1932

Abstract

Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses. Here, on the 20th anniversary of a previous article about TNFRSF signaling in T cells, we discuss the effects of endogenous TNFRSF signals in T cells upon recognition of TNFSF members on APCs; the role of TNFRSF members, including TNFR2, on regulatory T cells; and recent advances in the incorporation of TNFRSF signaling in T cells into immunotherapeutic strategies for cancer.

Keyword(s): 4-1BBCD27GITROX40T cellsTNFR2
Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082423-040557
2025-04-25
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-082423-040557.html?itemId=/content/journals/10.1146/annurev-immunol-082423-040557&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schwartz RH. 1992.. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. . Cell 71::106568
    [Crossref] [Google Scholar]
  2. 2.
    Curtsinger JM, Mescher MF. 2010.. Inflammatory cytokines as a third signal for T cell activation. . Curr. Opin. Immunol. 22::33340
    [Crossref] [Google Scholar]
  3. 3.
    Schildberg FA, Klein SR, Freeman GJ, Sharpe AH. 2016.. Coinhibitory pathways in the B7-CD28 ligand-receptor family. . Immunity 44::95572
    [Crossref] [Google Scholar]
  4. 4.
    Watts TH. 2005.. TNF/TNFR family members in costimulation of T cell responses. . Annu. Rev. Immunol. 23::2368
    [Crossref] [Google Scholar]
  5. 5.
    Croft M. 2009.. The role of TNF superfamily members in T-cell function and diseases. . Nat. Rev. Immunol. 9::27185
    [Crossref] [Google Scholar]
  6. 6.
    Chen L, Flies DB. 2013.. Molecular mechanisms of T cell co-stimulation and co-inhibition. . Nat. Rev. Immunol. 13::22742
    [Crossref] [Google Scholar]
  7. 7.
    Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, et al. 1997.. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. . Nat. Med. 3::68285
    [Crossref] [Google Scholar]
  8. 8.
    Melero I, Sanmamed MF, Glez-Vaz J, Luri-Rey C, Wang J, Chen L. 2023.. CD137 (4-1BB)-based cancer immunotherapy on its 25th anniversary. . Cancer Discov. 13::55269
    [Crossref] [Google Scholar]
  9. 9.
    Nolte MA, van Olffen RW, van Gisbergen KP, van Lier RA. 2009.. Timing and tuning of CD27—CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. . Immunol. Rev. 229::21631
    [Crossref] [Google Scholar]
  10. 10.
    Wang C, Lin GH, McPherson AJ, Watts TH. 2009.. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. . Immunol. Rev. 229::192215
    [Crossref] [Google Scholar]
  11. 11.
    Croft M. 2010.. Control of immunity by the TNFR-related molecule OX40 (CD134). . Annu. Rev. Immunol. 28::5778
    [Crossref] [Google Scholar]
  12. 12.
    Snell LM, Lin GH, McPherson AJ, Moraes TJ, Watts TH. 2011.. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. . Immunol. Rev. 244::197217. Corrigendum . 2012.. Immunol. Rev. 245::265
    [Google Scholar]
  13. 13.
    Croft M, Siegel RM. 2017.. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. . Nat. Rev. Rheumatol. 13::21733
    [Crossref] [Google Scholar]
  14. 14.
    Kwon BS, Weismann SM. 1989.. cDNA sequences of two inducible T-cell genes. . PNAS 86::196367
    [Crossref] [Google Scholar]
  15. 15.
    Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, et al. 1997.. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. . PNAS 94::621621
    [Crossref] [Google Scholar]
  16. 16.
    Clouthier DL, Zhou AC, Watts TH. 2014.. Anti-GITR agonist therapy intrinsically enhances CD8 T cell responses to chronic lymphocytic choriomeningitis virus (LCMV), thereby circumventing LCMV-induced downregulation of costimulatory GITR ligand on APC. . J. Immunol. 193::503343
    [Crossref] [Google Scholar]
  17. 17.
    Clouthier DL, Zhou AC, Wortzman ME, Luft O, Levy GA, Watts TH. 2015.. GITR intrinsically sustains early type 1 and late follicular helper CD4 T cell accumulation to control a chronic viral infection. . PLOS Pathog. 11::e1004517
    [Crossref] [Google Scholar]
  18. 18.
    Chu KL, Batista NV, Wang KC, Zhou AC, Watts TH. 2019.. GITRL on inflammatory antigen presenting cells in the lung parenchyma provides signal 4 for T-cell accumulation and tissue-resident memory T-cell formation. . Mucosal Immunol. 12::36377
    [Crossref] [Google Scholar]
  19. 19.
    Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, et al. 2007.. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. . Blood 110::20110
    [Crossref] [Google Scholar]
  20. 20.
    Lemieux A, Sannier G, Nicolas A, Nayrac M, Delgado GG, et al. 2024.. Enhanced detection of antigen-specific T cells by a multiplexed AIM assay. . Cell Rep. Methods 4::100690
    [Crossref] [Google Scholar]
  21. 21.
    Alam IS, Mayer AT, Sagiv-Barfi I, Wang K, Vermesh O, et al. 2018.. Imaging activated T cells predicts response to cancer vaccines. . J. Clin. Investig. 128::256980
    [Crossref] [Google Scholar]
  22. 22.
    DeBenedette MA, Wen T, Bachmann MF, Ohashi PS, Barber BH, et al. 1999.. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. . J. Immunol. 163::483341
    [Crossref] [Google Scholar]
  23. 23.
    Tan JT, Whitmire JK, Ahmed R, Pearson TC, Larsen CP. 1999.. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. . J. Immunol. 163::485968
    [Crossref] [Google Scholar]
  24. 24.
    Kopf M, Ruedl C, Schmitz N, Gallimore A, Lefrang K, et al. 1999.. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. . Immunity 11::699708
    [Crossref] [Google Scholar]
  25. 25.
    Hendriks J, Gravestein LA, Tesselaar K, van Lier RAW, Schumacher TNM, Borst J. 2000.. CD27 is required for generation and long-term maintenance of T cell immunity. . Nat. Immunol. 1::43340
    [Crossref] [Google Scholar]
  26. 26.
    Snell LM, McPherson AJ, Lin GH, Sakaguchi S, Pandolfi PP, et al. 2010.. CD8 T cell-intrinsic GITR is required for T cell clonal expansion and mouse survival following severe influenza infection. . J. Immunol. 185::722334
    [Crossref] [Google Scholar]
  27. 27.
    Welten SP, Redeker A, Franken KL, Benedict CA, Yagita H, et al. 2013.. CD27-CD70 costimulation controls T cell immunity during acute and persistent cytomegalovirus infection. . J. Virol. 87::685165
    [Crossref] [Google Scholar]
  28. 28.
    Salek-Ardakani S, Moutaftsi M, Crotty S, Sette A, Croft M. 2008.. OX40 drives protective vaccinia virus-specific CD8 T cells. . J. Immunol. 181::796976
    [Crossref] [Google Scholar]
  29. 29.
    Boettler T, Moeckel F, Cheng Y, Heeg M, Salek-Ardakani S, et al. 2012.. OX40 facilitates control of a persistent virus infection. . PLOS Pathog. 8::e1002913
    [Crossref] [Google Scholar]
  30. 30.
