1932

Abstract

The adaptation of macrophages—the most common tissue-resident immune cells—to metabolic and microbial cues with high local variability is essential for the maintenance of organ integrity. In homeostasis, macrophages show largely predictable tissue-specific differentiation, as recently revealed by multidimensional methods. However, chronic infections with human-adapted pathogens substantially contribute to the differentiation complexity of tissue macrophages, which has been only partially resolved. Specifically, the response to mycobacterial species—which range from (with highest specificity for humans, broad organ tropism, yet tissue-specific disease phenotypes) to environmental mycobacteria with humans as accidental hosts—may serve as a paradigm of tissue macrophage adaptation mechanisms. While mycobacterial species-specific tissue preferences are partially related to the mode of acquisition and pathogen characteristics, evolutionary convergence with macrophages driven by metabolic features of the target organ likely contributes to infection resistance and immunopathology. In this review, we unravel the mechanisms of tissue-specific macrophage differentiation and its limitations in mycobacterial infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082323-120757
2025-04-25
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-082323-120757.html?itemId=/content/journals/10.1146/annurev-immunol-082323-120757&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Niec R, Rudensky AY, Fuchs E. 2021.. Inflammatory adaptation in barrier tissues. . Cell 184:(13):336175
    [Crossref] [Google Scholar]
  2. 2.
    Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. 2023.. Tissue-specific macrophages: how they develop and choreograph tissue biology. . Nat. Rev. Immunol. 23:(9):56379
    [Crossref] [Google Scholar]
  3. 3.
    Baasch S, Ruzsics Z, Henneke P. 2020.. Cytomegaloviruses and macrophages—friends and foes from early on?. Front. Immunol. 11::793
    [Crossref] [Google Scholar]
  4. 4.
    Falkinham JO. 2002.. Nontuberculous mycobacteria in the environment. . Clin. Chest Med. 23:(3):52951
    [Crossref] [Google Scholar]
  5. 5.
    Mowat AM, Scott CL, Bain CC. 2017.. Barrier-tissue macrophages: functional adaptation to environmental challenges. . Nat. Med. 23:(11):125870
    [Crossref] [Google Scholar]
  6. 6.
    Barberis I, Bragazzi NL, Galluzzo L, Martini M. 2017.. The history of tuberculosis: from the first historical records to the isolation of Koch's bacillus. . J. Prev. Med. Hyg. 58:(1):E912
    [Google Scholar]
  7. 7.
    World Health Organ. (WHO). 2023.. Global tuberculosis report 2023. Geneva:: WHO
    [Google Scholar]
  8. 8.
    Harris J, Keane J. 2010.. How tumour necrosis factor blockers interfere with tuberculosis immunity. . Clin. Exp. Immunol. 161:(1):19
    [Crossref] [Google Scholar]
  9. 9.
    Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, et al. 2014.. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. . Nat. Med. 20:(1):7579
    [Crossref] [Google Scholar]
  10. 10.
    Cambier CJ, Falkow S, Ramakrishnan L. 2014.. Host evasion and exploitation schemes of Mycobacterium tuberculosis. . Cell 159:(7):1497509
    [Crossref] [Google Scholar]
  11. 11.
    Dheda K, Migliori GB. 2024.. New framework to define the spectrum of tuberculosis. . Lancet Respir. Med. 12:(6):42628
    [Crossref] [Google Scholar]
  12. 12.
    Madacki J, Mas Fiol G, Brosch R. 2019.. Update on the virulence factors of the obligate pathogen Mycobacterium tuberculosis and related tuberculosis-causing mycobacteria. . Infect. Genet. Evol. 72::6777
    [Crossref] [Google Scholar]
  13. 13.
    Capuano SV, Croix DA, Pawar S, Zinovik A, Myers A, et al. 2003.. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. . Infect. Immun. 71:(10):583144
    [Crossref] [Google Scholar]
  14. 14.
    Guirado E, Schlesinger LS. 2013.. Modeling the Mycobacterium tuberculosis granuloma—the critical battlefield in host immunity and disease. . Front. Immunol. 4::98
    [Crossref] [Google Scholar]
  15. 15.
    Russell DG, Barry CE, Flynn JL. 2010.. Tuberculosis: What we don't know can, and does, hurt us. . Science 328:(5980):85256
    [Crossref] [Google Scholar]
  16. 16.
    Jamwal SV, Mehrotra P, Singh A, Siddiqui Z, Basu A, Rao KVS. 2016.. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. . Sci. Rep. 6:(1):23089
    [Crossref] [Google Scholar]
  17. 17.
    Podinovskaia M, Lee W, Caldwell S, Russell DG. 2013.. Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. . Cell Microbiol. 15:(6):84359
    [Crossref] [Google Scholar]
  18. 18.
    Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F. 2009.. Foamy macrophages and the progression of the human TB granuloma. . Nat. Immunol. 10:(9):94348
    [Crossref] [Google Scholar]
  19. 19.
    Parrish NM, Dick JD, Bishai WR. 1998.. Mechanisms of latency in Mycobacterium tuberculosis. . Trends Microbiol. 6:(3):10712
    [Crossref] [Google Scholar]
  20. 20.
    Kiazyk S, Ball T. 2017.. Latent tuberculosis infection: an overview. . Can. Commun. Dis. Rep. 43:(3–4):6266
    [Crossref] [Google Scholar]
  21. 21.
    Migliori GB, Ong CWM, Petrone L, D'Ambrosio L, Centis R, Goletti D. 2021.. The definition of tuberculosis infection based on the spectrum of tuberculosis disease. . Breathe 17:(3):210079
    [Crossref] [Google Scholar]
  22. 22.
    Behr MA, Edelstein PH, Ramakrishnan L. 2024.. Rethinking the burden of latent tuberculosis to reprioritize research. . Nat. Microbiol. 9:(5):115758
    [Crossref] [Google Scholar]
  23. 23.
    van Rie A, Warren R, Richardson M, Victor TC, Gie RP, et al. 1999.. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. . N. Engl. J. Med. 341:(16):117479
    [Crossref] [Google Scholar]
  24. 24.
    Colangeli R, Gupta A, Vinhas SA, Chippada Venkata UD, Kim S, et al. 2020.. Mycobacterium tuberculosis progresses through two phases of latent infection in humans. . Nat. Commun. 11:(1):4870
    [Crossref] [Google Scholar]
  25. 25.
    Park H-D, Guinn KM, Harrell MI, Liao R, Voskuil MI, et al. 2003.. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. . Mol. Microbiol. 48:(3):83343
    [Crossref] [Google Scholar]
  26. 26.
    Iona E, Pardini M, Mustazzolu A, Piccaro G, Nisini R, et al. 2016.. Mycobacterium tuberculosis gene expression at different stages of hypoxia-induced dormancy and upon resuscitation. . J. Microbiol. 54:(8):56572
    [Crossref] [Google Scholar]
  27. 27.
    Kalia NP, Singh S, Hards K, Cheung C-Y, Sviriaeva E, et al. 2023.. M. tuberculosis relies on trace oxygen to maintain energy homeostasis and survive in hypoxic environments. . Cell Rep. 42:(5):112444
    [Crossref] [Google Scholar]
  28. 28.
