 programs CD4+ T-cell activation and effector T-cell differentiation in systemic lupus erythematosus. . Mol. Med. 29::46
    [Crossref] [Google Scholar]
  38. 38.
    Yao Y, Yang Y, Guo W, Xu L, You M, et al. 2021.. METTL3-dependent m6A modification programs T follicular helper cell differentiation. . Nat. Commun. 12::1333
    [Crossref] [Google Scholar]
  39. 39.
    Charpentier JC, Chen D, Lapinski PE, Turner J, Grigorova I, et al. 2020.. Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. . Nat. Commun. 11::180
    [Crossref] [Google Scholar]
  40. 40.
    Puccini J, Badgley MA, Bar-Sagi D. 2022.. Exploiting cancer's drinking problem: regulation and therapeutic potential of macropinocytosis. . Trends Cancer 8:(1):5464
    [Crossref] [Google Scholar]
  41. 41.
    Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, et al. 2013.. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. . Nature 497:(7451):63337
    [Crossref] [Google Scholar]
  42. 42.
    Kaur J, Debnath J. 2015.. Autophagy at the crossroads of catabolism and anabolism. . Nat. Rev. Mol. Cell Biol. 16:(8):46172
    [Crossref] [Google Scholar]
  43. 43.
    Singh R, Cuervo AM. 2011.. Autophagy in the cellular energetic balance. . Cell Metab. 13:(5):495504
    [Crossref] [Google Scholar]
  44. 44.
    Butcher EC, Picker LJ. 1996.. Lymphocyte homing and homeostasis. . Science 272:(5258):6067
    [Crossref] [Google Scholar]
  45. 45.
    Marchingo JM, Cantrell DA. 2020.. The active inner life of naive T cells. . Nat. Immunol. 21:(8):82728
    [Crossref] [Google Scholar]
  46. 46.
    Takada K, Wang X, Hart GT, Odumade OA, Weinreich MA, et al. 2011.. Krüppel-like factor 2 is required for trafficking but not quiescence in postactivated T cells. . J. Immunol. 186:(2):77583
    [Crossref] [Google Scholar]
  47. 47.
    Bai A, Hu H, Yeung M, Chen J. 2007.. Krüppel-like factor 2 controls T cell trafficking by activating l-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. . J. Immunol. 178:(12):763239
    [Crossref] [Google Scholar]
  48. 48.
    Preston GC, Feijoo-Carnero C, Schurch N, Cowling VH, Cantrell DA. 2013.. The impact of KLF2 modulation on the transcriptional program and function of CD8 T cells. . PLOS ONE 8:(10):e77537
    [Crossref] [Google Scholar]
  49. 49.
    Sinclair LV, Finlay D, Feijoo C, Cornish GH, Gray A, et al. 2008.. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. . Nat. Immunol. 9:(5):51321
    [Crossref] [Google Scholar]
  50. 50.
    Galkina E, Tanousis K, Preece G, Tolaini M, Kioussis D, et al. 2003.. l-Selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. . J. Exp. Med. 198:(9):132335
    [Crossref] [Google Scholar]
  51. 51.
    Venturi GM, Tu L, Kadono T, Khan AI, Fujimoto Y, et al. 2003.. Leukocyte migration is regulated by l-selectin endoproteolytic release. . Immunity 19:(5):71324
    [Crossref] [Google Scholar]
  52. 52.
    Tedder TF, Steeber DA, Pizcueta P. 1995.. l-Selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. . J. Exp. Med. 181:(6):225964
    [Crossref] [Google Scholar]
  53. 53.
    Steeber DA, Green NE, Sato S, Tedder TF. 1996.. Lymphocyte migration in l-selectin-deficient mice. Altered subset migration and aging of the immune system. . J. Immunol. 157:(3):1096106
    [Crossref] [Google Scholar]
  54. 54.