    Salek-Ardakani S, Flynn R, Arens R, Yagita H, Smith GL, et al. 2011.. The TNFR family members OX40 and CD27 link viral virulence to protective T cell vaccines in mice. . J. Clin. Investig. 121::296307
    [Crossref] [Google Scholar]
  31. 31.
    Wortzman ME, Clouthier DL, McPherson AJ, Lin GH, Watts TH. 2013.. The contextual role of TNFR family members in CD8+ T-cell control of viral infections. . Immunol. Rev. 255::12548
    [Crossref] [Google Scholar]
  32. 32.
    Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. 2020.. Regulatory T cells and human disease. . Annu. Rev. Immunol. 38::54166
    [Crossref] [Google Scholar]
  33. 33.
    Magnuson AM, Kiner E, Ergun A, Park JS, Asinovski N, et al. 2018.. Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. . PNAS 115::E1067281
    [Crossref] [Google Scholar]
  34. 34.
    McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, et al. 2002.. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. . Immunity 16::31123
    [Crossref] [Google Scholar]
  35. 35.
    Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. 2002.. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. . Nat. Immunol. 3::13542
    [Crossref] [Google Scholar]
  36. 36.
    Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, et al. 2004.. Frontline: GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. . Eur. J. Immunol. 34::61322
    [Crossref] [Google Scholar]
  37. 37.
    Stephens GL, McHugh RS, Whitters MJ, Young DA, Luxenberg D, et al. 2004.. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. . J. Immunol. 173::500820
    [Crossref] [Google Scholar]
  38. 38.
    Chen X, Subleski JJ, Kopf H, Howard OM, Männel DN, Oppenheim JJ. 2008.. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. . J. Immunol. 180::646771
    [Crossref] [Google Scholar]
  39. 39.
    Nowak A, Lock D, Bacher P, Hohnstein T, Vogt K, et al. 2018.. CD137+CD154− expression as a regulatory T cell (Treg)-specific activation signature for identification and sorting of stable human Tregs from in vitro expansion cultures. . Front. Immunol. 9::199
    [Crossref] [Google Scholar]
  40. 40.
    Lubrano di Ricco M, Ronin E, Collares D, Divoux J, Gregoire S, et al. 2020.. Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-κB. . Eur. J. Immunol. 50::97285
    [Crossref] [Google Scholar]
  41. 41.
    Buchan SL, Dou L, Remer M, Booth SG, Dunn SN, et al. 2018.. Antibodies to costimulatory receptor 4-1BB enhance anti-tumor immunity via T regulatory cell depletion and promotion of CD8 T cell effector function. . Immunity 49::95870.e7
    [Crossref] [Google Scholar]
  42. 42.
    Freeman ZT, Nirschl TR, Hovelson DH, Johnston RJ, Engelhardt JJ, et al. 2020.. A conserved intratumoral regulatory T cell signature identifies 4-1BB as a pan-cancer target. . J. Clin. Investig. 130::140516
    [Crossref] [Google Scholar]
  43. 43.
    Foda BM, Ciecko AE, Serreze DV, Ridgway WM, Geurts AM, Chen YG. 2020.. The CD137 ligand is important for type 1 diabetes development but dispensable for the homeostasis of disease-suppressive CD137+ FOXP3+ regulatory CD4 T cells. . J. Immunol. 204::288799
    [Crossref] [Google Scholar]
  44. 44.
    Kim EY, Priatel JJ, Teh SJ, Teh HS. 2006.. TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. . J. Immunol. 176::102635
    [Crossref] [Google Scholar]
  45. 45.
    Chen X, Subleski JJ, Hamano R, Howard OM, Wiltrout RH, Oppenheim JJ. 2010.. Co-expression of TNFR2 and CD25 identifies more of the functional CD4+FOXP3+ regulatory T cells in human peripheral blood. . Eur. J. Immunol. 40::1099106
    [Crossref] [Google Scholar]
  46. 46.
    Ronin E, Pouchy C, Khosravi M, Hilaire M, Grégoire S, et al. 2021.. Tissue-restricted control of established central nervous system autoimmunity by TNF receptor 2–expressing Treg cells. . PNAS 118::e2014043118
    [Crossref] [Google Scholar]
  47. 47.
    Atretkhany KN, Mufazalov IA, Dunst J, Kuchmiy A, Gogoleva VS, et al. 2018.. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. . PNAS 115::1305156
    [Crossref] [Google Scholar]
  48. 48.
    Chen X, Wu X, Zhou Q, Howard OM, Netea MG, Oppenheim JJ. 2013.. TNFR2 is critical for the stabilization of the CD4+Foxp3+ regulatory T cell phenotype in the inflammatory environment. . J. Immunol. 190::107684
    [Crossref] [Google Scholar]
  49. 49.
    Moatti A, Debesset A, Pilon C, Beldi-Ferchiou A, Leclerc M, et al. 2022.. TNFR2 blockade of regulatory T cells unleashes an antitumor immune response after hematopoietic stem-cell transplantation. . J. Immunother. Cancer 10::e003508
    [Crossref] [Google Scholar]
  50. 50.
    Mensink M, Tran TNM, Zaal EA, Schrama E, Berkers CR, et al. 2022.. TNFR2 costimulation differentially impacts regulatory and conventional CD4+ T-cell metabolism. . Front. Immunol. 13::881166
    [Crossref] [Google Scholar]
  51. 51.
    Tam EM, Fulton RB, Sampson JF, Muda M, Camblin A, et al. 2019.. Antibody-mediated targeting of TNFR2 activates CD8+ T cells in mice and promotes antitumor immunity. . Sci. Transl. Med. 11::eaax0720
    [Crossref] [Google Scholar]
  52. 52.
    Ephrem A, Epstein AL, Stephens GL, Thornton AM, Glass D, Shevach EM. 2013.. Modulation of Treg cells/T effector function by GITR signaling is context–dependent. . Eur. J. Immunol. 43::242129
    [Crossref] [Google Scholar]
  53. 53.
    So T, Lee SW, Croft M. 2008.. Immune regulation and control of regulatory T cells by OX40 and 4-1BB. . Cytokine Growth Factor Rev. 19::25362
    [Crossref] [Google Scholar]
  54. 54.
    Golovina TN, Mikheeva T, Suhoski MM, Aqui NA, Tai VC, et al. 2008.. CD28 costimulation is essential for human T regulatory expansion and function. . J. Immunol. 181::285568
    [Crossref] [Google Scholar]
  55. 55.
    Jacquemin C, Augusto JF, Scherlinger M, Gensous N, Forcade E, et al. 2018.. OX40L/OX40 axis impairs follicular and natural Treg function in human SLE. . JCI Insight 3::e122167
    [Crossref] [Google Scholar]
  56. 56.
    Zhang X, Xiao X, Lan P, Li J, Dou Y, et al. 2018.. OX40 costimulation inhibits Foxp3 expression and Treg induction via BATF3-dependent and independent mechanisms. . Cell Rep. 24::60718
    [Crossref] [Google Scholar]
  57. 57.
    Rosado-Sánchez I, Haque M, Salim K, Speck M, Fung VC, et al. 2023.. Tregs integrate native and CAR-mediated costimulatory signals for control of allograft rejection. . JCI Insight 8::e167215
    [Crossref] [Google Scholar]
  58. 58.