    Riboldi E, Porta C, Morlacchi S, Viola A, Mantovani A, Sica A. 2013.. Hypoxia-mediated regulation of macrophage functions in pathophysiology. . Int. Immunol. 25:(2):6775
    [Crossref] [Google Scholar]
  29. 29.
    Sankar P, Mishra BB. 2023.. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. . Front. Immunol. 14::1260859
    [Crossref] [Google Scholar]
  30. 30.
    Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, et al. 2015.. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. . Immunity 42:(4):66578
    [Crossref] [Google Scholar]
  31. 31.
    Hoeffel G, Ginhoux F. 2015.. Ontogeny of tissue-resident macrophages. . Front. Immunol. 6::486
    [Crossref] [Google Scholar]
  32. 32.
    Mass E, Ballesteros I, Farlik M, Halbritter F, Gunther P, et al. 2016.. Specification of tissue-resident macrophages during organogenesis. . Science 353:(6304):aaf4238
    [Crossref] [Google Scholar]
  33. 33.
    Ginhoux F, Guilliams M. 2016.. Tissue-resident macrophage ontogeny and homeostasis. . Immunity 44:(3):43949
    [Crossref] [Google Scholar]
  34. 34.
    Ng LG, Liu Z, Kwok I, Ginhoux F. 2023.. Origin and heterogeneity of tissue myeloid cells: a focus on GMP-derived monocytes and neutrophils. . Annu. Rev. Immunol. 41::375404
    [Crossref] [Google Scholar]
  35. 35.
    Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, et al. 2013.. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. . Immunity 38:(4):792804
    [Crossref] [Google Scholar]
  36. 36.
    Yona S, Kim K-W, Wolf Y, Mildner A, Varol D, et al. 2013.. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. . Immunity 38:(1):7991
    [Crossref] [Google Scholar]
  37. 37.
    Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, et al. 2013.. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. . Immunity 39:(5):92538
    [Crossref] [Google Scholar]
  38. 38.
    Kolter J, Feuerstein R, Zeis P, Hagemeyer N, Paterson N, et al. 2019.. A subset of skin macrophages contributes to the surveillance and regeneration of local nerves. . Immunity 50:(6):148297.e7
    [Crossref] [Google Scholar]
  39. 39.
    Brestoff JR, Wilen CB, Moley JR, Li Y, Zou W, et al. 2021.. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. . Cell Metab. 33:(2):27082.e8
    [Crossref] [Google Scholar]
  40. 40.
    Cansever D, Petrova E, Krishnarajah S, Mussak C, Welsh CA, et al. 2023.. Lactation-associated macrophages exist in murine mammary tissue and human milk. . Nat. Immunol. 24:(7):1098109
    [Crossref] [Google Scholar]
  41. 41.
    Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, et al. 2014.. The cellular and molecular origin of tumor-associated macrophages. . Science 344:(6186):92125
    [Crossref] [Google Scholar]
  42. 42.
    Park MD, Silvin A, Ginhoux F, Merad M. 2022.. Macrophages in health and disease. . Cell 185:(23):425979
    [Crossref] [Google Scholar]
  43. 43.
    Wynn TA, Chawla A, Pollard JW. 2013.. Macrophage biology in development, homeostasis and disease. . Nature 496:(7446):44555
    [Crossref] [Google Scholar]
  44. 44.
    Baasch S, Giansanti P, Kolter J, Riedl A, Forde AJ, et al. 2021.. Cytomegalovirus subverts macrophage identity. . Cell 184:(14):377493.e25
    [Crossref] [Google Scholar]
  45. 45.
    Asada N, Takeishi S, Frenette PS. 2017.. Complexity of bone marrow hematopoietic stem cell niche. . Int. J. Hematol. 106:(1):4554
    [Crossref] [Google Scholar]
  46. 46.
    Evans SM, Schrlau AE, Chalian AA, Zhang P, Koch CJ. 2006.. Oxygen levels in normal and previously irradiated human skin as assessed by EF5 binding. . J. Investig. Dermatol. 126:(12):2596606
    [Crossref] [Google Scholar]
  47. 46a.
    Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, . 2011.. HIF-1α in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. . J. Investig. Dermatol. 131::1793805
    [Crossref] [Google Scholar]
  48. 47.
    Haut B, Karamaoun C, Mauroy B, Sobac B. 2023.. Water and heat exchanges in mammalian lungs. . Sci. Rep. 13:(1):6636
    [Crossref] [Google Scholar]
  49. 48.
    Jagannathan L, Cuddapah S, Costa M. 2016.. Oxidative stress under ambient and physiological oxygen tension in tissue culture. . Curr. Pharmacol. Rep. 2:(2):6472
    [Crossref] [Google Scholar]
  50. 49.
    Wang W, Winlove CP, Michel CC. 2003.. Oxygen partial pressure in outer layers of skin of human finger nail folds. . J. Physiol. 549:(Part 3):85563
    [Crossref] [Google Scholar]
  51. 50.
    Braverman IM. 1997.. The cutaneous microcirculation: ultrastructure and microanatomical organization. . Microcirculation 4:(3):32940
    [Crossref] [Google Scholar]
  52. 51.
    Dunwoodie SL. 2009.. The role of hypoxia in development of the mammalian embryo. . Dev. Cell 17:(6):75573
    [Crossref] [Google Scholar]
  53. 52.
    Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, et al. 2004.. Defining the epithelial stem cell niche in skin. . Science 303:(5656):35963
    [Crossref] [Google Scholar]
  54. 53.
    Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, et al. 2010.. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. . Cell Stem Cell 7:(3):38090
    [Crossref] [Google Scholar]
  55. 54.
    Reis J, Ramos A. 2021.. In sickness and in health: the oxygen reactive species and the bone. . Front. Bioeng. Biotechnol. 9::745911
    [Crossref] [Google Scholar]
  56. 55.
    Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, et al. 2016.. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. . Oxid. Med. Cell. Longev. 2016::3907147
    [Crossref] [Google Scholar]
  57. 56.
    Biswas SK. 2016.. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?. Oxid. Med. Cell. Longev. 2016::e5698931
    [Crossref] [Google Scholar]
  58. 57.
    Paiva CN, Bozza MT. 2014.. Are reactive oxygen species always detrimental to pathogens?. Antioxid. Redox Signal. 20:(6):100037
    [Crossref] [Google Scholar]
  59. 58.
    Moghadam ZM, Henneke P, Kolter J. 2021.. From flies to men: ROS and the NADPH oxidase in phagocytes. . Front. Cell Dev. Biol. 9::628991
    [Crossref] [Google Scholar]
  60. 59.
    Choi E, Choi H-H, Kwon KW, Kim H, Ryu J-H, et al. 2024.. Permissive lung neutrophils facilitate tuberculosis immunopathogenesis in male phagocyte NADPH oxidase-deficient mice. . PLOS Pathog. 20:(8):e1012500
    [Crossref] [Google Scholar]
  61. 60.
