1932

Abstract

Communication between the nervous and immune systems is evolutionarily conserved. From primitive eukaryotes to higher mammals, neuroimmune communication utilizes multiple complex and complementary mechanisms to trigger effective but balanced responses to environmental dangers such as allergens and tissue damage. These responses result from a tight integration of the nervous and immune systems, and accumulating evidence suggests that this bidirectional communication is crucial in modulating the initiation and development of allergic inflammation. In this review, we discuss the basic mechanisms of neuroimmune communication, with a focus on the recent advances underlying the importance of such communication in the allergic immune response. We examine neuronal sensing of allergens, how neuropeptides and neurotransmitters regulate allergic immune cell functions, and how inflammatory factors derived from immune cells coordinate complex peripheral and central nervous system responses. Furthermore, we highlight how fundamental aspects of host biology, from aging to circadian rhythm, might affect these pathways. Appreciating neuroimmune communications as an evolutionarily conserved and functionally integrated system that is fundamentally involved in type 2 immunity will provide new insights into allergic inflammation and reveal exciting opportunities for the management of acute and chronic allergic diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082423-032154
2025-04-25
2025-06-25
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-082423-032154.html?itemId=/content/journals/10.1146/annurev-immunol-082423-032154&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Janeway CA Jr. 1989.. Approaching the asymptote? Evolution and revolution in immunology. . Cold Spring Harb. Symp. Quant. Biol. 54:(Part 1):113
    [Crossref] [Google Scholar]
  2. 2.
    Kioussis D, Pachnis V. 2009.. Immune and nervous systems: more than just a superficial similarity?. Immunity 31::70510
    [Crossref] [Google Scholar]
  3. 3.
    Augustin R, Schröder K, Murillo Rincón AP, Fraune S, Anton-Erxleben F, et al. 2017.. Nat. Commun. 8::698
    [Crossref] [Google Scholar]
  4. 4.
    Pukkila-Worley R. 2016.. Surveillance immunity: an emerging paradigm of innate defense activation in Caenorhabditis elegans. . PLOS Pathog. 12::e1005795
    [Crossref] [Google Scholar]
  5. 5.
    Tracey KJ. 2014.. Approaching the next revolution? Evolutionary integration of neural and immune pathogen sensing and response. . Cold Spring Harb. Perspect. Biol. 7::a016360
    [Crossref] [Google Scholar]
  6. 6.
    Kawli T, Tan MW. 2008.. Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling. . Nat. Immunol. 9::141524
    [Crossref] [Google Scholar]
  7. 7.
    Styer KL, Singh V, Macosko E, Steele SE, Bargmann CI, Aballay A. 2008.. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. . Science 322::46064
    [Crossref] [Google Scholar]
  8. 8.
    Reddy KC, Andersen EC, Kruglyak L, Kim DH. 2009.. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. . Science 323::38284
    [Crossref] [Google Scholar]
  9. 9.
    Anyanful A, Easley KA, Benian GM, Kalman D. 2009.. Conditioning protects C. elegans from lethal effects of enteropathogenic E. coli by activating genes that regulate lifespan and innate immunity. . Cell Host Microbe 5::45062
    [Crossref] [Google Scholar]
  10. 10.
    Sun J, Singh V, Kajino-Sakamoto R, Aballay A. 2011.. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. . Science 332::72932
    [Crossref] [Google Scholar]
  11. 11.
    Zhang Y, Lu H, Bargmann CI. 2005.. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. . Nature 438::17984
    [Crossref] [Google Scholar]
  12. 12.
    Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI, Ewbank JJ. 2007.. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. . PNAS 104::2295300
    [Crossref] [Google Scholar]
  13. 13.
    Fredriksson R, Schiöth HB. 2005.. The repertoire of G-protein-coupled receptors in fully sequenced genomes. . Mol. Pharmacol. 67::141425
    [Crossref] [Google Scholar]
  14. 14.
    Kim BS, Sun K, Papp K, Venturanza M, Nasir A, Kuligowski ME. 2020.. Effects of ruxolitinib cream on pruritus and quality of life in atopic dermatitis: Results from a phase 2, randomized, dose-ranging, vehicle- and active-controlled study. . J. Am. Acad. Dermatol. 82::130513
    [Crossref] [Google Scholar]
  15. 15.
    Wani KA, Goswamy D, Irazoqui JE. 2020.. Nervous system control of intestinal host defense in C. elegans. . Curr. Opin. Neurobiol. 62::19
    [Crossref] [Google Scholar]
  16. 16.
    Labed SA, Wani KA, Jagadeesan S, Hakkim A, Najibi M, Irazoqui JE. 2018.. Intestinal epithelial Wnt signaling mediates acetylcholine-triggered host defense against infection. . Immunity 48::96378.e3
    [Crossref] [Google Scholar]
  17. 17.
    Schulenburg H, Müller S. 2004.. Natural variation in the response of Caenorhabditis elegans towards Bacillus thuringiensis. . Parasitology 128::43343
    [Crossref] [Google Scholar]
  18. 18.
    Yook K, Hodgkin J. 2007.. Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. . Genetics 175::68197
    [Crossref] [Google Scholar]
  19. 19.
    Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV. 2000.. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. . Genetics 155::169399
    [Crossref] [Google Scholar]
  20. 20.
    Hodgkin J, Kuwabara PE, Corneliussen B. 2000.. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. . Curr. Biol. 10::161518
    [Crossref] [Google Scholar]
  21. 21.
    O'Rourke D, Baban D, Demidova M, Mott R, Hodgkin J. 2006.. Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. . Genome Res. 16::100516
    [Crossref] [Google Scholar]
  22. 22.
    Anderson A, Laurenson-Schafer H, Partridge FA, Hodgkin J, McMullan R. 2013.. Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. . PLOS Pathog. 9::e1003787
    [Crossref] [Google Scholar]
  23. 23.
    Ha HI, Hendricks M, Shen Y, Gabel CV, Fang-Yen C, et al. 2010.. Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans. . Neuron 68::117386
    [Crossref] [Google Scholar]
  24. 24.
    Liang B, Moussaif M, Kuan CJ, Gargus JJ, Sze JY. 2006.. Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses. . Cell Metab. 4::42940
    [Crossref] [Google Scholar]
  25. 25.
    Singh J, Aballay A. 2019.. Intestinal infection regulates behavior and learning via neuroendocrine signaling. . eLife 8::e50033
    [Crossref] [Google Scholar]
  26. 26.