    Boroughs AC, Larson RC, Choi BD, Bouffard AA, Riley LS, et al. 2019.. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. . JCI Insight 5::e126194
    [Crossref] [Google Scholar]
  59. 59.
    Tkachev V, Furlan SN, Watkins B, Hunt DJ, Zheng HB, et al. 2017.. Combined OX40L and mTOR blockade controls effector T cell activation while preserving Treg reconstitution after transplant. . Sci. Transl. Med. 9::eaan3085
    [Crossref] [Google Scholar]
  60. 60.
    Bitra A, Doukov T, Destito G, Croft M, Zajonc DM. 2019.. Crystal structure of the m4-1BB/4-1BBL complex reveals an unusual dimeric ligand that undergoes structural changes upon 4-1BB receptor binding. . J. Biol. Chem. 294::183145
    [Crossref] [Google Scholar]
  61. 61.
    Gilbreth RN, Oganesyan VY, Amdouni H, Novarra S, Grinberg L, et al. 2018.. Crystal structure of the human 4-1BB/4-1BBL complex. . J. Biol. Chem. 293::988091
    [Crossref] [Google Scholar]
  62. 62.
    Liu W, Maben Z, Wang C, Lindquist KC, Li M, et al. 2021.. Structural delineation and phase-dependent activation of the costimulatory CD27:CD70 complex. . J. Biol. Chem. 297::101102
    [Crossref] [Google Scholar]
  63. 63.
    Mukai Y, Nakamura T, Yoshikawa M, Yoshioka Y, Tsunoda S, et al. 2010.. Solution of the structure of the TNF-TNFR2 complex. . Sci. Signal. 3::ra83
    [Crossref] [Google Scholar]
  64. 64.
    Wang F, Chau B, West SM, Kimberlin CR, Cao F, et al. 2021.. Structures of mouse and human GITR–GITRL complexes reveal unique TNF superfamily interactions. . Nat. Commun. 12::1378
    [Crossref] [Google Scholar]
  65. 65.
    Compaan DM, Hymowitz SG. 2006.. The crystal structure of the costimulatory OX40-OX40L complex. . Structure 14::132130
    [Crossref] [Google Scholar]
  66. 66.
    Chin SM, Kimberlin CR, Roe-Zurz Z, Zhang P, Xu A, et al. 2018.. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. . Nat. Commun. 9::4679
    [Crossref] [Google Scholar]
  67. 67.
    Zhou Z, Tone Y, Song X, Furuuchi K, Lear JD, et al. 2008.. Structural basis for ligand-mediated mouse GITR activation. . PNAS 105::64145
    [Crossref] [Google Scholar]
  68. 68.
    Xie P. 2013.. TRAF molecules in cell signaling and in human diseases. . J. Mol. Signal. 8::7
    [Crossref] [Google Scholar]
  69. 69.
    Shi JH, Sun SC. 2018.. Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways. . Front. Immunol. 9::1849
    [Crossref] [Google Scholar]
  70. 70.
    Karin M, Gallagher E. 2009.. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. . Immunol. Rev. 228::22540
    [Crossref] [Google Scholar]
  71. 71.
    Edilova MI, Abdul-Sater AA, Watts TH. 2018.. TRAF1 signaling in human health and disease. . Front. Immunol. 9::2969
    [Crossref] [Google Scholar]
  72. 72.
    Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS. 2002.. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. . J. Immunol. 169::488288
    [Crossref] [Google Scholar]
  73. 73.
    Maus MV, Thomas AK, Leonard DG, Allman D, Addya K, et al. 2002.. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. . Nat. Biotechnol. 20::14348
    [Crossref] [Google Scholar]
  74. 74.
    Saoulli K, Lee SY, Cannons JL, Yeh WC, Santana A, et al. 1998.. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. . J. Exp. Med. 187::184962
    [Crossref] [Google Scholar]
  75. 75.
    Sabbagh L, Pulle G, Liu Y, Tsitsikov EN, Watts TH. 2008.. ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. . J. Immunol. 180::8093101
    [Crossref] [Google Scholar]
  76. 76.
    Vallabhapurapu S, Karin M. 2009.. Regulation and function of NF-κB transcription factors in the immune system. . Annu. Rev. Immunol. 27::693733
    [Crossref] [Google Scholar]
  77. 77.
    McPherson AJ, Snell LM, Mak TW, Watts TH. 2012.. Opposing roles for TRAF1 in the alternative versus classical NF-κB pathway in T cells. . J. Biol. Chem. 287::2301019
    [Crossref] [Google Scholar]
  78. 78.
    Pearce EL. 2010.. Metabolism in T cell activation and differentiation. . Curr. Opin. Immunol. 22::31420
    [Crossref] [Google Scholar]
  79. 79.
    Ruvinsky I, Meyuhas O. 2006.. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. . Trends Biochem. Sci. 31::34248
    [Crossref] [Google Scholar]
  80. 80.
    Lee DY, Choi BK, Lee DG, Kim YH, Kim CH, et al. 2013.. 4-1BB signaling activates the T cell factor 1 effector/β-catenin pathway with delayed kinetics via ERK signaling and delayed PI3K/AKT activation to promote the proliferation of CD8+ T cells. . PLOS ONE 8::e69677
    [Crossref] [Google Scholar]
  81. 81.
    Choi BK, Lee DY, Lee DG, Kim YH, Kim SH, et al. 2016.. 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8+ T cell proliferation. . Cell. Mol. Immunol. 14::74857
    [Crossref] [Google Scholar]
  82. 82.
    Kawalekar OU, O'Connor RS, Fraietta JA, Guo L, McGettigan SE, et al. 2016.. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. . Immunity 44::38090
    [Crossref] [Google Scholar]
  83. 83.
    Teijeira A, Labiano S, Garasa S, Etxeberria I, Santamara E, et al. 2018.. Mitochondrial morphological and functional reprogramming following CD137 (4-1BB) costimulation. . Cancer Immunol. Res. 6::798811
    [Crossref] [Google Scholar]
  84. 84.
    Menk AV, Scharping NE, Rivadeneira DB, Calderon MJ, Watson MJ, et al. 2018.. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. . J. Exp. Med. 215::1091100
    [Crossref] [Google Scholar]
  85. 85.
    Cannons JL, Choi Y, Watts TH. 2000.. Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. . J. Immunol. 165::6193204
    [Crossref] [Google Scholar]
  86. 86.
    de Kivit S, Mensink M, Hoekstra AT, Berlin I, Derks RJE, et al. 2020.. Stable human regulatory T cells switch to glycolysis following TNF receptor 2 costimulation. . Nat. Metab. 2::104661
    [Crossref] [Google Scholar]
  87. 87.
    Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M. 2000.. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. . J. Immunol. 165::304350
    [Crossref] [Google Scholar]
  88. 88.
    Rogers PR, Song J, Gramaglia I, Killeen N, Croft M. 2001.. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. . Immunity 15::44555
    [Crossref] [Google Scholar]
  89. 89.
    So T, Soroosh P, Eun SY, Altman A, Croft M. 2011.. Antigen-independent signalosome of CARMA1, PKCθ, and TNF receptor-associated factor 2 (TRAF2) determines NF-κB signaling in T cells. . PNAS 108::29038
    [Crossref] [Google Scholar]
  90. 90.