    Olive AJ, Smith CM, Kiritsy MC, Sassetti CM. 2018.. The phagocyte oxidase controls tolerance to Mycobacterium tuberculosis infection. . J. Immunol. 201:(6):170516
    [Crossref] [Google Scholar]
  62. 61.
    Škop V, Liu N, Guo J, Gavrilova O, Reitman ML. 2020.. The contribution of the mouse tail to thermoregulation is modest. . Am. J. Physiol. Endocrinol. Metab. 319:(2):E43846
    [Crossref] [Google Scholar]
  63. 62.
    Feuerstein R, Seidl M, Prinz M, Henneke P. 2015.. MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection. . J. Immunol. 194:(6):273545
    [Crossref] [Google Scholar]
  64. 63.
    Kobayashi SD, Malachowa N, DeLeo FR. 2015.. Pathogenesis of Staphylococcus aureus abscesses. . Am. J. Pathol. 185:(6):151827
    [Crossref] [Google Scholar]
  65. 64.
    van Straalen KR, Ma F, Tsou P-S, Plazyo O, Gharaee-Kermani M, et al. 2024.. Single-cell sequencing reveals Hippo signaling as a driver of fibrosis in hidradenitis suppurativa. . J. Clin. Investig. 134:(3):e169225
    [Crossref] [Google Scholar]
  66. 65.
    Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. 2010.. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. . PLOS Pathog. 6:(8):e1001036
    [Crossref] [Google Scholar]
  67. 66.
    Ma F, Hughes TK, Teles RMB, Andrade PR, de Andrade Silva BJ, et al. 2021.. The cellular architecture of the antimicrobial response network in human leprosy granulomas. . Nat. Immunol. 22:(7):83950
    [Crossref] [Google Scholar]
  68. 67.
    McCaffrey EF, Donato M, Keren L, Chen Z, Delmastro A, et al. 2022.. The immunoregulatory landscape of human tuberculosis granulomas. . Nat. Immunol. 23:(2):31829
    [Crossref] [Google Scholar]
  69. 68.
    Sawyer AJ, Patrick E, Edwards J, Wilmott JS, Fielder T, et al. 2023.. Spatial mapping reveals granuloma diversity and histopathological superstructure in human tuberculosis. . J. Exp. Med. 220:(6):e20221392
    [Crossref] [Google Scholar]
  70. 69.
    Gharun K, Senges J, Seidl M, Lösslein A, Kolter J, et al. 2017.. Mycobacteria exploit nitric oxide-induced transformation of macrophages into permissive giant cells. . EMBO Rep. 18:(12):214459
    [Crossref] [Google Scholar]
  71. 70.
    Datta M, Kennedy M, Siri S, Via LE, Baish JW, et al. 2024.. Mathematical model of oxygen, nutrient, and drug transport in tuberculosis granulomas. . PLOS Comput. Biol. 20:(2):e1011847
    [Crossref] [Google Scholar]
  72. 71.
    Datta M, Via LE, Dartois V, Weiner DM, Zimmerman M, et al. 2024.. Normalizing granuloma vasculature and matrix improves drug delivery and reduces bacterial burden in tuberculosis-infected rabbits. . PNAS 121:(14):e2321336121
    [Crossref] [Google Scholar]
  73. 72.
    Brewer WJ, Xet-Mull AM, Yu A, Sweeney MI, Walton EM, Tobin DM. 2022.. Macrophage NFATC2 mediates angiogenic signaling during mycobacterial infection. . Cell Rep. 41:(11):111817
    [Crossref] [Google Scholar]
  74. 73.
    Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS, et al. 2015.. Interception of host angiogenic signalling limits mycobacterial growth. . Nature 517:(7536):61215
    [Crossref] [Google Scholar]
  75. 74.
    Bold TD, Ernst JD. 2009.. Who benefits from granulomas, mycobacteria or host?. Cell 136:(1):1719
    [Crossref] [Google Scholar]
  76. 75.
    Rubin EJ. 2009.. The granuloma in tuberculosis—friend or foe?. N. Engl. J. Med. 360:(23):247173
    [Crossref] [Google Scholar]
  77. 76.
    Mohammad M, Na M, Hu Z, Nguyen M-T, Kopparapu PK, et al. 2021.. Staphylococcus aureus lipoproteins promote abscess formation in mice, shielding bacteria from immune killing. . Commun. Biol. 4::432
    [Crossref] [Google Scholar]
  78. 77.
    Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. 2002.. Real-time visualization of Mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. . Immunity 17:(6):693702
    [Crossref] [Google Scholar]
  79. 78.
    Ramakrishnan L. 2012.. Revisiting the role of the granuloma in tuberculosis. . Nat. Rev. Immunol. 12:(5):35266
    [Crossref] [Google Scholar]
  80. 79.
    Grant NL, Kelly K, Maiello P, Abbott H, O'Connor S, et al. 2023.. Mycobacterium tuberculosis-specific CD4 T cells expressing transcription factors T-bet or RORγT associate with bacterial control in granulomas. . mBio 14:(3):e00477-23
    [Crossref] [Google Scholar]
  81. 80.
    Winchell CG, Nyquist SK, Chao MC, Maiello P, Myers AJ, et al. 2023.. CD8+ lymphocytes are critical for early control of tuberculosis in macaques. . J. Exp. Med. 220:(12):e20230707
    [Crossref] [Google Scholar]
  82. 81.
    Swanson RV, Gupta A, Foreman TW, Lu L, Choreno-Parra JA, et al. 2023.. Antigen-specific B cells direct T follicular-like helper cells into lymphoid follicles to mediate Mycobacterium tuberculosis control. . Nat. Immunol. 24:(5):85568
    [Crossref] [Google Scholar]
  83. 82.
    Dorhoi A, Yeremeev V, Nouailles G, Weiner J, Jörg S, et al. 2014.. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. . Eur. J. Immunol. 44:(8):238093
    [Crossref] [Google Scholar]
  84. 83.
    Wright K, de Silva K, Plain KM, Purdie AC, Blair TA, et al. 2021.. Mycobacterial infection-induced miR-206 inhibits protective neutrophil recruitment via the CXCL12/CXCR4 signalling axis. . PLOS Pathog. 17:(4):e1009186
    [Crossref] [Google Scholar]
  85. 84.
    Lovewell RR, Baer CE, Mishra BB, Smith CM, Sassetti CM. 2020.. Granulocytes act as a niche for Mycobacterium tuberculosis growth. . Mucosal Immunol. 14::22941
    [Crossref] [Google Scholar]
  86. 85.
    Doloff JC, Veiseh O, Vegas AJ, Tam HH, Farah S, et al. 2017.. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. . Nat. Mater. 16:(6):67180
    [Crossref] [Google Scholar]
  87. 86.
    Dondossola E, Holzapfel BM, Alexander S, Filippini S, Hutmacher DW, Friedl P. 2016.. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. . Nat. Biomed. Eng. 1::0007
    [Crossref] [Google Scholar]
  88. 87.
    Pagán AJ, Ramakrishnan L. 2018.. The formation and function of granulomas. . Annu. Rev. Immunol. 36::63965
    [Crossref] [Google Scholar]
  89. 88.