    Turner JA, Stephen-Victor E, Wang S, Rivas MN, Abdel-Gadir A, et al. 2020.. Regulatory T cell–derived TGF-β1 controls multiple checkpoints governing allergy and autoimmunity. . Immunity 53::120214.e6
    [Crossref] [Google Scholar]
  27. 27.
    Kopp EB, Agaronyan K, Licona-Limón I, Nish SA, Medzhitov R. 2023.. Modes of type 2 immune response initiation. . Immunity 56::68794
    [Crossref] [Google Scholar]
  28. 28.
    Profet M. 1991.. The function of allergy: immunological defense against toxins. . Q. Rev. Biol. 66::2362
    [Crossref] [Google Scholar]
  29. 29.
    Marichal T, Starkl P, Reber LL, Kalesnikoff J, Oettgen HC, et al. 2013.. A beneficial role for immunoglobulin E in host defense against honeybee venom. . Immunity 39::96375
    [Crossref] [Google Scholar]
  30. 30.
    Palm NW, Rosenstein RK, Yu S, Schenten DD, Florsheim E, Medzhitov R. 2013.. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. . Immunity 39::97685
    [Crossref] [Google Scholar]
  31. 31.
    Plum T, Binzberger R, Thiele R, Shang F, Postrach D, et al. 2023.. Mast cells link immune sensing to antigen-avoidance behaviour. . Nature 620::63442
    [Crossref] [Google Scholar]
  32. 32.
    Florsheim EB, Bachtel ND, Cullen JL, Lima BGC, Godazgar M, et al. 2023.. Immune sensing of food allergens promotes avoidance behaviour. . Nature 620::64350
    [Crossref] [Google Scholar]
  33. 33.
    Popović OS, Kostić KM, Milović VB, Milutinović-Djurić S, Miletić VD, et al. 1987.. Primary bile acid malabsorption. Histologic and immunologic study in three patients. . Gastroenterology 92::185158
    [Crossref] [Google Scholar]
  34. 34.
    Cara DC, Conde AA, Vaz NM. 1994.. Immunological induction of flavor aversion in mice. . Braz. J. Med. Biol. Res. 27::133141
    [Google Scholar]
  35. 35.
    Flayer CH, Perner C, Sokol CL. 2021.. A decision tree model for neuroimmune guidance of allergic immunity. . Immunol. Cell Biol. 99::93648
    [Crossref] [Google Scholar]
  36. 36.
    Feng X, Zhan H, Sokol CL. 2024.. Sensory neuronal control of skin barrier immunity. . Trends Immunol. 45::37180
    [Crossref] [Google Scholar]
  37. 37.
    Talbot S, Foster SL, Woolf CJ. 2016.. Neuroimmunity: physiology and pathology. . Annu. Rev. Immunol. 34::42147
    [Crossref] [Google Scholar]
  38. 38.
    Voisin T, Bouvier A, Chiu IM. 2017.. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. . Int. Immunol. 29::24761
    [Crossref] [Google Scholar]
  39. 39.
    Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, et al. 2015.. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. . Nat. Neurosci. 18::14553
    [Crossref] [Google Scholar]
  40. 40.
    Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, et al. 2018.. Molecular architecture of the mouse nervous system. . Cell 174::9991014.e22
    [Crossref] [Google Scholar]
  41. 41.
    Sharma N, Flaherty K, Lezgiyeva K, Wagner DE, Klein AM, Ginty DD. 2020.. The emergence of transcriptional identity in somatosensory neurons. . Nature 577::39298
    [Crossref] [Google Scholar]
  42. 42.
    Jung M, Dourado M, Maksymetz J, Jacobson A, Laufer BI, et al. 2023.. Cross-species transcriptomic atlas of dorsal root ganglia reveals species-specific programs for sensory function. . Nat. Commun. 14::366
    [Crossref] [Google Scholar]
  43. 43.
    Yang L, Xu M, Bhuiyan SA, Li J, Zhao J, et al. 2022.. Human and mouse trigeminal ganglia cell atlas implicates multiple cell types in migraine. . Neuron 110::180621.e8
    [Crossref] [Google Scholar]
  44. 44.
    Qi L, Iskols M, Shi D, Reddy P, Walker C, et al. 2024.. A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. . Cell 187::150826.e16
    [Crossref] [Google Scholar]
  45. 45.
    Cranfill SL, Luo W. 2021.. The development of somatosensory neurons: insights into pain and itch. . Curr. Top. Dev. Biol. 142::44375
    [Crossref] [Google Scholar]
  46. 46.
    Hassler SN, Kume M, Mwirigi JM, Ahmad A, Shiers S, et al. 2020.. The cellular basis of protease-activated receptor 2–evoked mechanical and affective pain. . JCI Insight 5::e137393
    [Google Scholar]
  47. 47.
    Amaya F, Izumi Y, Matsuda M, Sasaki M. 2013.. Tissue injury and related mediators of pain exacerbation. . Curr. Neuropharmacol. 11::59297
    [Crossref] [Google Scholar]
  48. 48.
    Werder RB, Ullah MA, Rahman MM, Simpson J, Lynch JP, et al. 2022.. Targeting the P2Y13 receptor suppresses IL-33 and HMGB1 release and ameliorates experimental asthma. . Am. J. Respir. Crit. Care Med. 205::30012
    [Crossref] [Google Scholar]
  49. 49.
    Tamari M, Del Bel KL, Ver Heul AM, Zamidar L, Orimo K, et al. 2024.. Sensory neurons promote immune homeostasis in the lung. . Cell 187::4461.e17
    [Crossref] [Google Scholar]
  50. 50.
    Dosch M, Gerber J, Jebbawi F, Beldi G. 2018.. Mechanisms of ATP release by inflammatory cells. . Int. J. Mol. Sci. 19::1222
    [Crossref] [Google Scholar]
  51. 51.
    Fabbretti E. 2019.. P2X3 receptors are transducers of sensory signals. . Brain Res. Bull. 151::11924
    [Crossref] [Google Scholar]
  52. 52.
    Allette YM, Due MR, Wilson SM, Feldman P, Ripsch MS, et al. 2014.. Identification of a functional interaction of HMGB1 with receptor for advanced glycation end-products in a model of neuropathic pain. . Brain Behav. Immun. 42::16977
    [Crossref] [Google Scholar]
  53. 53.
    Cayrol C, Duval A, Schmitt P, Roga S, Camus M, et al. 2018.. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. . Nat. Immunol. 19::37585
    [Crossref] [Google Scholar]
  54. 54.
    Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, et al. 2010.. The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling. . Nat. Immunol. 11::60817
    [Crossref] [Google Scholar]
  55. 55.