    Schluns KS, Kieper WC, Jameson SC, Lefrançois L. 2000.. Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. . Nat. Immunol. 1:(5):42632
    [Crossref] [Google Scholar]
  55. 55.
    Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, et al. 2001.. IL-7 is critical for homeostatic proliferation and survival of naïve T cells. . PNAS 98:(15):873237
    [Crossref] [Google Scholar]
  56. 56.
    Rathmell JC, Farkash EA, Gao W, Thompson CB. 2001.. IL-7 enhances the survival and maintains the size of naive T cells. . J. Immunol. 167:(12):686976
    [Crossref] [Google Scholar]
  57. 57.
    Lang KS, Recher M, Navarini AA, Harris NL, Löhning M, et al. 2005.. Inverse correlation between IL-7 receptor expression and CD8 T cell exhaustion during persistent antigen stimulation. . Eur. J. Immunol. 35:(3):73845
    [Crossref] [Google Scholar]
  58. 58.
    Park J-H, Yu Q, Erman B, Appelbaum JS, Montoya-Durango D, et al. 2004.. Suppression of IL7Rα transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. . Immunity 21:(2):289302
    [Crossref] [Google Scholar]
  59. 59.
    Mazzucchelli R, Durum SK. 2007.. Interleukin-7 receptor expression: intelligent design. . Nat. Rev. Immunol. 7:(2):14454
    [Crossref] [Google Scholar]
  60. 60.
    Marchingo JM, Cantrell DA. 2022.. Protein synthesis, degradation, and energy metabolism in T cell immunity. . Cell. Mol. Immunol. 19:(3):30315
    [Crossref] [Google Scholar]
  61. 61.
    Ricciardi S, Manfrini N, Alfieri R, Calamita P, Crosti MC, et al. 2018.. The translational machinery of human CD4+ T cells is poised for activation and controls the switch from quiescence to metabolic remodeling. . Cell Metab. 28:(6):895906.e5
    [Crossref] [Google Scholar]
  62. 62.
    Jia W, He Y-W. 2011.. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. . J. Immunol. 186:(9):531322
    [Crossref] [Google Scholar]
  63. 63.
    Pua HH, Dzhagalov I, Chuck M, Mizushima N, He Y-W. 2007.. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. . J. Exp. Med. 204:(1):2531
    [Crossref] [Google Scholar]
  64. 64.
    Stephenson LM, Miller BC, Ng A, Eisenberg J, Zhao Z, et al. 2009.. Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes. . Autophagy 5:(5):62535
    [Crossref] [Google Scholar]
  65. 65.
    Pua HH, Guo J, Komatsu M, He Y-W. 2009.. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. . J. Immunol. 182:(7):404655
    [Crossref] [Google Scholar]
  66. 66.
    Willinger T, Flavell RA. 2012.. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. . PNAS 109:(22):867075
    [Crossref] [Google Scholar]
  67. 67.
    Custódio TF, Paulsen PA, Frain KM, Pedersen BP. 2021.. Structural comparison of GLUT1 to GLUT3 reveal transport regulation mechanism in sugar porter family. . Life Sci. Alliance 4:(4):e202000858
    [Crossref] [Google Scholar]
  68. 68.
    Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. 2008.. The facilitative glucose transporter GLUT3: 20 years of distinction. . Am. J. Physiol. Endocrinol. Metab. 295:(2):E24253
    [Crossref] [Google Scholar]
  69. 69.
    Tan TCJ, Knight J, Sbarrato T, Dudek K, Willis AE, Zamoyska R. 2017.. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells. . PNAS 114:(30):E611726
    [Crossref] [Google Scholar]
  70. 70.
    van der Byl W, Nüssing S, Peters TJ, Ahn A, Li H, et al. 2024.. The CD8+ T cell tolerance checkpoint triggers a distinct differentiation state defined by protein translation defects. . Immunity 57:(6):132444
    [Crossref] [Google Scholar]
  71. 71.