    Clay H, Volkman HE, Ramakrishnan L. 2008.. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. . Immunity 29:(2):28394
    [Crossref] [Google Scholar]
  90. 89.
    Roach DR, Bean AGD, Demangel C, France MP, Briscoe H, Britton WJ. 2002.. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. . J. Immunol. 168:(9):462027
    [Crossref] [Google Scholar]
  91. 90.
    Huaman MA, Sterling TR. 2019.. Treatment of latent tuberculosis infection—an update. . Clin. Chest Med. 40:(4):83948
    [Crossref] [Google Scholar]
  92. 91.
    Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. 2022.. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. . Science 376:(6600):eabh2841
    [Crossref] [Google Scholar]
  93. 92.
    Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. 2019.. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. . Cell 178::134461.e11
    [Crossref] [Google Scholar]
  94. 93.
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. 1993.. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. . J. Exp. Med. 178:(6):224954
    [Crossref] [Google Scholar]
  95. 94.
    Rosain J, Neehus A-L, Manry J, Yang R, Le Pen J, et al. 2023.. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. . Cell 186:(3):62145.e33
    [Crossref] [Google Scholar]
  96. 95.
    Martínez-Barricarte R, Markle JG, Ma CS, Deenick EK, Ramírez-Alejo N, et al. 2018.. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. . Sci. Immunol. 3:(30):eaau6759
    [Crossref] [Google Scholar]
  97. 96.
    Kotov DI, Lee OV, Fattinger SA, Langner CA, Guillen JV, et al. 2023.. Early cellular mechanisms of type I interferon-driven susceptibility to tuberculosis. . Cell 186:(25):553653.e22
    [Crossref] [Google Scholar]
  98. 97.
    Mohammed KA, Nasreen N, Ward MJ, Mubarak KK, Rodriguez-Panadero F, Antony VB. 1998.. Mycobacterium-mediated chemokine expression in pleural mesothelial cells: role of C-C chemokines in tuberculous pleurisy. . J. Infect. Dis. 178:(5):145056
    [Crossref] [Google Scholar]
  99. 98.
    Cronan MR, Hughes EJ, Brewer WJ, Viswanathan G, Hunt EG, et al. 2021.. A non-canonical type 2 immune response coordinates tuberculous granuloma formation and epithelialization. . Cell 184:(7):175774.e14
    [Crossref] [Google Scholar]
  100. 99.
    Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, et al. 2003.. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. . J. Exp. Med. 198:(5):70513
    [Crossref] [Google Scholar]
  101. 100.
    Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG, et al. 2016.. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. . Immunity 45:(4):86176
    [Crossref] [Google Scholar]
  102. 101.
    Heitmann L, Abad Dar M, Schreiber T, Erdmann H, Behrends J, et al. 2014.. The IL-13/IL-4Rα axis is involved in tuberculosis-associated pathology. . J. Pathol. 234:(3):33850
    [Crossref] [Google Scholar]
  103. 102.
    Lewis MR. 1925.. The formation of macrophages, epithelioid cells and giant cells from leucocytes in incubated blood. . Am. J. Pathol. 1:(1):91100.1
    [Google Scholar]
  104. 103.
    Milde R, Ritter J, Tennent GA, Loesch A, Martinez FO, et al. 2015.. Multinucleated giant cells are specialized for complement-mediated phagocytosis and large target destruction. . Cell Rep. 13:(9):193748
    [Crossref] [Google Scholar]
  105. 104.
    Helming L, Gordon S. 2009.. Molecular mediators of macrophage fusion. . Trends Cell Biol. 19:(10):51422
    [Crossref] [Google Scholar]
  106. 105.
    Miyamoto H, Katsuyama E, Miyauchi Y, Hoshi H, Miyamoto K, et al. 2012.. An essential role for STAT6-STAT1 protein signaling in promoting macrophage cell-cell fusion. . J. Biol. Chem. 287:(39):3247984
    [Crossref] [Google Scholar]
  107. 106.
    Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, et al. 2016.. DNA damage signaling instructs polyploid macrophage fate in granulomas. . Cell 167:(5):126480.e18
    [Crossref] [Google Scholar]
  108. 107.
    Lösslein AK, Lohrmann F, Scheuermann L, Gharun K, Neuber J, et al. 2021.. Monocyte progenitors give rise to multinucleated giant cells. . Nat. Commun. 12::2027
    [Crossref] [Google Scholar]
  109. 108.
    Tobin DM, Ramakrishnan L. 2008.. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. . Cell. Microbiol. 10:(5):102739
    [Crossref] [Google Scholar]
  110. 109.
    Stamm LM, Brown EJ. 2004.. Mycobacterium marinum: the generalization and specialization of a pathogenic mycobacterium. . Microbes Infect. 6:(15):141828
    [Crossref] [Google Scholar]
  111. 110.
    Robinson N, Wolke M, Ernestus K, Plum G. 2007.. A mycobacterial gene involved in synthesis of an outer cell envelope lipid is a key factor in prevention of phagosome maturation. . Infect. Immun. 75:(2):58191
    [Crossref] [Google Scholar]
  112. 111.
    Oh T-H, Kim UJ, Kang S-J, Jang H-C, Park K-H, et al. 2018.. Disseminated invasive Mycobacterium marinum infection involving the lung of a patient with diabetes mellitus. . Infect. Chemother. 50:(1):5964
    [Crossref] [Google Scholar]
  113. 112.
    Franco-Paredes C, Marcos LA, Henao-Martínez AF, Rodríguez-Morales AJ, Villamil-Gómez WE, et al. 2018.. Cutaneous mycobacterial infections. . Clin. Microbiol. Rev. 32:(1):e00069-18
    [Crossref] [Google Scholar]
  114. 113.
    Manion M, Dulanto Chiang A, Pei L, Wong C-S, Khil P, et al. 2021.. Disseminated Mycobacterium marinum in human immunodeficiency virus unmasked by immune reconstitution inflammatory syndrome. . J. Infect. Dis. 224:(3):45357
    [Crossref] [Google Scholar]
  115. 114.
    Dhungel L, Bonner R, Cook M, Henson D, Moulder T, et al. 2023.. Impact of temperature and oxygen availability on gene expression patterns of Mycobacterium ulcerans. . Microbiol. Spectr. 11:(2):e04968-22
    [Crossref] [Google Scholar]
  116. 115.
    Elks PM, Brizee S, van der Vaart M, Walmsley SR, van Eeden FJ, et al. 2013.. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. . PLOS Pathog. 9:(12):e1003789
    [Crossref] [Google Scholar]
  117. 116.
    Remot A, Doz E, Winter N. 2019.. Neutrophils and close relatives in the hypoxic environment of the tuberculous granuloma: new avenues for host-directed therapies?. Front. Immunol. 10::417
    [Crossref] [Google Scholar]
  118. 117.
    Yang H, Wang F, Guo X, Liu F, Liu Z, et al. 2021.. Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. . Cell Discov. 7:(1):90
    [Crossref] [Google Scholar]
  119. 118.