    Kouzaki H, Tojima I, Kita H, Shimizu T. 2013.. Transcription of interleukin-25 and extracellular release of the protein is regulated by allergen proteases in airway epithelial cells. . Am. J. Respir. Cell Mol. Biol. 49::74150
    [Crossref] [Google Scholar]
  56. 56.
    Van Dyken SJ, Nussbaum JC, Lee J, Molofsky AB, Liang HE, et al. 2016.. A tissue checkpoint regulates type 2 immunity. . Nat. Immunol. 17::138187
    [Crossref] [Google Scholar]
  57. 57.
    Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE, et al. 2013.. The epithelial cell–derived atopic dermatitis cytokine TSLP activates neurons to induce itch. . Cell 155::28595
    [Crossref] [Google Scholar]
  58. 58.
    Liu B, Tai Y, Achanta S, Kaelberer MM, Caceres AI, et al. 2016.. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. . PNAS 113::E757279
    [Google Scholar]
  59. 59.
    Huang J, Gandini MA, Chen L, M'Dahoma S, Stemkowski PL, et al. 2020.. Hyperactivity of innate immunity triggers pain via TLR2-IL-33-mediated neuroimmune crosstalk. . Cell Rep. 33::108233
    [Crossref] [Google Scholar]
  60. 60.
    Trier AM, Mack MR, Fredman A, Tamari M, Ver Heul AM, et al. 2022.. IL-33 signaling in sensory neurons promotes dry skin itch. . J. Allergy Clin. Immunol. 149::147380.e6
    [Crossref] [Google Scholar]
  61. 61.
    Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T, et al. 2017.. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. . Nature 549::27781
    [Crossref] [Google Scholar]
  62. 62.
    Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J, et al. 2019.. House dust mites activate nociceptor–mast cell clusters to drive type 2 skin inflammation. . Nat. Immunol. 20::143543
    [Crossref] [Google Scholar]
  63. 63.
    Perner C, Flayer CH, Zhu X, Aderhold PA, Dewan ZNA, et al. 2020.. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. . Immunity 53::106377.e7
    [Crossref] [Google Scholar]
  64. 64.
    Salazar F, Ghaemmaghami AM. 2013.. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. . Front. Immunol. 4::356
    [Crossref] [Google Scholar]
  65. 65.
    Meloun A, León B. 2023.. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. . Front. Allergy 4::1265049
    [Crossref] [Google Scholar]
  66. 66.
    Martin L, Augé C, Boué J, Buresi MC, Chapman K, et al. 2009.. Thrombin receptor: an endogenous inhibitor of inflammatory pain, activating opioid pathways. . Pain 146::12129
    [Crossref] [Google Scholar]
  67. 67.
    Desormeaux C, Bautzova T, Garcia-Caraballo S, Rolland C, Barbaro MR, et al. 2018.. Protease-activated receptor 1 is implicated in irritable bowel syndrome mediators–induced signaling to thoracic human sensory neurons. . Pain 159::125767
    [Crossref] [Google Scholar]
  68. 68.
    Deng L, Costa F, Blake KJ, Choi S, Chandrabalan A, et al. 2023.. S. aureus drives itch and scratch-induced skin damage through a V8 protease–PAR1 axis. . Cell 186::537593.e25
    [Crossref] [Google Scholar]
  69. 69.
    Akiyama T, Nguyen T, Curtis E, Nishida K, Devireddy J, et al. 2015.. A central role for spinal dorsal horn neurons that express neurokinin-1 receptors in chronic itch. . Pain 156::124046
    [Crossref] [Google Scholar]
  70. 70.
    Reddy VB, Lerner EA. 2017.. Activation of mas-related G-protein–coupled receptors by the house dust mite cysteine protease Der p1 provides a new mechanism linking allergy and inflammation. . J. Biol. Chem. 292::17399406
    [Crossref] [Google Scholar]
  71. 71.
    Reddy VB, Lerner EA. 2010.. Plant cysteine proteases that evoke itch activate protease-activated receptors. . Br. J. Dermatol. 163::53235
    [Crossref] [Google Scholar]
  72. 72.
    Liu Q, Weng HJ, Patel KN, Tang Z, Bai H, et al. 2011.. The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. . Sci. Signal. 4::ra45
    [Google Scholar]
  73. 73.
    Meixiong J, Dong X. 2017.. Mas-related G protein–coupled receptors and the biology of itch sensation. . Annu. Rev. Genet. 51::10321
    [Crossref] [Google Scholar]
  74. 74.
    Reddy VB, Sun S, Azimi E, Elmariah SB, Dong X, Lerner EA. 2015.. Redefining the concept of protease-activated receptors: Cathepsin S evokes itch via activation of Mrgprs. . Nat. Commun. 6::7864
    [Crossref] [Google Scholar]
  75. 75.
    Sepahi A, Kraus A, Casadei E, Johnston CA, Galindo-Villegas J, et al. 2019.. Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner. . PNAS 116::1242836
    [Crossref] [Google Scholar]
  76. 76.
    Seillet C, Luong K, Tellier J, Jacquelot N, Shen RD, et al. 2020.. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. . Nat. Immunol. 21::16877
    [Crossref] [Google Scholar]
  77. 77.
    Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, et al. 2012.. Adrenergic nerves govern circadian leukocyte recruitment to tissues. . Immunity 37::290301
    [Crossref] [Google Scholar]
  78. 78.
    Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR, et al. 2019.. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. . Cell 178::91932.e14
    [Crossref] [Google Scholar]
  79. 79.
    Mirakaj V, Dalli J, Granja T, Rosenberger P, Serhan CN. 2014.. Vagus nerve controls resolution and pro-resolving mediators of inflammation. . J. Exp. Med. 211::103748
    [Crossref] [Google Scholar]
  80. 80.
    Dalli J, Colas RA, Arnardottir H, Serhan CN. 2017.. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. . Immunity 46::92105
    [Crossref] [Google Scholar]
  81. 81.
    Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, et al. 2019.. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. . Nat. Commun. 10::633
    [Crossref] [Google Scholar]
  82. 82.
    Lu YZ, Nayer B, Singh SK, Alshoubaki YK, Yuan E, et al. 2024.. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. . Nature 628::60411
    [Crossref] [Google Scholar]
  83. 83.
    Lindborg JA, Niemi JP, Howarth MA, Liu KW, Moore CZ, et al. 2018.. Molecular and cellular identification of the immune response in peripheral ganglia following nerve injury. . J. Neuroinflamm. 15::192
    [Crossref] [Google Scholar]
  84. 84.