    Xiao X, Balasubramanian S, Liu W, Chu X, Wang H, et al. 2012.. OX40 signaling favors the induction of TH9 cells and airway inflammation. . Nat. Immunol. 13::98190
    [Crossref] [Google Scholar]
  91. 91.
    Salek-Ardakani S, Song J, Halteman BS, Jember AG, Akiba H, et al. 2003.. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. . J. Exp. Med. 198::31524
    [Crossref] [Google Scholar]
  92. 92.
    Peperzak V, Veraar EA, Keller AM, Xiao Y, Borst J. 2010.. The Pim kinase pathway contributes to survival signaling in primed CD8+ T cells upon CD27 costimulation. . J. Immunol. 185::667088
    [Crossref] [Google Scholar]
  93. 93.
    Hendriks J, Xiao Y, Rossen JW, van der Sluijs KF, Sugamura K, et al. 2005.. During viral infection of the respiratory tract, CD27, 4-1BB, and OX40 collectively determine formation of CD8+ memory T cells and their capacity for secondary expansion. . J. Immunol. 175::166576
    [Crossref] [Google Scholar]
  94. 94.
    Jaeger-Ruckstuhl CA, Hinterbrandner M, Höpner S, Correnti CE, Lüthi U, et al. 2020.. TNIK signaling imprints CD8+ T cell memory formation early after priming. . Nat. Commun. 11::1632
    [Crossref] [Google Scholar]
  95. 95.
    Jaeger-Ruckstuhl CA, Lo Y, Fulton E, Waltner OG, Shabaneh TB, et al. 2024.. Signaling via a CD27-TRAF2-SHP-1 axis during naive T cell activation promotes memory-associated gene regulatory networks. . Immunity 57::287302.e12
    [Crossref] [Google Scholar]
  96. 96.
    Chang YH, Wang KC, Chu KL, Clouthier DL, Tran AT, et al. 2017.. Dichotomous expression of TNF superfamily ligands on antigen-presenting cells controls post-priming anti-viral CD4+ T cell immunity. . Immunity 47::94358.e9
    [Crossref] [Google Scholar]
  97. 97.
    Ronchetti S, Nocentini G, Bianchini R, Krausz LT, Migliorati G, Riccardi C. 2007.. Glucocorticoid-induced TNFR-related protein lowers the threshold of CD28 costimulation in CD8+ T cells. . J. Immunol. 179::591626
    [Crossref] [Google Scholar]
  98. 98.
    Somekh I, Thian M, Medgyesi D, Gülez N, Magg T, et al. 2019.. CD137 deficiency causes immune dysregulation with predisposition to lymphomagenesis. . Blood 134::151016
    [Crossref] [Google Scholar]
  99. 99.
    Zhu G, Flies DB, Tamada K, Sun Y, Rodriguez M, et al. 2001.. Progressive depletion of peripheral B lymphocytes in 4-1BB (CD137) ligand/I-Eα-transgenic mice. . J. Immunol. 167::267176
    [Crossref] [Google Scholar]
  100. 100.
    Tesselaar K, Arens R, van Schijndel GM, Baars PA, van der Valk MA, et al. 2003.. Lethal T cell immunodeficiency induced by chronic costimulation via CD27-CD70 interactions. . Nat. Immunol. 4::4954. Corrigendum . 2003.. Nat Immunol. 4::295
    [Google Scholar]
  101. 101.
    Pascutti MF, Geerman S, Slot E, van Gisbergen KP, Boon L, et al. 2015.. Enhanced CD8 T cell responses through GITR-mediated costimulation resolve chronic viral infection. . PLOS Pathog. 11::e1004675
    [Crossref] [Google Scholar]
  102. 102.
    Saiki H, Suzuki J, Kosuge H, Haraguchi G, Ishihara T, et al. 2008.. Blockade of the 4-1BB pathway attenuates graft arterial disease in cardiac allografts. . Int. Heart J. 49::10518
    [Crossref] [Google Scholar]
  103. 103.
    Byun M, Ma CS, Akçay A, Pedergnana V, Palendira U, et al. 2013.. Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. . J. Exp. Med. 210::174359
    [Crossref] [Google Scholar]
  104. 104.
    Amigorena S. 2015.. Helping the help for CD8+ T cell responses. . Cell 162::121012
    [Crossref] [Google Scholar]
  105. 105.
    Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, et al. 2014.. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. . Nat. Rev. Immunol. 14::57178
    [Crossref] [Google Scholar]
  106. 106.
    Ginhoux F, Guilliams M, Merad M. 2022.. Expanding dendritic cell nomenclature in the single-cell era. . Nat. Rev. Immunol. 22::6768
    [Crossref] [Google Scholar]
  107. 107.
    Liu Z, Wang H, Li Z, Dress RJ, Zhu Y, et al. 2023.. Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors. . Immunity 56::176177.e6
    [Crossref] [Google Scholar]
  108. 108.
    Shortman K, Heath WR. 2010.. The CD8+ dendritic cell subset. . Immunol. Rev. 234::1831
    [Crossref] [Google Scholar]
  109. 109.
    Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, et al. 2008.. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. . Science 322::1097100
    [Crossref] [Google Scholar]
  110. 110.
    Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, et al. 2017.. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. . Science 356::eaah4573
    [Crossref] [Google Scholar]
  111. 111.
    Dutertre CA, Becht E, Irac SE, Khalilnezhad A, Narang V, et al. 2019.. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. . Immunity 51::57389.e8
    [Crossref] [Google Scholar]
  112. 112.
    Satpathy AT, Kc W, Albring JC, Edelson BT, Kretzer NM, et al. 2012.. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. . J. Exp. Med. 209::113552
    [Crossref] [Google Scholar]
  113. 113.
    Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K, et al. 2015.. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. . Cell 162::132237
    [Crossref] [Google Scholar]
  114. 114.
    Hor JL, Whitney PG, Zaid A, Brooks AG, Heath WR, Mueller SN. 2015.. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. . Immunity 43::55465
    [Crossref] [Google Scholar]
  115. 115.
    Bevan MJ. 2004.. Helping the CD8+ T-cell response. . Nat. Rev. Immunol. 4::595602
    [Crossref] [Google Scholar]
  116. 116.
    Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. 2018.. CD4+ T cell help in cancer immunology and immunotherapy. . Nat. Rev. Immunol. 18::63547
    [Crossref] [Google Scholar]
  117. 117.
    Taraban VY, Rowley TF, Al-Shamkhani A. 2004.. Cutting edge: a critical role for CD70 in CD8 T cell priming by CD40-licensed APCs. . J. Immunol. 173::654246
    [Crossref] [Google Scholar]
  118. 118.
    Bullock TN, Yagita H. 2005.. Induction of CD70 on dendritic cells through CD40 or TLR stimulation contributes to the development of CD8+ T cell responses in the absence of CD4+ T cells. . J. Immunol. 174::71017
    [Crossref] [Google Scholar]
  119. 119.
    Ballesteros-Tato A, León B, Lund FE, Randall TD. 2010.. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8+ T cell responses to influenza. . Nat. Immunol. 11::21624
    [Crossref] [Google Scholar]
  120. 120.
    Ballesteros-Tato A, León B, Lee BO, Lund FE, Randall TD. 2014.. Epitope-specific regulation of memory programming by differential duration of antigen presentation to influenza-specific CD8+ T cells. . Immunity 41::12740
    [Crossref] [Google Scholar]
  121. 121.