    Forde AJ, Kolter J, Zwicky P, Baasch S, Lohrmann F, et al. 2023.. Metabolic rewiring tunes dermal macrophages in staphylococcal skin infection. . Sci. Immunol. 8:(86):eadg3517
    [Crossref] [Google Scholar]
  120. 119.
    Elkington P, Polak ME, Reichmann MT, Leslie A. 2022.. Understanding the tuberculosis granuloma: the matrix revolutions. . Trends Mol. Med. 28:(2):14354
    [Crossref] [Google Scholar]
  121. 120.
    Kim JK, Kim TY, Kim DH, Yoon MS. 2010.. Three cases of primary inoculation tuberculosis as a result of illegal acupuncture. . Ann. Dermatol. 22:(3):34145
    [Crossref] [Google Scholar]
  122. 121.
    Urbanowski ME, Ordonez AA, Ruiz-Bedoya CA, Jain SK, Bishai WR. 2020.. Cavitary tuberculosis: the gateway of disease transmission. . Lancet Infect. Dis. 20:(6):e11728
    [Crossref] [Google Scholar]
  123. 122.
    Kaul S, Kaur I, Mehta S, Singal A. 2023.. Cutaneous tuberculosis. Part I: pathogenesis, classification, and clinical features. . J. Am. Acad. Dermatol. 89:(6):1091103
    [Crossref] [Google Scholar]
  124. 123.
    Chong VH. 2008.. Hepatobiliary tuberculosis: a review of presentations and outcomes. . South. Med. J. 101:(4):35661
    [Crossref] [Google Scholar]
  125. 124.
    Seiler P, Schwendener RA, Bandermann S, Brinkmann V, Grode L, et al. 2001.. Limited mycobacterial infection of the liver as a consequence of its microanatomical structure causing restriction of mycobacterial growth to professional phagocytes. . Infect. Immun. 69:(12):792226
    [Crossref] [Google Scholar]
  126. 125.
    McMullan GS, Lewis JH. 2017.. Tuberculosis of the liver, biliary tract, and pancreas. . Microbiol. Spectr. 5:(1):
    [Crossref] [Google Scholar]
  127. 126.
    Barrios-Payán J, Saqui-Salces M, Jeyanathan M, Alcántara-Vazquez A, Castañon-Arreola M, et al. 2012.. Extrapulmonary locations of Mycobacterium tuberculosis DNA during latent infection. . J. Infect. Dis. 206:(8):1194205
    [Crossref] [Google Scholar]
  128. 127.
    Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN. 2008.. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. . Immunity 28:(2):27184
    [Crossref] [Google Scholar]
  129. 128.
    Donovan J, Thwaites GE, Huynh J. 2020.. Tuberculous meningitis: where to from here?. Curr. Opin. Infect. Dis. 33:(3):25966
    [Crossref] [Google Scholar]
  130. 129.
    Marx GE, Chan ED. 2011.. Tuberculous meningitis: diagnosis and treatment overview. . Tuberc. Res. Treat. 2011:(1):798764
    [Google Scholar]
  131. 130.
    Davis AG, Rohlwink UK, Proust A, Figaji AA, Wilkinson RJ. 2019.. The pathogenesis of tuberculous meningitis. . J. Leukoc. Biol. 105:(2):26780
    [Crossref] [Google Scholar]
  132. 131.
    Leonard JM. 2017.. Central nervous system tuberculosis. . Microbiol. Spectr. 5:(2):
    [Crossref] [Google Scholar]
  133. 132.
    Sieweke MH, Allen JE. 2013.. Beyond stem cells: self-renewal of differentiated macrophages. . Science 342:(6161):1242974
    [Crossref] [Google Scholar]
  134. 133.
    Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, et al. 2019.. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. . Cell 178:(6):150925.e19
    [Crossref] [Google Scholar]
  135. 134.
    Chong SZ, Evrard M, Devi S, Chen J, Lim JY, et al. 2016.. CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. . J. Exp. Med. 213:(11):2293314
    [Crossref] [Google Scholar]
  136. 135.
    Lohrmann F, Sankowski R, Schwer S, Neuber J, Vlachou EP, et al. 2025.. Tissue imprinting defines functional mosaic of dermal macrophages. . bioRxiv 2025.01.09.631670. https://doi.org/10.1101/2025.01.09.631670
  137. 136.
    Prinz M, Jung S, Priller J. 2019.. Microglia biology: one century of evolving concepts. . Cell 179:(2):292311
    [Crossref] [Google Scholar]
  138. 137.
    Kim J-S, Trzebanski S, Shin S-H, Ilani NC, Kaushansky N, et al. 2023.. Monocyte-derived microglia with Dnmt3a mutation cause motor pathology in aging mice. . bioRxiv 2023.11.16.567402. https://doi.org/10.1101/2023.11.16.567402
  139. 138.
    Zhang X, Zhao Z, Wu Q, Wang L, Li L, et al. 2023.. Single-cell analysis reveals changes in BCG vaccine-injected mice modeling tuberculous meningitis brain infection. . Cell Rep. 42:(3):112177
    [Crossref] [Google Scholar]
  140. 139.
    Moonan PK. 2018.. Tuberculosis—the face of struggles, the struggles we face, and the dreams that lie within. . Emerg. Infect. Dis. 24:(3):59293
    [Crossref] [Google Scholar]
  141. 140.
    Hanrahan CF, Golub JE, Mohapi L, Tshabangu N, Modisenyane T, et al. 2010.. Body mass index and risk of tuberculosis and death. . AIDS 24:(10):15018
    [Crossref] [Google Scholar]
  142. 141.
    Leung CC, Lam TH, Chan WM, Yew WW, Ho KS, et al. 2007.. Lower risk of tuberculosis in obesity. . Arch. Intern. Med. 167:(12):1297304
    [Crossref] [Google Scholar]
  143. 142.
    Yen Y-F, Hu H-Y, Lee Y-L, Ku P-W, Lin I-F, et al. 2017.. Obesity/overweight reduces the risk of active tuberculosis: a nationwide population-based cohort study in Taiwan. . Int. J. Obes. 41:(6):97175
    [Crossref] [Google Scholar]
  144. 143.
    Choi H, Yoo JE, Han K, Choi W, Rhee SY, et al. 2021.. Body mass index, diabetes, and risk of tuberculosis: a retrospective cohort study. . Front. Nutr. 8::739766
    [Crossref] [Google Scholar]
  145. 144.
    Arias L, Goig GA, Cardona P, Torres-Puente M, Díaz J, et al. 2019.. Influence of gut microbiota on progression to tuberculosis generated by high fat diet-induced obesity in C3HeB/FeJ mice. . Front. Immunol. 10::2464
    [Crossref] [Google Scholar]
  146. 145.
    Dobler CC, Flack JR, Marks GB. 2012.. Risk of tuberculosis among people with diabetes mellitus: an Australian nationwide cohort study. . BMJ Open 2:(1):e000666
    [Crossref] [Google Scholar]
  147. 146.
    Martinez N, Smulan LJ, Jameson ML, Smith CM, Cavallo K, et al. 2023.. Glycerol contributes to tuberculosis susceptibility in male mice with type 2 diabetes. . Nat. Commun. 14:(1):5840
    [Crossref] [Google Scholar]
  148. 147.