    Zhang H, Li Y, de Carvalho-Barbosa M, Kavelaars A, Heijnen CJ, et al. 2016.. Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy–induced peripheral neuropathy. . J. Pain 17::77586
    [Crossref] [Google Scholar]
  85. 85.
    Zhou L, Kong G, Palmisano I, Cencioni MT, Danzi M, et al. 2022.. Reversible CD8 T cell–neuron cross-talk causes aging-dependent neuronal regenerative decline. . Science 376::eabd5926
    [Crossref] [Google Scholar]
  86. 86.
    Hanč P, Gonzalez RJ, Mazo IB, Wang Y, Lambert T, et al. 2023.. Multimodal control of dendritic cell functions by nociceptors. . Science 379::eabm5658
    [Crossref] [Google Scholar]
  87. 87.
    Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, et al. 2000.. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). . Science 290::176871
    [Crossref] [Google Scholar]
  88. 88.
    Koning N, Swaab DF, Hoek RM, Huitinga I. 2009.. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron–glia and glia–glia interactions. . J. Neuropathol. Exp. Neurol. 68::15967
    [Crossref] [Google Scholar]
  89. 89.
    Biber K, Neumann H, Inoue K, Boddeke HW. 2007.. Neuronal ‘on’ and ‘off’ signals control microglia. . Trends Neurosci. 30::596602
    [Crossref] [Google Scholar]
  90. 90.
    Zhao X, Li J, Sun H. 2019.. CD200–CD200R interaction: an important regulator after stroke. . Front. Neurosci. 13::840
    [Crossref] [Google Scholar]
  91. 91.
    Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, et al. 1998.. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. . PNAS 95::10896901
    [Crossref] [Google Scholar]
  92. 92.
    Zheng X, Boyer L, Jin M, Mertens J, Kim Y, et al. 2016.. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. . eLife 5::e13374
    [Crossref] [Google Scholar]
  93. 93.
    Coelho P, Fão L, Mota S, Rego AC. 2022.. Mitochondrial function and dynamics in neural stem cells and neurogenesis: implications for neurodegenerative diseases. . Ageing Res. Rev. 80::101667
    [Crossref] [Google Scholar]
  94. 94.
    Mendivil-Perez M, Soto-Mercado V, Guerra-Librero A, Fernandez-Gil BI, Florido J, et al. 2017.. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. . J. Pineal Res. 63::e12415
    [Crossref] [Google Scholar]
  95. 95.
    Borcherding N, Brestoff JR. 2023.. The power and potential of mitochondria transfer. . Nature 623::28391
    [Crossref] [Google Scholar]
  96. 96.
    van der Vlist M, Raoof R, Willemen H, Prado J, Versteeg S, et al. 2022.. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. . Neuron 110::61326.e9
    [Crossref] [Google Scholar]
  97. 97.
    Peruzzotti-Jametti L, Bernstock JD, Willis CM, Manferrari G, Rogall R, et al. 2021.. Neural stem cells traffic functional mitochondria via extracellular vesicles. . PLOS Biol. 19::e3001166
    [Crossref] [Google Scholar]
  98. 98.
    Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, et al. 2016.. Transfer of mitochondria from astrocytes to neurons after stroke. . Nature 535::55155
    [Crossref] [Google Scholar]
  99. 99.
    Smagula SF, Aizenstein HJ. 2023.. Initial evidence regarding the neurobiological basis of psychological symptoms in dementia caregivers. . Transl. Psychiatry 13::169
    [Crossref] [Google Scholar]
  100. 100.
    Mistry JJ, Marlein CR, Moore JA, Hellmich C, Wojtowicz EE, et al. 2019.. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. . PNAS 116::2461019
    [Crossref] [Google Scholar]
  101. 101.
    Watson DC, Bayik D, Storevik S, Moreino SS, Sprowls SA, et al. 2023.. GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. . Nat. Cancer 4::64864
    [Crossref] [Google Scholar]
  102. 102.
    Borcherding N, Jia W, Giwa R, Field RL, Moley JR, et al. 2022.. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. . Cell Metab. 34::1499513.e8
    [Crossref] [Google Scholar]
  103. 103.
    Hutto RA, Rutter KM, Giarmarco MM, Parker ED, Chambers ZS, Brockerhoff SE. 2023.. Cone photoreceptors transfer damaged mitochondria to Müller glia. . Cell Rep. 42::112115
    [Crossref] [Google Scholar]
  104. 104.
    Saha T, Dash C, Jayabalan R, Khiste S, Kulkarni A, et al. 2022.. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. . Nat. Nanotechnol. 17::98106
    [Crossref] [Google Scholar]
  105. 105.
    Wang S, Liu B, Huang J, He H, Zhou L, et al. 2023.. Succinate and mitochondrial DNA trigger atopic march from atopic dermatitis to intestinal inflammation. . J. Allergy Clin. Immunol. 151::105066.e7
    [Crossref] [Google Scholar]
  106. 106.
    Delpech JC, Herron S, Botros MB, Ikezu T. 2019.. Neuroimmune crosstalk through extracellular vesicles in health and disease. . Trends Neurosci. 42::36172
    [Crossref] [Google Scholar]
  107. 107.
    Budnik V, Ruiz-Cañada C, Wendler F. 2016.. Extracellular vesicles round off communication in the nervous system. . Nat. Rev. Neurosci. 17::16072
    [Crossref] [Google Scholar]
  108. 108.
    Antonucci F, Turola E, Riganti L, Caleo M, Gabrielli M, et al. 2012.. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. . EMBO J. 31::123140
    [Crossref] [Google Scholar]
  109. 109.
    Gabrielli M, Battista N, Riganti L, Prada I, Antonucci F, et al. 2015.. Active endocannabinoids are secreted on extracellular membrane vesicles. . EMBO Rep. 16::21320
    [Crossref] [Google Scholar]
  110. 110.
    Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, et al. 2006.. Exosomes are released by cultured cortical neurones. . Mol. Cell. Neurosci. 31::64248
    [Crossref] [Google Scholar]
  111. 111.
    Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, et al. 2011.. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. . Mol. Cell. Neurosci. 46::40918
    [Crossref] [Google Scholar]
  112. 112.
    Glebov K, Lochner M, Jabs R, Lau T, Merkel O, et al. 2015.. Serotonin stimulates secretion of exosomes from microglia cells. . Glia 63::62634
    [Crossref] [Google Scholar]
  113. 113.
    Gross JC, Chaudhary V, Bartscherer K, Boutros M. 2012.. Active Wnt proteins are secreted on exosomes. . Nat. Cell Biol. 14::103645
    [Crossref] [Google Scholar]
  114. 114.