    Feau S, Garcia Z, Arens R, Yagita H, Borst J, Schoenberger SP. 2012.. The CD4+ T-cell help signal is transmitted from APC to CD8+ T-cells via CD27–CD70 interactions. . Nat. Commun. 3::948
    [Crossref] [Google Scholar]
  122. 122.
    Ahrends T, Spanjaard A, Pilzecker B, Bąbała N, Bovens A, et al. 2017.. CD4+ T cell help confers a cytotoxic T cell effector program including coinhibitory receptor downregulation and increased tissue invasiveness. . Immunity 47::84861.e5
    [Crossref] [Google Scholar]
  123. 123.
    Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, et al. 2020.. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. . Nature 584::62429
    [Crossref] [Google Scholar]
  124. 124.
    Wu R, Ohara RA, Jo S, Liu TT, Ferris ST, et al. 2022.. Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. . Nat. Immunol. 23::153650
    [Crossref] [Google Scholar]
  125. 125.
    Oba T, Hoki T, Yamauchi T, Keler T, Marsh HC, et al. 2020.. A critical role of CD40 and CD70 signaling in conventional type 1 dendritic cells in expansion and antitumor efficacy of adoptively transferred tumor-specific T cells. . J. Immunol. 205::186777
    [Crossref] [Google Scholar]
  126. 126.
    Crotty S. 2019.. T follicular helper cell biology: a decade of discovery and diseases. . Immunity 50::113248
    [Crossref] [Google Scholar]
  127. 127.
    Fillatreau S, Gray D. 2003.. T cell accumulation in B cell follicles is regulated by dendritic cells and is independent of B cell activation. . J. Exp. Med. 197::195206
    [Crossref] [Google Scholar]
  128. 128.
    Walker LS, Gulbranson-Judge A, Flynn S, Brocker T, Lane PJ. 2000.. Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. . Immunol. Today 21::33337
    [Crossref] [Google Scholar]
  129. 129.
    Cunninghame Graham DS, Graham RR, Manku H, Wong AK, Whittaker JC, et al. 2008.. Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. . Nat. Genet. 40::8389
    [Crossref] [Google Scholar]
  130. 130.
    Grundberg E, Small KS, Hedman ÅK, Nica AC, Buil A, et al. 2012.. Mapping cis- and trans-regulatory effects across multiple tissues in twins. . Nat. Genet. 44::108489
    [Crossref] [Google Scholar]
  131. 131.
    Jacquemin C, Schmitt N, Contin-Bordes C, Liu Y, Narayanan P, et al. 2015.. OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. . Immunity 42::115970
    [Crossref] [Google Scholar]
  132. 132.
    Cortini A, Ellinghaus U, Malik TH, Cunninghame Graham DS, Botto M, Vyse TJ. 2017.. B cell OX40L supports T follicular helper cell development and contributes to SLE pathogenesis. . Ann. Rheum. Dis. 76::2095103
    [Crossref] [Google Scholar]
  133. 133.
    Pattarini L, Trichot C, Bogiatzi S, Grandclaudon M, Meller S, et al. 2017.. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. . J. Exp. Med. 214::152946
    [Crossref] [Google Scholar]
  134. 134.
    Halim TYF, Rana BMJ, Walker JA, Kerscher B, Knolle MD, et al. 2018.. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells. . Immunity 48::1195207.e6
    [Crossref] [Google Scholar]
  135. 135.
    Tahiliani V, Hutchinson TE, Abboud G, Croft M, Salek-Ardakani S. 2017.. OX40 cooperates with ICOS to amplify follicular Th cell development and germinal center reactions during infection. . J. Immunol. 198::21828
    [Crossref] [Google Scholar]
  136. 136.
    Shi C, Pamer EG. 2011.. Monocyte recruitment during infection and inflammation. . Nat. Rev. Immunol. 11::76274
    [Crossref] [Google Scholar]
  137. 137.
    Guilliams M, Mildner A, Yona S. 2018.. Developmental and functional heterogeneity of monocytes. . Immunity 49::595613
    [Crossref] [Google Scholar]
  138. 138.
    Nakandakari-Higa S, Walker S, Canesso MCC, van der Heide V, Chudnovskiy A, et al. 2024.. Universal recording of immune cell interactions in vivo. . Nature 627::399406
    [Crossref] [Google Scholar]
  139. 139.
    Segura E, Amigorena S. 2013.. Inflammatory dendritic cells in mice and humans. . Trends Immunol. 34::44045
    [Crossref] [Google Scholar]
  140. 140.
    Wang KC, Chu KL, Batista NV, Watts TH. 2018.. Conserved and differential features of TNF superfamily ligand expression on APC subsets over the course of a chronic viral infection in mice. . ImmunoHorizons 2::40717
    [Crossref] [Google Scholar]
  141. 141.
    Girard M, Law JC, Edilova MI, Watts TH. 2020.. Type I interferons drive the maturation of human DC3s with a distinct costimulatory profile characterized by high GITRL. . Sci. Immunol. 5::eabe0347
    [Crossref] [Google Scholar]
  142. 142.
    Chu KL, Batista NV, Girard M, Watts TH. 2020.. Monocyte-derived cells in tissue-resident memory T cell formation. . J. Immunol. 204::47785
    [Crossref] [Google Scholar]
  143. 143.
    Oh HS, Choi BK, Kim YH, Lee DG, Hwang S, et al. 2015.. 4-1BB signaling enhances primary and secondary population expansion of CD8+ T cells by maximizing autocrine IL-2/IL-2 receptor signaling. . PLOS ONE 10::e0126765
    [Crossref] [Google Scholar]
  144. 144.
    Peperzak V, Xiao Y, Veraar EA, Borst J. 2010.. CD27 sustains survival of CTLs in virus-infected nonlymphoid tissue in mice by inducing autocrine IL-2 production. . J. Clin. Investig. 120::16878
    [Crossref] [Google Scholar]
  145. 145.
    Zhou AC, Batista NV, Watts TH. 2019.. 4-1BB regulates effector CD8 T cell accumulation in the lung tissue through a TRAF1-, mTOR-, and antigen-dependent mechanism to enhance tissue-resident memory T cell formation during respiratory influenza infection. . J. Immunol. 202::248292
    [Crossref] [Google Scholar]
  146. 146.
    Zhou AC, Wagar LE, Wortzman ME, Watts TH. 2017.. Intrinsic 4-1BB signals are indispensable for the establishment of an influenza-specific tissue-resident memory CD8 T-cell population in the lung. . Mucosal Immunol. 10::1294309
    [Crossref] [Google Scholar]
  147. 147.
    Lin GH, Sedgmen BJ, Moraes TJ, Snell LM, Topham DJ, Watts TH. 2009.. Endogenous 4-1BB ligand plays a critical role in protection from influenza-induced disease. . J. Immunol. 182::93447
    [Crossref] [Google Scholar]
  148. 148.
    Salek-Ardakani S, Zajonc DM, Croft M. 2023.. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. . Front. Immunol. 14::1228486
    [Crossref] [Google Scholar]
  149. 149.
    Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, et al. 1997.. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. . J. Exp. Med. 186::4755
    [Crossref] [Google Scholar]
  150. 150.