    Silva DR, Muñoz-Torrico M, Duarte R, Galvão T, Bonini EH, et al. 2018.. Risk factors for tuberculosis: diabetes, smoking, alcohol use, and the use of other drugs. . J. Bras. Pneumol. 44:(2):14552
    [Crossref] [Google Scholar]
  149. 148.
    Yoo JE, Kim D, Han K, Rhee SY, Shin DW, Lee H. 2021.. Diabetes status and association with risk of tuberculosis among Korean adults. . JAMA Netw. Open 4:(9):e2126099
    [Crossref] [Google Scholar]
  150. 149.
    Bahlool AZ, Grant C, Cryan S-A, Keane J, O'Sullivan MP. 2022.. All trans retinoic acid as a host-directed immunotherapy for tuberculosis. . Curr. Res. Immunol. 3::5472
    [Crossref] [Google Scholar]
  151. 150.
    Chiaradia L, Lefebvre C, Parra J, Marcoux J, Burlet-Schiltz O, et al. 2017.. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. . Sci. Rep. 7:(1):12807
    [Crossref] [Google Scholar]
  152. 151.
    Jackson M. 2014.. The mycobacterial cell envelope—lipids. Cold Spring Harb. . Perspect. Med. 4:(10):a021105
    [Google Scholar]
  153. 152.
    Gago G, Diacovich L, Gramajo H. 2018.. Lipid metabolism and its implication in mycobacteria-host interaction. . Curr. Opin. Microbiol. 41::3642
    [Crossref] [Google Scholar]
  154. 153.
    Sacco E, Covarrubias AS, O'Hare HM, Carroll P, Eynard N, et al. 2007.. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. . PNAS 104:(37):1462833
    [Crossref] [Google Scholar]
  155. 154.
    Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, et al. 2009.. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. . J. Exp. Med. 206:(13):287988
    [Crossref] [Google Scholar]
  156. 155.
    Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh F-K, Chalut C, et al. 2009.. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. . PLOS Pathog. 5:(2):e1000289
    [Crossref] [Google Scholar]
  157. 156.
    Quigley J, Hughitt VK, Velikovsky CA, Mariuzza RA, El-Sayed NM, Briken V. 2017.. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. . mBio 8:(2):e00148-17
    [Crossref] [Google Scholar]
  158. 157.
    Augenstreich J, Arbues A, Simeone R, Haanappel E, Wegener A, et al. 2017.. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. . Cell. Microbiol. 19:(7):e12726
    [Crossref] [Google Scholar]
  159. 158.
    Day TA, Mittler JE, Nixon MR, Thompson C, Miner MD, et al. 2014.. Mycobacterium tuberculosis strains lacking surface lipid phthiocerol dimycocerosate are susceptible to killing by an early innate host response. . Infect. Immun. 82:(12):521422
    [Crossref] [Google Scholar]
  160. 159.
    Cambier CJ, O'Leary SM, O'Sullivan MP, Keane J, Ramakrishnan L. 2017.. Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. . Immunity 47:(3):55265.e4
    [Crossref] [Google Scholar]
  161. 160.
    Madigan CA, Cambier CJ, Kelly-Scumpia KM, Scumpia PO, Cheng T-Y, et al. 2017.. A macrophage response to Mycobacterium leprae phenolic glycolipid initiates nerve damage in leprosy. . Cell 170:(5):97385.e10
    [Crossref] [Google Scholar]
  162. 161.
    Sassetti CM, Rubin EJ. 2003.. Genetic requirements for mycobacterial survival during infection. . PNAS 100:(22):1298994
    [Crossref] [Google Scholar]
  163. 162.
    Pandey AK, Sassetti CM. 2008.. Mycobacterial persistence requires the utilization of host cholesterol. . PNAS 105:(11):437680
    [Crossref] [Google Scholar]
  164. 163.
    Schwab U, Rohde KH, Wang Z, Chess PR, Notter RH, Russell DG. 2009.. Transcriptional responses of Mycobacterium tuberculosis to lung surfactant. . Microb. Pathog. 46:(4):18593
    [Crossref] [Google Scholar]
  165. 164.
    Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KVS. 2012.. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. . Cell Host Microbe 12:(5):66981
    [Crossref] [Google Scholar]
  166. 165.
    Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. 2011.. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. . PLOS Pathog. 7:(6):e1002093
    [Crossref] [Google Scholar]
  167. 166.
    Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, et al. 2008.. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. . PLOS Pathog. 4:(11):e1000204
    [Crossref] [Google Scholar]
  168. 167.
    Kim H, Shin SJ. 2023.. Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism. . Cell. Mol. Life Sci. 80:(10):291
    [Crossref] [Google Scholar]
  169. 168.
    Fujimoto T, Parton RG. 2011.. Not just fat: the structure and function of the lipid droplet. . Cold Spring Harb. Perspect. Biol. 3:(3):a004838
    [Crossref] [Google Scholar]
  170. 169.
    Hüsler D, Stauffer P, Hilbi H. 2023.. Tapping lipid droplets: a rich fat diet of intracellular bacterial pathogens. . Mol. Microbiol. 120:(2):194209
    [Crossref] [Google Scholar]
  171. 170.
    Bedard M, van der Niet S, Bernard EM, Babunovic G, Cheng T-Y, et al. 2023.. A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages. . J. Clin. Investig. 133:(6):e161944
    [Crossref] [Google Scholar]
  172. 171.
    Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C, et al. 2016.. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. . Nat. Immunol. 17:(6):67786
    [Crossref] [Google Scholar]
  173. 172.
    D'Avila H, Melo RCN, Parreira GG, Werneck-Barroso E, Castro-Faria-Neto HC, Bozza PT. 2006.. Mycobacterium bovis bacillus Calmette-Guérin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. . J. Immunol. 176:(5):308797
    [Crossref] [Google Scholar]
  174. 173.
    Roque NR, Lage SL, Navarro R, Fazolini N, Maya-Monteiro CM, et al. 2020.. Rab7 controls lipid droplet-phagosome association during mycobacterial infection. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865:(8):158703
    [Crossref] [Google Scholar]
  175. 174.
    Muñoz-Elías EJ, McKinney JD. 2005.. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. . Nat. Med. 11:(6):63844
    [Crossref] [Google Scholar]
  176. 175.
    Russell DG, VanderVen BC, Lee W, Abramovitch RB, Kim M, et al. 2010.. Mycobacterium tuberculosis wears what it eats. . Cell Host Microbe 8:(1):6876
    [Crossref] [Google Scholar]
  177. 176.
    Thomas ST, VanderVen BC, Sherman DR, Russell DG, Sampson NS. 2011.. Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. . J. Biol. Chem. 286:(51):4366878
    [Crossref] [Google Scholar]
  178. 177.
    Pisu D, Huang L, Grenier JK, Russell DG. 2020.. Dual RNA-seq of Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen interactions. . Cell Rep. 30:(2):33550.e4
    [Crossref] [Google Scholar]
  179. 178.
    Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. 2018.. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. . J. Exp. Med. 215:(4):113552
    [Crossref] [Google Scholar]
  180. 179.
    Kim M-J, Wainwright HC, Locketz M, Bekker L-G, Walther GB, et al. 2010.. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. . EMBO Mol. Med. 2:(7):25874
    [Crossref] [Google Scholar]
  181. 180.
    Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. 2018.. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. . PLOS Pathog. 14:(1):e1006874
    [Crossref] [Google Scholar]
  182. 181.
    Parihar SP, Ozturk M, Marakalala MJ, Loots DT, Hurdayal R, et al. 2018.. Protein kinase C-delta (PKCδ), a marker of inflammation and tuberculosis disease progression in humans, is important for optimal macrophage killing effector functions and survival in mice. . Mucosal Immunol. 11:(2):496511
    [Crossref] [Google Scholar]
  183. 182.
    Hackett EE, Charles-Messance H, O'Leary SM, Gleeson LE, Muñoz-Wolf N, et al. 2020.. Mycobacterium tuberculosis limits host glycolysis and IL-1β by restriction of PFK-M via microRNA-21. . Cell Rep. 30:(1):12436.e4
    [Crossref] [Google Scholar]
  184. 183.
    Osada-Oka M, Goda N, Saiga H, Yamamoto M, Takeda K, et al. 2019.. Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for Mycobacterium tuberculosis infection. . Int. Immunol. 31:(12):78193
    [Crossref] [Google Scholar]
  185. 184.
    Pagán AJ, Lee LJ, Edwards-Hicks J, Moens CB, Tobin DM, et al. 2022. mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity. . Cell 185:(20):372038.e13
    [Crossref] [Google Scholar]
  186. 185.
    Russell DG, Huang L, VanderVen BC. 2019.. Immunometabolism at the interface between macrophages and pathogens. . Nat. Rev. Immunol. 19:(5):291304
    [Crossref] [Google Scholar]
  187. 186.
    VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, et al. 2015.. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment. . PLOS Pathog. 11:(2):e1004679
    [Crossref] [Google Scholar]
  188. 187.
    Mackenzie JS, Lamprecht DA, Asmal R, Adamson JH, Borah K, et al. 2020.. Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis. . Nat. Commun. 11:(1):6092
    [Crossref] [Google Scholar]
  189. 188.
    Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonça LE, et al. 2018.. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. . Cell 172:(1–2):17690.e19
    [Crossref] [Google Scholar]
  190. 189.
    Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, et al. 2020.. Defining trained immunity and its role in health and disease. . Nat. Rev. Immunol. 20:(6):37588
    [Crossref] [Google Scholar]
  191. 190.
    Feuerstein R, Forde AJ, Lohrmann F, Kolter J, Ramirez NJ, et al. 2020.. Resident macrophages acquire innate immune memory in staphylococcal skin infection. . eLife 9::e55602
    [Crossref] [Google Scholar]
  192. 191.
    Christ A, Günther P, Lauterbach MAR, Duewell P, Biswas D, et al. 2018.. Western diet triggers NLRP3-dependent innate immune reprogramming. . Cell 172:(1–2):16275.e14
    [Crossref] [Google Scholar]
  193. 192.
    Khan N, Downey J, Sanz J, Kaufmann E, Blankenhaus B, et al. 2020.. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. . Cell 183:(3):75270.e22
    [Crossref] [Google Scholar]
  194. 193.
    Bhargavi G, Subbian S. 2024.. The causes and consequences of trained immunity in myeloid cells. . Front. Immunol. 15::1365127
    [Crossref] [Google Scholar]
  195. 194.
    dos Santos PCP, Messina NL, de Oliveira RD, da Silva PV, Puga MAM, et al. 2024.. Effect of BCG vaccination against Mycobacterium tuberculosis infection in adult Brazilian health-care workers: a nested clinical trial. . Lancet Infect. Dis. 24:(6):594601
    [Crossref] [Google Scholar]
  196. 195.
    Cirovic B, de Bree LCJ, Groh L, Blok BA, Chan J, et al. 2020.. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. . Cell Host Microbe 28:(2):32234.e5
    [Crossref] [Google Scholar]
  197. 196.
    Shah JA, Lindestam Arlehamn CS, Horne DJ, Sette A, Hawn TR. 2019.. Nontuberculous mycobacteria and heterologous immunity to tuberculosis. . J. Infect. Dis. 220:(7):109198
    [Crossref] [Google Scholar]
  198. 197.
    Dutt TS, Karger BR, Fox A, Youssef N, Dadhwal R, et al. 2022.. Mucosal exposure to non-tuberculous mycobacteria elicits B-cell mediated immunity against pulmonary tuberculosis. . Cell Rep. 41:(11):111783
    [Crossref] [Google Scholar]
  199. 198.
    Mayito J, Andia I, Belay M, Jolliffe DA, Kateete DP, et al. 2019.. Anatomic and cellular niches for Mycobacterium tuberculosis in latent tuberculosis infection. . J. Infect. Dis. 219:(5):68594
    [Crossref] [Google Scholar]
  200. 199.
    Das B, Kashino SS, Pulu I, Kalita D, Swami V, et al. 2013.. CD271+ bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. . Sci. Transl. Med. 5:(170):170ra13
    [Crossref] [Google Scholar]
  201. 200.
    Reece ST, Vogelzang A, Tornack J, Bauer W, Zedler U, et al. 2018.. Mycobacterium tuberculosis-infected hematopoietic stem and progenitor cells unable to express inducible nitric oxide synthase propagate tuberculosis in mice. . J. Infect. Dis. 217:(10):166771
    [Crossref] [Google Scholar]
  202. 201.
    Devi A, Pahuja I, Singh SP, Verma A, Bhattacharya D, et al. 2023.. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. . Cell. Mol. Immunol. 20:(6):600612
    [Crossref] [Google Scholar]
  203. 202.
    Jain N, Kalam H, Singh L, Sharma V, Kedia S, et al. 2020.. Mesenchymal stem cells offer a drug-tolerant and immune-privileged niche to Mycobacterium tuberculosis. . Nat. Commun. 11:(1):3062
    [Crossref] [Google Scholar]
  204. 203.
    Achtman M. 2016.. How old are bacterial pathogens?. Proc. Biol. Sci. 283:( 1836.):20160990
    [Google Scholar]
  205. 204.
    Panzer S, Treitl M, Zesch S, Rosendahl W, Helmbold-Doyé J, et al. 2022.. Radiological evidence of purulent infections in ancient Egyptian child mummies. . Int. J. Paleopathol. 36::3035
    [Crossref] [Google Scholar]
  206. 205.
    Zink A, Maixner F, Jäger HY, Szikossy I, Pálfi G, Pap I. 2023.. Tuberculosis in mummies—new findings, perspectives and limitations. . Tuberculosis 143::102371
    [Crossref] [Google Scholar]
  207. 206.
    Comas I, Coscolla M, Luo T, Borrell S, Holt KE, et al. 2013.. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. . Nat. Genet. 45:(10):117682
    [Crossref] [Google Scholar]
  208. 207.