    Kerr KS, Fuentes-Medel Y, Brewer C, Barria R, Ashley J, et al. 2014.. Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction. . J. Neurosci. 34::291020
    [Crossref] [Google Scholar]
  115. 115.
    Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, et al. 2009.. Proteomic and immunologic analyses of brain tumor exosomes. . FASEB J. 23::154157
    [Crossref] [Google Scholar]
  116. 116.
    Shi M, Kovac A, Korff A, Cook TJ, Ginghina C, et al. 2016.. CNS tau efflux via exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease. . Alzheimer's Dement. 12::112531
    [Crossref] [Google Scholar]
  117. 117.
    Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. 2016.. Neuropeptide substance P and the immune response. . Cell Mol. Life Sci. 73::424964
    [Crossref] [Google Scholar]
  118. 118.
    Järvikallio A, Harvima IT, Naukkarinen A. 2003.. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. . Arch. Dermatol. Res. 295::27
    [Crossref] [Google Scholar]
  119. 119.
    Suvas S. 2017.. Role of substance P neuropeptide in inflammation, wound healing, and tissue homeostasis. . J. Immunol. 199::154352
    [Crossref] [Google Scholar]
  120. 120.
    Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. 2019.. A mast-cell-specific receptor mediates neurogenic inflammation and pain. . Neuron 101::41220.e3
    [Crossref] [Google Scholar]
  121. 121.
    Mathur S, Wang JC, Seehus CR, Poirier F, Crosson T, et al. 2021.. Nociceptor neurons promote IgE class switch in B cells. . JCI Insight 6::e148510
    [Crossref] [Google Scholar]
  122. 122.
    Lim JE, Chung E, Son Y. 2017.. A neuropeptide, Substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ. . Sci. Rep. 7::9417
    [Crossref] [Google Scholar]
  123. 123.
    Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, et al. 2022.. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. . Cell 185::417089.e20
    [Crossref] [Google Scholar]
  124. 124.
    Russo AF, Hay DL. 2023.. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. . Physiol. Rev. 103::1565644
    [Crossref] [Google Scholar]
  125. 125.
    Baral P, Udit S, Chiu IM. 2019.. Pain and immunity: implications for host defence. . Nat. Rev. Immunol. 19::43347
    [Crossref] [Google Scholar]
  126. 126.
    Blake KJ, Baral P, Voisin T, Lubkin A, Pinho-Ribeiro FA, et al. 2018.. Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. . Nat. Commun. 9::37
    [Crossref] [Google Scholar]
  127. 127.
    Nagashima H, Mahlakõiv T, Shih HY, Davis FP, Meylan F, et al. 2019.. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. . Immunity 51::68295.e6
    [Crossref] [Google Scholar]
  128. 128.
    Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, et al. 2019.. Calcitonin gene–related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. . Immunity 51::70923.e6
    [Crossref] [Google Scholar]
  129. 129.
    Xu H, Ding J, Porter CBM, Wallrapp A, Tabaka M, et al. 2019.. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α-CGRP modulates group 2 innate lymphoid cell responses. . Immunity 51::696708.e9
    [Crossref] [Google Scholar]
  130. 130.
    Veres TZ, Rochlitzer S, Shevchenko M, Fuchs B, Prenzler F, et al. 2007.. Spatial interactions between dendritic cells and sensory nerves in allergic airway inflammation. . Am. J. Respir. Cell Mol. Biol. 37::55361
    [Crossref] [Google Scholar]
  131. 131.
    Rochlitzer S, Veres TZ, Kuhne K, Prenzler F, Pilzner C, et al. 2011.. The neuropeptide calcitonin gene–related peptide affects allergic airway inflammation by modulating dendritic cell function. . Clin. Exp. Allergy 41::160921
    [Crossref] [Google Scholar]
  132. 132.
    Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, et al. 2017.. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. . Nature 549::35156
    [Crossref] [Google Scholar]
  133. 133.
    Klose CSN, Mahlakõiv T, Moeller JB, Rankin LC, Flamar AL, et al. 2017.. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. . Nature 549::28286
    [Crossref] [Google Scholar]
  134. 134.
    Tsou AM, Yano H, Parkhurst CN, Mahlakõiv T, Chu C, et al. 2022.. Neuropeptide regulation of non-redundant ILC2 responses at barrier surfaces. . Nature 611::78793
    [Crossref] [Google Scholar]
  135. 135.
    Ju X, Nagashima A, Dvorkin-Gheva A, Wattie J, Howie K, et al. 2024.. Neuromedin-U mediates rapid activation of airway group 2 innate lymphoid cells in mild asthma. . Am. J. Respir. Crit. Care Med. 210::75565
    [Crossref] [Google Scholar]
  136. 136.
    Li Y, Liu S, Zhou K, Wang Y, Chen Y, et al. 2023.. Neuromedin U programs eosinophils to promote mucosal immunity of the small intestine. . Science 381::118996
    [Crossref] [Google Scholar]
  137. 137.
    Heng TS, Painter MW, Immunol. Genome Proj. Consort., Elpek P, Lukacs-Kornek V, et al. 2008.. The Immunological Genome Project: networks of gene expression in immune cells. . Nat. Immunol. 9::109194
    [Crossref] [Google Scholar]
  138. 138.
    Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, et al. 2013.. Type 2 innate lymphoid cells control eosinophil homeostasis. . Nature 502::24548
    [Crossref] [Google Scholar]
  139. 139.
    Talbot S, Abdulnour RE, Burkett PR, Lee S, Cronin SJ, et al. 2015.. Silencing nociceptor neurons reduces allergic airway inflammation. . Neuron 87::34154
    [Crossref] [Google Scholar]
  140. 140.
    Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR. 2020.. Feeding-dependent VIP neuron–ILC3 circuit regulates the intestinal barrier. . Nature 579::57580
    [Crossref] [Google Scholar]
  141. 141.
    Hoeffel G, Debroas G, Roger A, Rossignol R, Gouilly J, et al. 2021.. Sensory neuron–derived TAFA4 promotes macrophage tissue repair functions. . Nature 594::9499
    [Crossref] [Google Scholar]
  142. 142.
    Qiu S, Luo X, Mo L, Zhang S, Liao Y, et al. 2022.. TAFA4–IL-10 axis potentiate immunotherapy for airway allergy by induction of specific regulatory T cells. . npj Vaccines 7::133
    [Crossref] [Google Scholar]
  143. 143.