    Cornish GH. 2006.. Differential regulation of T-cell growth by IL-2 and IL-15. . Blood 108:(2):6008
    [Crossref] [Google Scholar]
  72. 72.
    Rollings CM, Sinclair LV, Brady HJM, Cantrell DA, Ross SH. 2018.. Interleukin-2 shapes the cytotoxic T cell proteome and immune environment-sensing programs. . Sci. Signal. 11:(526):eaap8112
    [Crossref] [Google Scholar]
  73. 73.
    Ross SH, Cantrell DA. 2018.. Signaling and function of interleukin-2 in T lymphocytes. . Annu. Rev. Immunol. 36::41133
    [Crossref] [Google Scholar]
  74. 74.
    Salloum D, Singh K, Davidson NR, Cao L, Kuo D, et al. 2022.. A rapid translational immune response program in CD8 memory T lymphocytes. . J. Immunol. 209:(6):118999
    [Crossref] [Google Scholar]
  75. 75.
    Claiborne MD, Sengupta S, Zhao L, Arwood ML, Sun I-M, et al. 2022.. Persistent CAD activity in memory CD8+ T cells supports rRNA synthesis and ribosomal biogenesis required at rechallenge. . Sci. Immunol. 7:(71):eabh4271
    [Crossref] [Google Scholar]
  76. 76.
    Marchingo JM, Kan A, Sutherland RM, Duffy KR, Wellard CJ, et al. 2014.. Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion. . Science 346:(6213):112327
    [Crossref] [Google Scholar]
  77. 77.
    Smith KA. 1988.. Interleukin-2: inception, impact, and implications. . Science 240:(4856):116976
    [Crossref] [Google Scholar]
  78. 78.
    Weninger W, Crowley MA, Manjunath N, von Andrian UH. 2001.. Migratory properties of naive, effector, and memory CD8+ T cells. . J. Exp. Med. 194:(7):95366
    [Crossref] [Google Scholar]
  79. 79.
    Lisci M, Barton PR, Randzavola LO, Ma CY, Marchingo JM, et al. 2021.. Mitochondrial translation is required for sustained killing by cytotoxic T cells. . Science 374:(6565):eabe9977
    [Crossref] [Google Scholar]
  80. 80.
    Puleston DJ, Buck MD, Geltink RIK, Kyle RL, Caputa G, et al. 2019.. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. . Cell Metab. 30:(2):35263.e8
    [Crossref] [Google Scholar]
  81. 81.
    Tan TCJ, Kelly V, Zou X, Wright D, Ly T, Zamoyska R. 2022.. Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes. . Nat. Commun. 13::7796
    [Crossref] [Google Scholar]
  82. 82.
    Raynor JL, Chi H. 2024.. Nutrients: signal 4 in T cell immunity. . J. Exp. Med. 221:(3):e20221839
    [Crossref] [Google Scholar]
  83. 83.
    Nakaya M, Xiao Y, Zhou X, Chang J-H, Chang M, et al. 2014.. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. . Immunity 40:(5):692705
    [Crossref] [Google Scholar]
  84. 84.
    Pelgrom LR, Davis GM, O'Shaughnessy S, Wezenberg EJM, Kasteren SIV, et al. 2023.. QUAS-R: An SLC1A5-mediated glutamine uptake assay with single-cell resolution reveals metabolic heterogeneity with immune populations. . Cell Rep. 42:(8):112828
    [Crossref] [Google Scholar]
  85. 85.
    Werner A, Amann E, Schnitzius V, Habermeier A, Luckner-Minden C, et al. 2016.. Induced arginine transport via cationic amino acid transporter 1 is necessary for human T-cell proliferation. . Eur. J. Immunol. 46:(1):92103
    [Crossref] [Google Scholar]
  86. 86.