    Salek-Ardakani S, Moutaftsi M, Sette A, Croft M. 2011.. Targeting OX40 promotes lung-resident memory CD8 T cell populations that protect against respiratory poxvirus infection. . J. Virol. 85::905199
    [Crossref] [Google Scholar]
  151. 151.
    Hirao LA, Hokey DA, Morrow MP, Jure-Kunkel MN, Weiner DB. 2011.. Immune modulation through 4-1BB enhances SIV vaccine protection in non-human primates against SIVmac251 challenge. . PLOS ONE 6::e24250
    [Crossref] [Google Scholar]
  152. 152.
    Hong JP, McCarthy MK, Davenport BJ, Morrison TE, Diamond MS. 2019.. Clearance of chikungunya virus infection in lymphoid tissues is promoted by treatment with an agonistic anti-CD137 antibody. . J. Virol. 93::e01231-19
    [Crossref] [Google Scholar]
  153. 153.
    Niu L, Strahotin S, Hewes B, Zhang B, Zhang Y, et al. 2007.. Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. . J. Immunol. 178::4194213
    [Crossref] [Google Scholar]
  154. 154.
    Welten SP, Redeker A, Franken KL, Oduro JD, Ossendorp F, et al. 2015.. The viral context instructs the redundancy of costimulatory pathways in driving CD8+ T cell expansion. . eLife 4::e07486
    [Crossref] [Google Scholar]
  155. 155.
    Croft M, Benedict CA, Ware CF. 2013.. Clinical targeting of the TNF and TNFR superfamilies. . Nat. Rev. Drug Discov. 12::14768
    [Crossref] [Google Scholar]
  156. 156.
    Crowe SR, Turner SJ, Miller SC, Roberts AD, Rappolo RA, et al. 2003.. Differential antigen presentation regulates the changing patterns of CD8+ T cell immunodominance in primary and secondary influenza virus infections. . J. Exp. Med. 198::399410
    [Crossref] [Google Scholar]
  157. 157.
    van Gisbergen KP, Klarenbeek PL, Kragten NA, Unger PP, Nieuwenhuis MB, et al. 2011.. The costimulatory molecule CD27 maintains clonally diverse CD8+ T cell responses of low antigen affinity to protect against viral variants. . Immunity 35::97108
    [Crossref] [Google Scholar]
  158. 158.
    Halstead ES, Mueller YM, Altman JD, Katsikis PD. 2002.. In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses. . Nat. Immunol. 3::53641
    [Crossref] [Google Scholar]
  159. 159.
    Clouthier DL, Watts TH. 2015.. TNFRs and control of chronic LCMV infection: implications for therapy. . Trends Immunol. 36::697708
    [Crossref] [Google Scholar]
  160. 160.
    Boettler T, Choi YS, Salek-Ardakani S, Cheng Y, Moeckel F, et al. 2013.. Exogenous OX40 stimulation during lymphocytic choriomeningitis virus infection impairs follicular Th cell differentiation and diverts CD4 T cells into the effector lineage by upregulating Blimp-1. . J. Immunol. 191::502635
    [Crossref] [Google Scholar]
  161. 161.
    Publicover J, Gaggar A, Jespersen JM, Halac U, Johnson AJ, et al. 2018.. An OX40/OX40L interaction directs successful immunity to hepatitis B virus. . Sci. Transl. Med. 10::eaah5766
    [Crossref] [Google Scholar]
  162. 162.
    Fröhlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev AT, et al. 2009.. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. . Science 324::157680
    [Crossref] [Google Scholar]
  163. 163.
    Wang C, McPherson AJ, Jones RB, Kawamura KS, Lin GH, et al. 2012.. Loss of the signaling adaptor TRAF1 causes CD8+ T cell dysregulation during human and murine chronic infection. . J. Exp. Med. 209::7791
    [Crossref] [Google Scholar]
  164. 164.
    Penaloza-MacMaster P, Ur Rasheed A, Iyer SS, Yagita H, Blazar BR, Ahmed R. 2011.. Opposing effects of CD70 costimulation during acute and chronic lymphocytic choriomeningitis virus infection of mice. . J. Virol. 85::616874
    [Crossref] [Google Scholar]
  165. 165.
    Matter M, Odermatt B, Yagita H, Nuoffer JM, Ochsenbein AF. 2006.. Elimination of chronic viral infection by blocking CD27 signaling. . J. Exp. Med. 203::214555
    [Crossref] [Google Scholar]
  166. 166.
    Tangye SG. 2020.. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. . Hum. Genet. 139::885901
    [Crossref] [Google Scholar]
  167. 167.
    van Montfrans JM, Hoepelman AI, Otto S, van Gijn M, van de Corput L, et al. 2012.. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. . J. Allergy Clin. Immunol. 129::78793.e6
    [Crossref] [Google Scholar]
  168. 168.
    Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, et al. 2013.. Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. . Haematologica 98::47378
    [Crossref] [Google Scholar]
  169. 169.
    Alkhairy OK, Perez-Becker R, Driessen GJ, Abolhassani H, van Montfrans J, et al. 2015.. Novel mutations in TNFRSF7/CD27: clinical, immunologic, and genetic characterization of human CD27 deficiency. . J. Allergy Clin. Immunol. 136::70312.e10
    [Crossref] [Google Scholar]
  170. 170.
    Kishore R, Gupta A, Gupta AK, Kabra SK. 2020.. Novel mutation in the CD27 gene in a patient presenting with hypogammaglobulinemia, bronchiectasis and EBV-driven lymphoproliferative disease. . BMJ Case Rep. 13::e233482
    [Crossref] [Google Scholar]
  171. 171.
    Caorsi R, Rusmini M, Volpi S, Chiesa S, Pastorino C, et al. 2017.. CD70 deficiency due to a novel mutation in a patient with severe chronic EBV infection presenting as a periodic fever. . Front. Immunol. 8::2015
    [Crossref] [Google Scholar]
  172. 172.
    Abolhassani H, Edwards ES, Ikinciogullari A, Jing H, Borte S, et al. 2017.. Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. . J. Exp. Med. 214::91106
    [Crossref] [Google Scholar]
  173. 173.
    Ghosh S, Köstel Bal S, Edwards ESJ, Pillay B, Jiménez Heredia R, et al. 2020.. Extended clinical and immunological phenotype and transplant outcome in CD27 and CD70 deficiency. . Blood 136::263855
    [Crossref] [Google Scholar]
  174. 174.
    Alosaimi MF, Hoenig M, Jaber F, Platt CD, Jones J, et al. 2019.. Immunodeficiency and EBV-induced lymphoproliferation caused by 4-1BB deficiency. . J. Allergy Clin. Immunol. 144::57483.e5
    [Crossref] [Google Scholar]
  175. 175.
    Rodriguez R, Fournier B, Cordeiro DJ, Winter S, Izawa K, et al. 2019.. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. . J. Exp. Med. 216::280018
    [Crossref] [Google Scholar]
  176. 176.
    Fournier B, Hoshino A, Bruneau J, Bachelet C, Fusaro M, et al. 2022.. Inherited TNFSF9 deficiency causes broad Epstein-Barr virus infection with EBV+ smooth muscle tumors. . J. Exp. Med. 219::e20211682
    [Crossref] [Google Scholar]
  177. 177.