    Zhou C, Li M, Liu Y, Wang X, Zhang S, et al. 2023.. Signals from the TAFA4-PTEN-PU.1 axis alleviate nasal allergy by modulating the expression of FcεRI in mast cells. . Clin. Exp. Immunol. 211::1522
    [Crossref] [Google Scholar]
  144. 144.
    Matt SM, Gaskill PJ. 2020.. Where is dopamine and how do immune cells see it? Dopamine-mediated immune cell function in health and disease. . J. Neuroimmune Pharmacol. 15::11464
    [Crossref] [Google Scholar]
  145. 145.
    Wang W, Cohen JA, Wallrapp A, Trieu KG, Barrios J, et al. 2019.. Age-related dopaminergic innervation augments T helper 2–type allergic inflammation in the postnatal lung. . Immunity 51::110218.e7
    [Crossref] [Google Scholar]
  146. 146.
    Cao Y, Li Y, Wang X, Liu S, Zhang Y, et al. 2023.. Dopamine inhibits group 2 innate lymphoid cell–driven allergic lung inflammation by dampening mitochondrial activity. . Immunity 56::32035.e9
    [Crossref] [Google Scholar]
  147. 147.
    Moriyama S, Brestoff JR, Flamar AL, Moeller JB, Klose CSN, et al. 2018. β2-adrenergic receptor–mediated negative regulation of group 2 innate lymphoid cell responses. . Science 359::105661
    [Crossref] [Google Scholar]
  148. 148.
    Kageyama-Yahara N, Suehiro Y, Yamamoto T, Kadowaki M. 2008.. IgE-induced degranulation of mucosal mast cells is negatively regulated via nicotinic acetylcholine receptors. . Biochem. Biophys. Res. Commun. 377::32125
    [Crossref] [Google Scholar]
  149. 149.
    Chu C, Parkhurst CN, Zhang W, Zhou L, Yano H, et al. 2021.. The ChAT–acetylcholine pathway promotes group 2 innate lymphoid cell responses and anti-helminth immunity. . Sci. Immunol. 6::eabe3218
    [Crossref] [Google Scholar]
  150. 150.
    Galle-Treger L, Suzuki Y, Patel N, Sankaranarayanan I, Aron JL, et al. 2016.. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. . Nat. Commun. 7::13202
    [Crossref] [Google Scholar]
  151. 151.
    Basso AS, Pinto FA, Russo M, Britto LR, de Sá-Rocha LC, Palermo Neto J. 2003.. Neural correlates of IgE-mediated food allergy. . J. Neuroimmunol. 140::6977
    [Crossref] [Google Scholar]
  152. 152.
    Mirotti L, Mucida D, de Sá-Rocha LC, Costa-Pinto FA, Russo M. 2010.. Food aversion: a critical balance between allergen-specific IgE levels and taste preference. . Brain Behav. Immun. 24::37075
    [Crossref] [Google Scholar]
  153. 153.
    Dekker E, Pelser HE, Groen J. 1957.. Conditioning as a cause of asthmatic attacks: a laboratory study. . J. Psychosom. Res. 2::97108
    [Crossref] [Google Scholar]
  154. 154.
    Koren T, Yifa R, Amer M, Krot M, Boshnak N, et al. 2021.. Insular cortex neurons encode and retrieve specific immune responses. . Cell 184::590215.e17
    [Crossref] [Google Scholar]
  155. 155.
    Tamari M, Ver Heul AM, Kim BS. 2021.. Immunosensation: neuroimmune cross talk in the skin. . Annu. Rev. Immunol. 39::36993
    [Crossref] [Google Scholar]
  156. 156.
    Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, et al. 2004.. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. . Nat. Immunol. 5::75260
    [Crossref] [Google Scholar]
  157. 157.
    Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, et al. 2014.. A sensory neuron–expressed IL-31 receptor mediates T helper cell–dependent itch: involvement of TRPV1 and TRPA1. . J. Allergy Clin. Immunol. 133::44860
    [Crossref] [Google Scholar]
  158. 158.
    Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H, et al. 2006.. IL-31: a new link between T cells and pruritus in atopic skin inflammation. . J. Allergy Clin. Immunol. 117::41117
    [Crossref] [Google Scholar]
  159. 159.
    Raap U, Wichmann K, Bruder M, Stander S, Wedi B, et al. 2008.. Correlation of IL-31 serum levels with severity of atopic dermatitis. . J. Allergy Clin. Immunol. 122::42123
    [Crossref] [Google Scholar]
  160. 160.
    Feld M, Garcia R, Buddenkotte J, Katayama S, Lewis K, et al. 2016.. The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. . J. Allergy Clin. Immunol. 138::5008.e24
    [Crossref] [Google Scholar]
  161. 161.
    Takahashi S, Ochiai S, Jin J, Takahashi N, Toshima S, et al. 2023.. Sensory neuronal STAT3 is critical for IL-31 receptor expression and inflammatory itch. . Cell Rep. 42::113433
    [Crossref] [Google Scholar]
  162. 162.
    Xu J, Zanvit P, Hu L, Tseng PY, Liu N, et al. 2020.. The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching. . Immunity 53::37183.e5
    [Crossref] [Google Scholar]
  163. 163.
    Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, et al. 2017.. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. . Cell 171::21728.e13
    [Crossref] [Google Scholar]
  164. 164.
    Flayer CH, Kernin IJ, Matatia PR, Zeng X, Yarmolinsky DA, et al. 2024.. A γδ T cell–IL-3 axis controls allergic responses through sensory neurons. . Nature 634::44046
    [Crossref] [Google Scholar]
  165. 165.
    Ruzicka T, Hanifin JM, Furue M, Pulka G, Mlynarczyk I, et al. 2017.. Anti-interleukin-31 receptor A antibody for atopic dermatitis. . N. Engl. J. Med. 376::82635
    [Crossref] [Google Scholar]
  166. 166.
    Stander S, Yosipovitch G, Legat FJ, Lacour JP, Paul C, et al. 2020.. Trial of nemolizumab in moderate-to-severe prurigo nodularis. . N. Engl. J. Med. 382::70616
    [Crossref] [Google Scholar]
  167. 167.
    Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, et al. 2016.. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. . N. Engl. J. Med. 375::233548
    [Crossref] [Google Scholar]
  168. 168.
    Wollenberg A, Howell MD, Guttman-Yassky E, Silverberg JI, Kell C, et al. 2019.. Treatment of atopic dermatitis with tralokinumab, an anti-IL-13 mAb. . J. Allergy Clin. Immunol. 143::13541
    [Crossref] [Google Scholar]
  169. 169.