    Brites D, Gagneux S. 2015.. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. . Immunol. Rev. 264:(1):624
    [Crossref] [Google Scholar]
  209. 208.
    Saelens JW, Sweeney MI, Viswanathan G, Xet-Mull AM, Jurcic Smith KL, et al. 2022.. An ancestral mycobacterial effector promotes dissemination of infection. . Cell 185:(24):450725.e18
    [Crossref] [Google Scholar]
  210. 209.
    Witas HW, Donoghue HD, Kubiak D, Lewandowska M, Gładykowska-Rzeczycka JJ. 2015.. Molecular studies on ancient M. tuberculosis and M. leprae: methods of pathogen and host DNA analysis. . Eur. J. Clin. Microbiol. Infect. Dis. 34:(9):173349
    [Crossref] [Google Scholar]
  211. 210.
    Phelan J, Gomez-Gonzalez PJ, Andreu N, Omae Y, Toyo-Oka L, et al. 2023.. Genome-wide host-pathogen analyses reveal genetic interaction points in tuberculosis disease. . Nat. Commun. 14:(1):549
    [Crossref] [Google Scholar]
  212. 211.
    Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, et al. 2018.. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. . Sci. Immunol. 3:(30):eaau8714
    [Crossref] [Google Scholar]
  213. 212.
    Kerner G, Laval G, Patin E, Boisson-Dupuis S, Abel L, et al. 2021.. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. . Am. J. Hum. Genet. 108:(3):51724
    [Crossref] [Google Scholar]
  214. 213.
    Surendra H, Elyazar IRF, Puspaningrum E, Darmawan D, Pakasi TT, et al. 2023.. Impact of the COVID-19 pandemic on tuberculosis control in Indonesia: a nationwide longitudinal analysis of programme data. . Lancet Glob. Health 11:(9):e141221
    [Crossref] [Google Scholar]
  215. 214.
    Seung KJ, Keshavjee S, Rich ML. 2015.. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. . Perspect. Med. 5:(9):a017863
    [Google Scholar]
  216. 215.
    World Health Organ. (WHO). 2022.. Implementing the End TB Strategy: the essentials, 2022 update. Geneva:: WHO
    [Google Scholar]
  217. 216.
    Honda JR, Virdi R, Chan ED. 2018.. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. . Front. Microbiol. 9::410362
    [Crossref] [Google Scholar]
  218. 217.
    Kuntz M, Kohlfürst DS, Feiterna-Sperling C, Krüger R, Baumann U, et al. 2020.. Risk factors for complicated lymphadenitis caused by nontuberculous mycobacteria in children. . Emerg. Infect. Dis. 26:(3):57986
    [Crossref] [Google Scholar]
  219. 218.
    Dahl VN, Mølhave M, Fløe A, van Ingen J, Schön T, et al. 2022.. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. . Int. J. Infect. Dis. 125::12031
    [Crossref] [Google Scholar]
  220. 219.
    Donohue MJ, Wymer L. 2016.. Increasing prevalence rate of nontuberculous mycobacteria infections in five states, 2008–2013. . Ann. Am. Thorac. Soc. 13:(12):214350
    [Crossref] [Google Scholar]
  221. 220.
    Prevots DR, Marshall JE, Wagner D, Morimoto K. 2023.. Global epidemiology of nontuberculous mycobacterial pulmonary disease: a review. . Clin. Chest Med. 44:(4):675721
    [Crossref] [Google Scholar]
  222. 221.
    Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, et al. 2020.. The rise of non-tuberculosis mycobacterial lung disease. . Front. Immunol. 11::303
    [Crossref] [Google Scholar]
  223. 222.
    Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, et al. 2020.. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. . Clin. Infect. Dis. 71:(4):e136
    [Crossref] [Google Scholar]
  224. 223.
    Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, et al. 2007.. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. . Am. J. Respir. Crit. Care Med. 175:(4):367416
    [Crossref] [Google Scholar]
  225. 224.
    Wagner D, Young LS. 2004.. Nontuberculous mycobacterial infections: a clinical review. . Infection 32:(5):25770
    [Crossref] [Google Scholar]
  226. 225.
    Boeck L, Burbaud S, Skwark M, Pearson WH, Sangen J, et al. 2022.. Mycobacterium abscessus pathogenesis identified by phenogenomic analyses. . Nat. Microbiol. 7:(9):143141
    [Crossref] [Google Scholar]
  227. 226.
    Raats D, Brode SK, Mehrabi M, Marras TK. 2022.. Increasing and more commonly refractory Mycobacterium avium pulmonary disease, Toronto, Ontario, Canada. . Emerg. Infect. Dis. 28:(8):158996
    [Crossref] [Google Scholar]
  228. 227.
    Cardoso MS, Silva TM, Resende M, Appelberg R, Borges M. 2015.. Lack of the transcription factor hypoxia-inducible factor 1α (HIF-1α) in macrophages accelerates the necrosis of Mycobacterium avium-induced granulomas. . Infect. Immun. 83:(9):353444
    [Crossref] [Google Scholar]
  229. 228.
    Kannan N, Lai Y-P, Haug M, Lilleness MK, Bakke SS, et al. 2019.. Genetic variation/evolution and differential host responses resulting from in-patient adaptation of Mycobacterium avium. . Infect. Immun. 87:(4):e00323-18
    [Crossref] [Google Scholar]
  230. 229.
    Abukhalid N, Rojony R, Danelishvili L, Bermudez LE. 2023.. Metabolic pathways that permit Mycobacterium avium subsp. hominissuis to transition to different environments encountered within the host during infection. . Front. Cell. Infect. Microbiol. 13::1092317
    [Crossref] [Google Scholar]
  231. 230.
    Crilly NP, Ayeh SK, Karakousis PC. 2021.. The new frontier of host-directed therapies for Mycobacterium avium complex. . Front. Immunol. 11::623119
    [Crossref] [Google Scholar]
  232. 231.
    Creasey EA, Isberg RR. 2014.. Maintenance of vacuole integrity by bacterial pathogens. . Curr. Opin. Microbiol. 17::4652
    [Crossref] [Google Scholar]
  233. 232.
    Smith J, Manoranjan J, Pan M, Bohsali A, Xu J, et al. 2008.. Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. . Infect. Immun. 76:(12):547887
    [Crossref] [Google Scholar]
  234. 233.
    Gidon A, Åsberg SE, Louet C, Ryan L, Haug M, Flo TH. 2017.. Persistent mycobacteria evade an antibacterial program mediated by phagolysosomal TLR7/8/MyD88 in human primary macrophages. . PLOS Pathog. 13:(8):e1006551
    [Crossref] [Google Scholar]
  235. 234.
    Awuh JA, Haug M, Mildenberger J, Marstad A, Do CPN, et al. 2015.. Keap1 regulates inflammatory signaling in Mycobacterium avium-infected human macrophages. . PNAS 112:(31):E427280
    [Crossref] [Google Scholar]
  236. 235.
    Blanc SM, Robinson D, Fahrenfeld NL. 2021.. Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: a literature review. . City Environ. Interact. 11::100070
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-082323-120757
Loading
/content/journals/10.1146/annurev-immunol-082323-120757
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error