    Shen K, Wang J, Zhou K, Mu W, Zhang M, et al. 2023.. CD137 deficiency because of two novel biallelic TNFRSF9 mutations in a patient presenting with severe EBV-associated lymphoproliferative disease. . Clin. Transl. Immunol. 12::e1448
    [Crossref] [Google Scholar]
  178. 178.
    Xiao Y, Hendriks J, Langerak P, Jacobs H, Borst J. 2004.. CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. . J. Immunol. 172::743241
    [Crossref] [Google Scholar]
  179. 179.
    Seidel MG. 2012.. CD27: a new player in the field of common variable immunodeficiency and EBV-associated lymphoproliferative disorder?. J. Allergy Clin. Immunol. 129::1175; author reply 117576
    [Crossref] [Google Scholar]
  180. 180.
    Gracias DT, Sethi GS, Mehta AK, Miki H, Gupta RK, et al. 2021.. Combination blockade of OX40L and CD30L inhibits allergen-driven memory TH2 cell reactivity and lung inflammation. . J. Allergy Clin. Immunol. 147::231629
    [Crossref] [Google Scholar]
  181. 181.
    Fu N, Xie F, Sun Z, Wang Q. 2021.. The OX40/OX40L axis regulates T follicular helper cell differentiation: implications for autoimmune diseases. . Front. Immunol. 12::670637
    [Crossref] [Google Scholar]
  182. 182.
    Croft M, Salek-Ardakani S, Ware CF. 2024.. Targeting the TNF and TNFR superfamilies in autoimmune disease and cancer. . Nat. Rev. Drug Discov. 23::93961
    [Crossref] [Google Scholar]
  183. 183.
    Zhou AC, Snell LM, Wortzman ME, Watts TH. 2017.. CD30 is dispensable for T-cell responses to influenza virus and lymphocytic choriomeningitis virus clone 13 but contributes to age-associated T-cell expansion in mice. . Front. Immunol. 8::1156
    [Crossref] [Google Scholar]
  184. 184.
    Kim J, Choi WS, La S, Suh JH, Kim BS, et al. 2005.. Stimulation with 4-1BB (CD137) inhibits chronic graft-versus-host disease by inducing activation-induced cell death of donor CD4+ T cells. . Blood 105::220613
    [Crossref] [Google Scholar]
  185. 185.
    Seo SK, Choi JH, Kim YH, Kang WJ, Park HY, et al. 2004.. 4-1BB-mediated immunotherapy of rheumatoid arthritis. . Nat. Med. 10::108894
    [Crossref] [Google Scholar]
  186. 186.
    Kim HD, Park S, Jeong S, Lee YJ, Lee H, et al. 2020.. 4-1BB delineates distinct activation status of exhausted tumor-infiltrating CD8+ T cells in hepatocellular carcinoma. . Hepatology 71::95571
    [Crossref] [Google Scholar]
  187. 187.
    Leem G, Park J, Jeon M, Kim ES, Kim SW, et al. 2020.. 4-1BB co-stimulation further enhances anti-PD-1-mediated reinvigoration of exhausted CD39+ CD8 T cells from primary and metastatic sites of epithelial ovarian cancers. . J. Immunother. Cancer 8::e001650
    [Crossref] [Google Scholar]
  188. 188.
    Pichler AC, Carrié N, Cuisinier M, Ghazali S, Voisin A, et al. 2023.. TCR-independent CD137 (4-1BB) signaling promotes CD8+-exhausted T cell proliferation and terminal differentiation. . Immunity 56::163148.e10
    [Crossref] [Google Scholar]
  189. 189.
    Ziblat A, Horton BL, Higgs EF, Hatogai K, Martinez A, et al. 2024.. Batf3+ DCs and the 4-1BB/4-1BBL axis are required at the effector phase in the tumor microenvironment for PD-1/PD-L1 blockade efficacy. . Cell Rep. 43::114141
    [Crossref] [Google Scholar]
  190. 190.
    Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. 2020.. T-cell agonists in cancer immunotherapy. . J. Immunother. Cancer 8::e000966
    [Crossref] [Google Scholar]
  191. 191.
    Curran MA, Geiger TL, Montalvo W, Kim M, Reiner SL, et al. 2013.. Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin. . J. Exp. Med. 210::74355
    [Crossref] [Google Scholar]
  192. 192.
    Wang C, Wen T, Routy JP, Bernard NF, Sekaly RP, Watts TH. 2007.. 4-1BBL induces TNF receptor-associated factor 1-dependent Bim modulation in human T cells and is a critical component in the costimulation-dependent rescue of functionally impaired HIV-specific CD8 T cells. . J. Immunol. 179::825263
    [Crossref] [Google Scholar]
  193. 193.
    Andreata F, Laura C, Ravà M, Krueger CC, Ficht X, et al. 2024.. Therapeutic potential of co-signaling receptor modulation in hepatitis B. . Cell 187::407894
    [Crossref] [Google Scholar]
  194. 194.
    Lee SW, Salek-Ardakani S, Mittler RS, Croft M. 2009.. Hypercostimulation through 4-1BB distorts homeostasis of immune cells. . J. Immunol. 182::675362
    [Crossref] [Google Scholar]
  195. 195.
    Bartkowiak T, Jaiswal AR, Ager CR, Chin R, Chen CH, et al. 2018.. Activation of 4-1BB on liver myeloid cells triggers hepatitis via an interleukin-27–dependent pathway. . Clin. Cancer Res. 24::113851
    [Crossref] [Google Scholar]
  196. 196.
    Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, et al. 2017.. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. . Clin. Cancer Res. 23::192936
    [Crossref] [Google Scholar]
  197. 197.
    Chester C, Sanmamed MF, Wang J, Melero I. 2018.. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. . Blood 131::4957
    [Crossref] [Google Scholar]
  198. 198.
    Ho SK, Xu Z, Thakur A, Fox M, Tan SS, et al. 2020.. Epitope and Fc-mediated cross-linking, but not high affinity, are critical for antitumor activity of CD137 agonist antibody with reduced liver toxicity. . Mol. Cancer Ther. 19::104051
    [Crossref] [Google Scholar]
  199. 199.
    Davar D, Zappasodi R, Wang H, Naik GS, Sato T, et al. 2022.. Phase IB study of GITR agonist antibody TRX518 singly and in combination with gemcitabine, pembrolizumab, or nivolumab in patients with advanced solid tumors. . Clin. Cancer Res. 28::39904002
    [Crossref] [Google Scholar]
  200. 200.
    Hirschhorn D, Betof Warner A, Maniyar R, Chow A, Mangarin LMB, et al. 2021.. Cyclophosphamide enhances the antitumor potency of GITR engagement by increasing oligoclonal cytotoxic T cell fitness. . JCI Insight 6::e151035
    [Crossref] [Google Scholar]
  201. 201.
    Claus C, Ferrara-Koller C, Klein C. 2023.. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. . mAbs 15::2167189
    [Crossref] [Google Scholar]
  202. 202.
    Kamata-Sakurai M, Narita Y, Hori Y, Nemoto T, Uchikawa R, et al. 2021.. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. . Cancer Discov. 11::15875
    [Crossref] [Google Scholar]
  203. 203.
    Laspidea V, Puigdelloses M, Labiano S, Marrodán L, Garcia-Moure M, et al. 2022.. Exploiting 4-1BB immune checkpoint to enhance the efficacy of oncolytic virotherapy for diffuse intrinsic pontine gliomas. . JCI Insight 7::e154812
    [Crossref] [Google Scholar]
  204. 204.
