1932

Abstract

The mammalian gut is a vast, diverse, and dynamic single-layer epithelial surface exposed to trillions of microbes, microbial products, and the diet. Underlying this epithelium lies the largest collection of immune cells in the body; these cells encounter luminal substances to generate antigen-specific immune responses characterized by tolerance at homeostasis and inflammation during enteric infections. How the outcomes of antigen-specific tolerance and inflammation are appropriately balanced is a central question in mucosal immunology. Furthermore, how substances large enough to generate antigen-specific responses cross the epithelium and encounter the immune system in homeostasis and during inflammation remains largely unexplored. Here we discuss the challenges presented to the gut immune system, the identified pathways by which luminal substances cross the epithelium, and insights suggesting that the pathways used by substances to cross the epithelium affect the ensuing immune response.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082523-090154
2025-04-25
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-082523-090154.html?itemId=/content/journals/10.1146/annurev-immunol-082523-090154&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Shalon D, Culver RN, Grembi JA, Folz J, Treit PV, et al. 2023.. Profiling the human intestinal environment under physiological conditions. . Nature 617::58191
    [Crossref] [Google Scholar]
  2. 2.
    Martinez-Guryn K, Leone V, Chang EB. 2019.. Regional diversity of the gastrointestinal microbiome. . Cell Host Microbe 26::31424
    [Crossref] [Google Scholar]
  3. 3.
    McCallum G, Tropini C. 2024.. The gut microbiota and its biogeography. . Nat. Rev. Microbiol. 22::10518
    [Crossref] [Google Scholar]
  4. 4.
    Esterhazy D, Canesso MCC, Mesin L, Muller PA, de Castro TBR, et al. 2019.. Compartmentalized gut lymph node drainage dictates adaptive immune responses. . Nature 569::12630
    [Crossref] [Google Scholar]
  5. 5.
    Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Kassel R, Newberry RD. 2017.. Antibiotics promote the sampling of luminal antigens and bacteria via colonic goblet cell associated antigen passages. . Gut Microbes 8:(4):40011
    [Crossref] [Google Scholar]
  6. 6.
    Basile EJ, Launico MV, Sheer AJ. 2024.. Physiology, Nutrient Absorption. Treasure Island, FL:: StatPearls
    [Google Scholar]
  7. 7.
    Mowat AM, Agace WW. 2014.. Regional specialization within the intestinal immune system. . Nat. Rev. Immunol. 14::66785
    [Crossref] [Google Scholar]
  8. 8.
    Heppert JK, Davison JM, Kelly C, Mercado GP, Lickwar CR, Rawls JF. 2021.. Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. . Nat. Rev. Gastroenterol. Hepatol. 18::723
    [Crossref] [Google Scholar]
  9. 9.
    Gulec S, Collins JF. 2014.. Molecular mediators governing iron-copper interactions. . Annu. Rev. Nutr. 34::95116
    [Crossref] [Google Scholar]
  10. 10.
    Duflos C, Bellaton C, Pansu D, Bronner F. 1995.. Calcium solubility, intestinal sojourn time and paracellular permeability codetermine passive calcium absorption in rats. . J. Nutr. 125::234855
    [Crossref] [Google Scholar]
  11. 11.
    Krag E, Phillips SF. 1974.. Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. . J. Clin. Investig. 53::168694
    [Crossref] [Google Scholar]
  12. 12.
    Schiff ER, Small NC, Dietschy JM. 1972.. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. . J. Clin. Investig. 51::135162
    [Crossref] [Google Scholar]
  13. 13.
    Ermund A, Schutte A, Johansson ME, Gustafsson JK, Hansson GC. 2013.. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. . Am. J. Physiol. Gastrointest. Liver Physiol. 305::G34147
    [Crossref] [Google Scholar]
  14. 14.
    Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. . PNAS 108:(1):465965
    [Google Scholar]
  15. 15.
    Yang W, Cong Y. 2021.. Gut microbiota–derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. . Cell. Mol. Immunol. 18::86677
    [Crossref] [Google Scholar]
  16. 16.
    Mikhael M, Khan YS. 2024.. Anatomy, Abdomen and Pelvis: Lymphatic Drainage. Treasure Island, FL:: StatPearls
    [Google Scholar]
  17. 17.
    Newberry RD, Lorenz RG. 2005.. Organizing a mucosal defense. . Immunol. Rev. 206::621
    [Crossref] [Google Scholar]
  18. 18.
    Pabst O, Herbrand H, Worbs T, Friedrichsen M, Yan S, et al. 2005.. Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. . Eur. J. Immunol. 35::98107
    [Crossref] [Google Scholar]
  19. 19.
    Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. 2013.. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. . Mucosal Immunol. 6::66677
    [Crossref] [Google Scholar]
  20. 20.
    Newberry RD, Gustafsson JK. 2016.. Anatomy and function of the gut immune system. . In Encyclopedia of Immunobiology, ed. MJH Ratcliffe , pp. 42733. Oxford, UK:: Academic
    [Google Scholar]
  21. 21.
    Lundqvist C, Baranov V, Hammarstrom S, Athlin L, Hammarstrom ML. 1995.. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. . Int. Immunol. 7::147387
    [Crossref] [Google Scholar]
  22. 22.
    Owen RL, Pierce NF, Apple RT, Cray WC Jr. 1986.. M cell transport of Vibrio cholerae from the intestinal lumen into Peyer's patches: a mechanism for antigen sampling and for microbial transepithelial migration. . J. Infect. Dis. 153::110818
    [Crossref] [Google Scholar]
  23. 23.