    Guttman-Yassky E, Blauvelt A, Eichenfield LF, Paller AS, Armstrong AW, et al. 2020.. Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 inhibitor, in adults with moderate to severe atopic dermatitis: a phase 2b randomized clinical trial. . JAMA Dermatol. 156::41120
    [Crossref] [Google Scholar]
  170. 170.
    Nakagawa H, Nemoto O, Igarashi A, Saeki H, Kaino H, Nagata T. 2020.. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis: a phase 3, randomized, double-blind, vehicle-controlled study and an open-label, long-term extension study. . J. Am. Acad. Dermatol. 82::82331
    [Crossref] [Google Scholar]
  171. 171.
    Guttman-Yassky E, Thaci D, Pangan AL, Hong HC, Papp KA, et al. 2020.. Upadacitinib in adults with moderate to severe atopic dermatitis: 16-week results from a randomized, placebo-controlled trial. . J. Allergy Clin. Immunol. 145::87784
    [Crossref] [Google Scholar]
  172. 172.
    Simpson EL, Lacour JP, Spelman L, Galimberti R, Eichenfield LF, et al. 2020.. Baricitinib in patients with moderate-to-severe atopic dermatitis and inadequate response to topical corticosteroids: results from two randomized monotherapy phase III trials. . Br. J. Dermatol. 183::24255
    [Crossref] [Google Scholar]
  173. 173.
    Voisin T, Perner C, Messou MA, Shiers S, Ualiyeva S, et al. 2021.. The CysLT2R receptor mediates leukotriene C4–driven acute and chronic itch. . PNAS 118::e2022087118
    [Crossref] [Google Scholar]
  174. 174.
    Wang F, Trier AM, Li F, Kim S, Chen Z, et al. 2021.. A basophil-neuronal axis promotes itch. . Cell 184::42240.e17
    [Crossref] [Google Scholar]
  175. 175.
    Rosenberg SL, Miller GE, Brehm JM, Celedon JC. 2014.. Stress and asthma: novel insights on genetic, epigenetic, and immunologic mechanisms. . J. Allergy Clin. Immunol. 134::100915
    [Crossref] [Google Scholar]
  176. 176.
    Theoharides TC. 2020.. The impact of psychological stress on mast cells. . Ann. Allergy Asthma Immunol. 125::38892
    [Crossref] [Google Scholar]
  177. 177.
    Oren E, Martinez FD. 2020.. Stress and asthma: physiological manifestations and clinical implications. . Ann. Allergy Asthma Immunol. 125::37273.e1
    [Crossref] [Google Scholar]
  178. 178.
    Landeo-Gutierrez J, Celedon JC. 2020.. Chronic stress and asthma in adolescents. . Ann. Allergy Asthma Immunol. 125::39388
    [Crossref] [Google Scholar]
  179. 179.
    Tull MT, Clemens KS. 2020.. Identifying and addressing stress, anxiety, and depression in the allergist's office. . Ann. Allergy Asthma Immunol. 125::37475
    [Crossref] [Google Scholar]
  180. 180.
    Schreier HM, Wright RJ. 2014.. Stress and food allergy: mechanistic considerations. . Ann. Allergy Asthma Immunol. 112::296301
    [Crossref] [Google Scholar]
  181. 181.
    Clausing ES, Tomlinson CJ, Non AL. 2023.. Epigenetics and social inequalities in asthma and allergy. . J. Allergy Clin. Immunol. 151::146870
    [Crossref] [Google Scholar]
  182. 182.
    Dave ND, Xiang L, Rehm KE, Marshall GD Jr. 2011.. Stress and allergic diseases. . Immunol. Allergy Clin. N. Am. 31::5568
    [Crossref] [Google Scholar]
  183. 183.
    Vasiadi M, Therianou A, Sideri K, Smyrnioti M, Sismanopoulos N, et al. 2012.. Increased serum CRH levels with decreased skin CRHR-1 gene expression in psoriasis and atopic dermatitis. . J. Allergy Clin. Immunol. 129::141013
    [Crossref] [Google Scholar]
  184. 184.
    Sekiya S, Kaiho T, Shirotake S, Iwasawa H, Takeda B, Takamizawa H. 1983.. Effect of methotrexate on the growth and human chorionic gonadotropin secretion of human choriocarcinoma cell lines in vitro. . Am. J. Obstet. Gynecol. 146::5764
    [Crossref] [Google Scholar]
  185. 185.
    Kato A. 2019.. Group 2 innate lymphoid cells in airway diseases. . Chest 156::14149
    [Crossref] [Google Scholar]
  186. 186.
    Haykin H, Rolls A. 2021.. The neuroimmune response during stress: a physiological perspective. . Immunity 54::193347
    [Crossref] [Google Scholar]
  187. 187.
    Wright RJ. 2009.. Stress and acquired glucocorticoid resistance: a relationship hanging in the balance. . J. Allergy Clin. Immunol. 123::83132
    [Crossref] [Google Scholar]
  188. 188.
    Wu W, Sun M, Zhang HP, Chen T, Wu R, et al. 2014.. Prolactin mediates psychological stress–induced dysfunction of regulatory T cells to facilitate intestinal inflammation. . Gut 63::188392
    [Crossref] [Google Scholar]
  189. 189.
    Lookingland KJ, Gunnet JW, Moore KE. 1991.. Stress-induced secretion of α-melanocyte-stimulating hormone is accompanied by a decrease in the activity of tuberohypophysial dopaminergic neurons. . Neuroendocrinology 53::9196
    [Crossref] [Google Scholar]
  190. 190.
    Sloan EK, Capitanio JP, Tarara RP, Mendoza SP, Mason WA, Cole SW. 2007.. Social stress enhances sympathetic innervation of primate lymph nodes: mechanisms and implications for viral pathogenesis. . J. Neurosci. 27::885765
    [Crossref] [Google Scholar]
  191. 191.
    Pavlovic S, Liezmann C, Blois SM, Joachim R, Kruse J, et al. 2011.. Substance P is a key mediator of stress-induced protection from allergic sensitization via modified antigen presentation. . J. Immunol. 186::84855
    [Crossref] [Google Scholar]
  192. 192.
    Pavlovic S, Daniltchenko M, Tobin DJ, Hagen E, Hunt SP, et al. 2008.. Further exploring the brain-skin connection: Stress worsens dermatitis via substance P–dependent neurogenic inflammation in mice. . J. Investig. Dermatol. 128::43446
    [Crossref] [Google Scholar]
  193. 193.