    Yan Y, Chen C, Li Z, Zhang J, Park N, Qu C-K. 2022.. Extracellular arginine is required but the arginine transporter CAT3 (Slc7a3) is dispensable for mouse normal and malignant hematopoiesis. . Sci. Rep. 12::21832
    [Crossref] [Google Scholar]
  87. 87.
    Sinclair LV, Rolf J, Emslie E, Shi Y-B, Taylor PM, Cantrell DA. 2013.. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. . Nat. Immunol. 14:(5):5008
    [Crossref] [Google Scholar]
  88. 88.
    Huang H, Zhou P, Wei J, Long L, Shi H, et al. 2021.. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ T cell fate decisions. . Cell 184:(5):124561.e21
    [Crossref] [Google Scholar]
  89. 89.
    Sinclair LV, Howden AJ, Brenes A, Spinelli L, Hukelmann JL, et al. 2019.. Antigen receptor control of methionine metabolism in T cells. . eLife 8::e1132
    [Crossref] [Google Scholar]
  90. 90.
    Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, et al. 2010.. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. . J. Immunol. 185:(2):103744
    [Crossref] [Google Scholar]
  91. 91.
    Roy DG, Chen J, Mamane V, Ma EH, Muhire BM, et al. 2020.. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. . Cell Metab. 31:(2):25066.e9
    [Crossref] [Google Scholar]
  92. 92.
    Ma EH, Bantug G, Griss T, Condotta S, Johnson RM, et al. 2017.. Serine is an essential metabolite for effector T cell expansion. . Cell Metab. 25:(2):34557
    [Crossref] [Google Scholar]
  93. 93.
    Bian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, et al. 2020.. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. . Nature 585:(7824):27782
    [Crossref] [Google Scholar]
  94. 94.
    Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, et al. 2021.. Cell-programmed nutrient partitioning in the tumour microenvironment. . Nature 593:(7858):28288
    [Crossref] [Google Scholar]
  95. 95.
    Puleston DJ, Zhang H, Powell TJ, Lipina E, Sims S, et al. 2014.. Autophagy is a critical regulator of memory CD8+ T cell formation. . eLife 3::e03706
    [Crossref] [Google Scholar]
  96. 96.
    Hope HC, Brownlie RJ, Fife CM, Steele L, Lorger M, Salmond RJ. 2021.. Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation. . JCI Insight 6:(9):e137761
    [Crossref] [Google Scholar]
  97. 97.
    Geltink RIK, Kyle RL, Pearce EL. 2018.. Unraveling the complex interplay between T cell metabolism and function. . Annu. Rev. Immunol. 36::46188
    [Crossref] [Google Scholar]
  98. 98.
    Ma EH, Verway MJ, Johnson RM, Roy DG, Steadman M, et al. 2019.. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. . Immunity 51:(5):85670.e5
    [Crossref] [Google Scholar]
  99. 99.
    Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, et al. 2014.. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. . Cell Metab. 20:(1):6172
    [Crossref] [Google Scholar]
  100. 100.
    Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM. 2015.. Glucose metabolism regulates T cell activation, differentiation, and functions. . Front. Immunol. 6::1
    [Crossref] [Google Scholar]
  101. 101.
    Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, et al. 2011.. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. . Immunity 35:(6):87182
    [Crossref] [Google Scholar]
  102. 102.
    Kurmi K, Liang D, van de Ven R, Georgiev P, Gassaway BM, et al. 2023.. Metabolic modulation of mitochondrial mass during CD4+ T cell activation. . Cell Chem. Biol. 30:(9):106475.e8
    [Crossref] [Google Scholar]
  103. 103.
    Tanner LB, Goglia AG, Wei MH, Sehgal T, Parsons LR, et al. 2018.. Four key steps control glycolytic flux in mammalian cells. . Cell Syst. 7:(1):4962.e8
    [Crossref] [Google Scholar]
  104. 104.
    Doherty JR, Yang C, Scott KEN, Cameron MD, Fallahi M, et al. 2014.. Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. . Cancer Res. 74:(3):90820
    [Crossref] [Google Scholar]
  105. 105.