    Hinterberger M, Giessel R, Fiore G, Graebnitz F, Bathke B, et al. 2021.. Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. . J. Immunother. Cancer 9::e001586
    [Crossref] [Google Scholar]
  205. 205.
    Stumpp MT, Dawson KM, Binz HK. 2020.. Beyond antibodies: the DARPin® drug platform. . BioDrugs 34::42333
    [Crossref] [Google Scholar]
  206. 206.
    Hinner MJ, Aiba RSB, Jaquin TJ, Berger S, Dürr MC, et al. 2019.. Tumor-localized costimulatory T-cell engagement by the 4-1BB/HER2 bispecific antibody-Anticalin fusion PRS-343. . Clin. Cancer Res. 25::587889
    [Crossref] [Google Scholar]
  207. 207.
    Klein C, Brinkmann U, Reichert JM, Kontermann RE. 2024.. The present and future of bispecific antibodies for cancer therapy. . Nat. Rev. Drug Discov. 23::30119
    [Crossref] [Google Scholar]
  208. 208.
    Melero I, Tanos T, Bustamante M, Sanmamed MF, Calvo E, et al. 2023.. A first-in-human study of the fibroblast activation protein–targeted, 4-1BB agonist RO7122290 in patients with advanced solid tumors. . Sci. Transl. Med. 15::eabp9229
    [Crossref] [Google Scholar]
  209. 209.
    Claus C, Ferrara C, Xu W, Sam J, Lang S, et al. 2019.. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. . Sci. Transl. Med. 11::eaav5989
    [Crossref] [Google Scholar]
  210. 210.
    June CH, Sadelain M. 2018.. Chimeric antigen receptor therapy. . N. Engl. J. Med. 379::6473
    [Crossref] [Google Scholar]
  211. 211.
    Cappell KM, Kochenderfer JN. 2023.. Long-term outcomes following CAR T cell therapy: what we know so far. . Nat. Rev. Clin. Oncol. 20::35971
    [Crossref] [Google Scholar]
  212. 212.
    Honikel MM, Olejniczak SH. 2022.. Co-stimulatory receptor signaling in CAR-T cells. . Biomolecules 12::1303
    [Crossref] [Google Scholar]
  213. 213.
    He Y, Vlaming M, van Meerten T, Bremer E. 2022.. The implementation of TNFRSF co-stimulatory domains in CAR-T cells for optimal functional activity. . Cancers 14::299
    [Crossref] [Google Scholar]
  214. 214.
    Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, et al. 2015.. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. . Sci. Transl. Med. 7::303ra139
    [Crossref] [Google Scholar]
  215. 215.
    Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, et al. 2009.. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. . Mol. Ther. 17::145364
    [Crossref] [Google Scholar]
  216. 216.
    Philipson BI, O'Connor RS, May MJ, June CH, Albelda SM, Milone MC. 2020.. 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. . Sci. Signal. 13::eaay8248
    [Crossref] [Google Scholar]
  217. 217.
    Maldini CR, Gayout K, Leibman RS, Dopkin DL, Mills JP, et al. 2020.. HIV-resistant and HIV-specific CAR-modified CD4+ T cells mitigate HIV disease progression and confer CD4+ T cell help in vivo. . Mol. Ther. 28::158599
    [Crossref] [Google Scholar]
  218. 218.
    Boroughs AC, Larson RC, Marjanovic ND, Gosik K, Castano AP, et al. 2020.. A distinct transcriptional program in human CAR T cells bearing the 4-1BB signaling domain revealed by scRNA-Seq. . Mol. Ther. 28::257792
    [Crossref] [Google Scholar]
  219. 219.
    Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, et al. 2015.. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. . Nat. Med. 21::58190
    [Crossref] [Google Scholar]
  220. 220.
    Hamieh M, Dobrin A, Cabriolu A, van der Stegen SJC, Giavridis T, et al. 2019.. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. . Nature 568::11216
    [Crossref] [Google Scholar]
  221. 221.
    Priceman SJ, Gerdts EA, Tilakawardane D, Kennewick KT, Murad JP, et al. 2018.. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. . OncoImmunology 7::e1380764
    [Crossref] [Google Scholar]
  222. 222.
    Brown CE, Hibbard JC, Alizadeh D, Blanchard MS, Natri HN, et al. 2024.. Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: a phase 1 trial. . Nat. Med. 30::100112
    [Crossref] [Google Scholar]
  223. 223.
    Choi BD, Gerstner ER, Frigault MJ, Leick MB, Mount CW, et al. 2024.. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. . N. Engl. J. Med. 390::129098
    [Crossref] [Google Scholar]
  224. 224.
    Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. . Mol. Ther. 18::41320
    [Crossref] [Google Scholar]
  225. 225.
    Muliaditan T, Halim L, Whilding LM, Draper B, Achkova DY, et al. 2021.. Synergistic T cell signaling by 41BB and CD28 is optimally achieved by membrane proximal positioning within parallel chimeric antigen receptors. . Cell Rep. Med. 2::100457
    [Crossref] [Google Scholar]
  226. 226.
    Maldini CR, Claiborne DT, Okawa K, Chen T, Dopkin DL, et al. 2020.. Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. . Nat. Med. 26::177687
    [Crossref] [Google Scholar]
  227. 227.
    Katsarou A, Sjöstrand M, Naik J, Mansilla-Soto J, Kefala D, et al. 2021.. Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. . Sci. Transl. Med. 13::eabh1962
    [Crossref] [Google Scholar]
  228. 228.
    Zhang H, Li F, Cao J, Wang X, Cheng H, et al. 2021.. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. . Sci. Transl. Med. 13::eaba7308
    [Crossref] [Google Scholar]
  229. 229.
    Dobrin A, Lindenbergh PL, Shi Y, Perica K, Xie H, et al. 2024.. Synthetic dual co-stimulation increases the potency of HIT and TCR-targeted cell therapies. . Nat. Cancer 5::76073
    [Crossref] [Google Scholar]
  230. 230.
    Mansilla-Soto J, Eyquem J, Haubner S, Hamieh M, Feucht J, et al. 2022.. HLA-independent T cell receptors for targeting tumors with low antigen density. . Nat. Med. 28::34552
    [Crossref] [Google Scholar]
  231. 231.
    Oda SK, Anderson KG, Ravikumar P, Bonson P, Garcia NM, et al. 2020.. A Fas-4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy. . J. Exp. Med. 217::e20191166
    [Crossref] [Google Scholar]
  232. 232.
    Wang L, Matsumoto M, Akahori Y, Seo N, Shirakura K, et al. 2024.. Preclinical evaluation of a novel CAR-T therapy utilizing a scFv antibody highly specific to MAGE-A4p230–239/HLA-A*02:01 complex. . Mol. Ther. 32::73448
    [Crossref] [Google Scholar]
  233. 233.
    Golubovskaya V, Berahovich R, Xu Q, Zhou H, Xu S, et al. 2018.. GITR domain inside CAR co-stimulates activity of CAR-T cells against cancer. . Front. Biosci. (Landmark Ed.) 23::224554
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-082423-040557
Loading
/content/journals/10.1146/annurev-immunol-082423-040557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error