    Zheng PY, Feng BS, Oluwole C, Struiksma S, Chen X, et al. 2009.. Psychological stress induces eosinophils to produce corticotrophin releasing hormone in the intestine. . Gut 58::147379
    [Crossref] [Google Scholar]
  194. 194.
    Fishbein AB, Vitaterna O, Haugh IM, Bavishi AA, Zee PC, et al. 2015.. Nocturnal eczema: review of sleep and circadian rhythms in children with atopic dermatitis and future research directions. . J. Allergy Clin. Immunol. 136::117077
    [Crossref] [Google Scholar]
  195. 195.
    Gelfand EW. 2004.. Inflammatory mediators in allergic rhinitis. . J. Allergy Clin. Immunol. 114:(Suppl. 5):13538
    [Crossref] [Google Scholar]
  196. 196.
    Reinberg A, Ghata J, Sidi E. 1963.. Nocturnal asthma attacks: their relationship to the circadian adrenal cycle. . J. Allergy 34::32330
    [Crossref] [Google Scholar]
  197. 197.
    Nakamura Y, Nakano N, Ishimaru K, Hara M, Ikegami T, et al. 2014.. Circadian regulation of allergic reactions by the mast cell clock in mice. . J. Allergy Clin. Immunol. 133::56875
    [Crossref] [Google Scholar]
  198. 198.
    Nakao A. 2018.. Clockwork allergy: how the circadian clock underpins allergic reactions. . J. Allergy Clin. Immunol. 142::102131
    [Crossref] [Google Scholar]
  199. 199.
    Nakamura S, Hisamura R, Shimoda S, Shibuya I, Tsubota K. 2014.. Fasting mitigates immediate hypersensitivity: a pivotal role of endogenous D-β-hydroxybutyrate. . Nutr. Metab. 11::40
    [Crossref] [Google Scholar]
  200. 200.
    Godinho-Silva C, Domingues RG, Rendas M, Raposo B, Ribeiro H, et al. 2019.. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. . Nature 574::25458
    [Crossref] [Google Scholar]
  201. 201.
    Tahara Y, Shibata S. 2018.. Entrainment of the mouse circadian clock: effects of stress, exercise, and nutrition. . Free Radic. Biol. Med. 119::12938
    [Crossref] [Google Scholar]
  202. 202.
    Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK, et al. 2020.. The human and mouse enteric nervous system at single-cell resolution. . Cell 182::160622.e23
    [Crossref] [Google Scholar]
  203. 203.
    Pfefferle PI, Keber CU, Cohen RM, Garn H. 2021.. The hygiene hypothesis—learning from but not living in the past. . Front. Immunol. 12::635935
    [Crossref] [Google Scholar]
  204. 204.
    Bao R, Hesser LA, He Z, Zhou X, Nadeau KC, Nagler CR. 2021.. Fecal microbiome and metabolome differ in healthy and food-allergic twins. . J. Clin. Investig. 131::e141935
    [Crossref] [Google Scholar]
  205. 205.
    Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, et al. 2019.. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. . Immunity 50::127688.e5
    [Crossref] [Google Scholar]
  206. 206.
    Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, et al. 2022.. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. . Allergy 77::141849
    [Crossref] [Google Scholar]
  207. 207.
    Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. 2015.. Asthma. . Nat. Rev. Dis. Primers 1::15025
    [Crossref] [Google Scholar]
  208. 208.
    Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, et al. 2017.. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. . Sci. Transl. Med. 9::eaah4680
    [Crossref] [Google Scholar]
  209. 209.
    Strandwitz P. 2018.. Neurotransmitter modulation by the gut microbiota. . Brain Res. 1693::12833
    [Crossref] [Google Scholar]
  210. 210.
    Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, et al. 2012.. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. . Am. J. Physiol. Gastrointest. Liver Physiol. 303::G128895
    [Crossref] [Google Scholar]
  211. 211.
    Yissachar N, Zhou Y, Ung L, Lai NY, Mohan JF, et al. 2017.. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. . Cell 168::113548.e12
    [Crossref] [Google Scholar]
  212. 212.
    Yang D, Jacobson A, Meerschaert KA, Sifakis JJ, Wu M, et al. 2022.. Nociceptor neurons direct goblet cells via a CGRP–RAMP1 axis to drive mucus production and gut barrier protection. . Cell 185::4190205.e25
    [Crossref] [Google Scholar]
  213. 213.
    Enamorado M, Kulalert W, Han SJ, Rao I, Delaleu J, et al. 2023.. Immunity to the microbiota promotes sensory neuron regeneration. . Cell 186::60720.e17
    [Crossref] [Google Scholar]
  214. 214.
    Yan Y, Ramanan D, Rozenberg M, McGovern K, Rastelli D, et al. 2021.. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut. . Immunity 54::499513.e5
    [Crossref] [Google Scholar]
  215. 215.
    Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, et al. 2024.. The neuroimmune CGRP–RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. . PNAS 121::e2322574121
    [Crossref] [Google Scholar]
  216. 216.
    Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A, et al. 2020.. Gut-innervating nociceptor neurons regulate Peyer's patch microfold cells and SFB levels to mediate Salmonella host defense. . Cell 180::3349.e22
    [Crossref] [Google Scholar]
  217. 217.
    Paller AS, Spergel JM, Mina-Osorio P, Irvine AD. 2019.. The atopic march and atopic multimorbidity: many trajectories, many pathways. . J. Allergy Clin. Immunol. 143::4655
    [Crossref] [Google Scholar]
  218. 218.
    Wang W, Garcia C, Shao F, Cohen JA, Bai Y, et al. 2023.. Lung dopaminergic nerves facilitate the establishment of TH2 resident memory cells in early life. . J. Allergy Clin. Immunol. 152::38699
    [Crossref] [Google Scholar]
  219. 219.
    Warm K, Backman H, Lindberg A, Lundbäck B, Rönmark E. 2012.. Low incidence and high remission of allergic sensitization among adults. . J. Allergy Clin. Immunol. 129::13642
    [Crossref] [Google Scholar]
  220. 220.
    De Martinis M, Sirufo MM, Ginaldi L. 2017.. Allergy and aging: an old/new emerging health issue. . Aging Dis. 8::16275
    [Crossref] [Google Scholar]
  221. 221.
    Lee HG, Rone JM, Li Z, Akl CF, Shin SW, et al. 2024.. Disease-associated astrocyte epigenetic memory promotes CNS pathology. . Nature 627::86572
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-082423-032154
Loading
/content/journals/10.1146/annurev-immunol-082423-032154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error