    D'Aria S, Maquet C, Li S, Dhup S, Lepez A, et al. 2024.. Expression of the monocarboxylate transporter MCT1 is required for virus-specific mouse CD8+ T cell memory development. . PNAS 121:(13):e2306763121
    [Crossref] [Google Scholar]
  106. 106.
    Courtney AH, Lo W-L, Weiss A. 2018.. TCR signaling: mechanisms of initiation and propagation. . Trends Biochem. Sci. 43:(2):10823
    [Crossref] [Google Scholar]
  107. 107.
    Ross SH, Rollings C, Anderson KE, Hawkins PT, Stephens LR, Cantrell DA. 2016.. Phosphoproteomic analyses of interleukin 2 signaling reveal integrated JAK kinase–dependent and –independent networks in CD8+ T cells. . Immunity 45:(3):685700
    [Crossref] [Google Scholar]
  108. 108.
    Lee S, Truesdell SS, Bukhari SIA, Lee JH, LeTonqueze O, Vasudevan S. 2014.. Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages. . PNAS 111:(41):E431522
    [Crossref] [Google Scholar]
  109. 109.
    Hong S, Freeberg MA, Han T, Kamath A, Yao Y, et al. 2017.. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. . eLife 6::e25237
    [Crossref] [Google Scholar]
  110. 110.
    Myers DR, Wheeler B, Roose JP. 2019.. mTOR and other effector kinase signals that impact T cell function and activity. . Immunol. Rev. 291:(1):13453
    [Crossref] [Google Scholar]
  111. 111.
    Huang H, Long L, Zhou P, Chapman NM, Chi H. 2020.. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions. . Immunol. Rev. 295:(1):1538
    [Crossref] [Google Scholar]
  112. 112.
    Powell JD, Delgoffe GM. 2010.. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. . Immunity 33:(3):30111
    [Crossref] [Google Scholar]
  113. 113.
    Salmond RJ, Brownlie RJ, Meyuhas O, Zamoyska R. 2015.. Mechanistic target of rapamycin complex 1/S6 kinase 1 signals influence T cell activation independently of ribosomal protein S6 phosphorylation. . J. Immunol. 195:(10):461522
    [Crossref] [Google Scholar]
  114. 114.
    Navarro MN, Cantrell DA. 2014.. Serine-threonine kinases in TCR signaling. . Nat. Immunol. 15:(9):80814
    [Crossref] [Google Scholar]
  115. 115.
    Grumont R, Lock P, Mollinari M, Shannon FM, Moore A, Gerondakis S. 2004.. The mitogen-induced increase in T cell size involves PKC and NFAT activation of Rel/NF-κB-dependent c-myc expression. . Immunity 21:(1):1930
    [Crossref] [Google Scholar]
  116. 116.
    Preston GC, Sinclair L, Kaskar A, Hukelmann JL, Navarro MN, et al. 2015.. Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes. . EMBO J. 34:(15):200824
    [Crossref] [Google Scholar]
  117. 117.
    Richard AC, Lun ATL, Lau WWY, Göttgens B, Marioni JC, Griffiths GM. 2018.. T cell cytolytic capacity is independent of initial stimulation strength. . Nat. Immunol. 19:(8):84958
    [Crossref] [Google Scholar]
  118. 118.
    Villarino AV, Laurence AD, Davis FP, Nivelo L, Brooks SR, et al. 2022.. A central role for STAT5 in the transcriptional programing of T helper cell metabolism. . Sci. Immunol. 7:(77):eabl9467
    [Crossref] [Google Scholar]
  119. 119.
    Swamy M, Pathak S, Grzes KM, Damerow S, Sinclair LV, et al. 2016.. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. . Nat. Immunol. 17::71220
    [Crossref] [Google Scholar]
  120. 120.
    Chou T-Y, Hart GW, Dang CV. 1995.. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. . J. Biol. Chem. 270:(32):1896165
    [Crossref] [Google Scholar]
  121. 121.
    Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, et al. 2012.. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. . J. Exp. Med. 209:(13):244153
    [Crossref] [Google Scholar]
  122. 122.
    Sinclair LV, Barthelemy C, Cantrell DA. 2020.. Single cell glucose uptake assays: a cautionary tale. . Immunometabolism 4:(3):e200029
    [Google Scholar]
  123. 123.
    Laplante M, Sabatini DM. 2012.. mTOR signaling in growth control and disease. . Cell 149:(2):27493
    [Crossref] [Google Scholar]
  124. 124.
    Loewith R, Hall MN. 2011.. Target of rapamycin (TOR) in nutrient signaling and growth control. . Genetics 189:(4):1177201
    [Crossref] [Google Scholar]
  125. 125.
    Pollizzi KN, Powell JD. 2015.. Regulation of T cells by mTOR: the known knowns and the known unknowns. . Trends Immunol. 36:(1):1320
    [Crossref] [Google Scholar]
  126. 126.
    Wolfson RL, Sabatini DM. 2017.. The dawn of the age of amino acid sensors for the mTORC1 pathway. . Cell Metab. 26:(2):3019
    [Crossref] [Google Scholar]
  127. 127.
    Kim J, Guan K-L. 2019.. mTOR as a central hub of nutrient signalling and cell growth. . Nat. Cell Biol. 21:(1):6371
    [Crossref] [Google Scholar]
  128. 128.
    Rolf J, Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA. 2013.. AMPKα1: a glucose sensor that controls CD8 T-cell memory. . Eur. J. Immunol. 43:(4):88996
    [Crossref] [Google Scholar]
  129. 129.
    Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, et al. 2008.. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. . Cell Metab. 8:(3):22436
    [Crossref] [Google Scholar]
  130. 130.
    Cho SH, Raybuck AL, Blagih J, Kemboi E, Haase VH, et al. 2019.. Hypoxia-inducible factors in CD4+ T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity. . PNAS 116:(18):897584
    [Crossref] [Google Scholar]
  131. 131.
    Costello PS, Gallagher M, Cantrell DA. 2002.. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. . Nat. Immunol. 3:(11):108289
    [Crossref] [Google Scholar]
  132. 132.
    Garcon F, Patton DT, Emery JL, Hirsch E, Rottapel R, et al. 2007.. CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. . Blood 111:(3):146471
    [Crossref] [Google Scholar]
  133. 133.
    Spinelli L, Marchingo JM, Nomura A, Damasio MP, Cantrell DA. 2021.. Phosphoinositide 3-kinase p110 delta differentially restrains and directs naïve versus effector CD8+ T cell transcriptional programs. . Front. Immunol. 12::691997
    [Crossref] [Google Scholar]
  134. 134.
    Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, et al. 2011.. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. . Immunity 34:(2):22436
    [Crossref] [Google Scholar]
  135. 135.
    Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. 2006.. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. . Science 314:(5798):46771
    [Crossref] [Google Scholar]
  136. 136.
    Blank CU, Haining WN, Held W, Hogan PG, Kallies A, et al. 2019.. Defining ‘T cell exhaustion. .’ Nat. Rev. Immunol. 19:(11):66574
    [Crossref] [Google Scholar]
  137. 137.
    Anderson AC, Joller N, Kuchroo VK. 2016.. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. . Immunity 44:(5):9891004
    [Crossref] [Google Scholar]
  138. 138.
    Attanasio J, Wherry EJ. 2016.. Costimulatory and coinhibitory receptor pathways in infectious disease. . Immunity 44:(5):105268
    [Crossref] [Google Scholar]
  139. 139.
    Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, et al. 2015.. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. . Cell 162:(6):121728
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-082323-035253
Loading
/content/journals/10.1146/annurev-immunol-082323-035253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error