    Moghaddami M, Cummins A, Mayrhofer G. 1998.. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. . Gastroenterology 115::141425
    [Crossref] [Google Scholar]
  24. 24.
    Muller PA, Koscso B, Rajani GM, Stevanovic K, Berres ML, et al. 2014.. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. . Cell 158::30013
    [Crossref] [Google Scholar]
  25. 25.
    Schill EM, Joyce EL, Floyd AN, Udayan S, Rusconi B, et al. 2023.. Vancomycin-induced gut microbial dysbiosis alters enteric neuron–macrophage interactions during a critical period of postnatal development. . Front. Immunol. 14::1268909
    [Crossref] [Google Scholar]
  26. 26.
    Ding J, Garber JJ, Uchida A, Lefkovith A, Carter GT, et al. 2024.. An esophagus cell atlas reveals dynamic rewiring during active eosinophilic esophagitis and remission. . Nat. Commun. 15::3344
    [Crossref] [Google Scholar]
  27. 27.
    Chen J, Huang Q, Li YQ, Li Z, Zheng J, et al. 2024.. Comparative single-cell analysis reveals heterogeneous immune landscapes in adenocarcinoma of the esophagogastric junction and gastric adenocarcinoma. . Cell Death. Dis. 15::15
    [Crossref] [Google Scholar]
  28. 28.
    Goodman BE. 2010.. Insights into digestion and absorption of major nutrients in humans. . Adv. Physiol. Educ. 34::4453
    [Crossref] [Google Scholar]
  29. 29.
    Volkheimer G. 1964.. Der Uebergang kleiner fester theilchen aus dem Darmacanal in den Milchsaft und das blut [The passage of small, solid particles from the intestinal canal into the chyle and blood]. . Wien. Med. Wochenschr. 114::91523
    [Google Scholar]
  30. 30.
    Volkheimer G, Schulz FH. 1968.. The phenomenon of persorption. . Digestion 1::21318
    [Crossref] [Google Scholar]
  31. 31.
    Volkheimer G, Schulz FH, Aurich I, Strauch S, Beuthin K, Wendlandt H. 1968.. Persorption of particles. . Digestion 1::7880
    [Crossref] [Google Scholar]
  32. 32.
    Gitzelmann R, Spycher MA. 1993.. Oral cornstarch therapy: Is persorption harmless?. Eur. J. Pediatr. 152::59294
    [Crossref] [Google Scholar]
  33. 33.
    Freedman BJ. 1991.. Persorption of raw starch: a cause of senile dementia?. Med. Hypotheses 35::8587
    [Crossref] [Google Scholar]
  34. 34.
    Nicklin S, Miller K. 1984.. Effect of orally administered food-grade carrageenans on antibody-mediated and cell-mediated immunity in the inbred rat. . Food Chem. Toxicol. 22::61521
    [Crossref] [Google Scholar]
  35. 35.
    Pabst O, Mowat AM. 2012.. Oral tolerance to food protein. . Mucosal Immunol. 5::23239
    [Crossref] [Google Scholar]
  36. 36.
    Faria AM, Weiner HL. 2005.. Oral tolerance. . Immunol. Rev. 206::23259
    [Crossref] [Google Scholar]
  37. 37.
    Belkaid Y, Hand TW. 2014.. Role of the microbiota in immunity and inflammation. . Cell 157::12141
    [Crossref] [Google Scholar]
  38. 38.
    Herzog RW, Nichols TC, Su J, Zhang B, Sherman A, et al. 2017.. Oral tolerance induction in hemophilia B dogs fed with transplastomic lettuce. . Mol. Ther. 25::51222
    [Crossref] [Google Scholar]
  39. 39.
    Burks AW, Jones SM, Wood RA, Fleischer DM, Sicherer SH, et al. 2012.. Oral immunotherapy for treatment of egg allergy in children. . N. Engl. J. Med. 367::23343
    [Crossref] [Google Scholar]
  40. 40.
    Simioni PU, Fernandes LG, Gabriel DL, Tamashiro WM. 2004.. Induction of systemic tolerance in normal but not in transgenic mice through continuous feeding of ovalbumin. . Scand. J. Immunol. 60::25766
    [Crossref] [Google Scholar]
  41. 41.
    Visekruna A, Hartmann S, Sillke YR, Glauben R, Fischer F, et al. 2019.. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. . J. Clin. Investig. 129::197283
    [Crossref] [Google Scholar]
  42. 42.
    Asai K, Hachimura S, Kimura M, Toraya T, Yamashita M, et al. 2002.. T cell hyporesponsiveness induced by oral administration of ovalbumin is associated with impaired NFAT nuclear translocation and p27kip1 degradation. . J. Immunol. 169::472331
    [Crossref] [Google Scholar]
  43. 43.
    Friedman A, Weiner HL. 1994.. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. . PNAS 91::668892
    [Crossref] [Google Scholar]
  44. 44.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. 1995.. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). . Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. . J. Immunol. 155::115164
    [Crossref] [Google Scholar]
  45. 45.
    Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, et al. 2011.. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. . Immunity 34::23746
    [Crossref] [Google Scholar]
  46. 46.
    Spahn TW, Weiner HL, Rennert PD, Lugering N, Fontana A, et al. 2002.. Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer's patches. . Eur. J. Immunol. 32::110913
    [Crossref] [Google Scholar]
  47. 47.
    Turner JR. 2009.. Intestinal mucosal barrier function in health and disease. . Nat. Rev. Immunol. 9::799809
    [Crossref] [Google Scholar]
  48. 48.
    Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. 2011.. Tight junction pore and leak pathways: a dynamic duo. . Annu. Rev. Physiol. 73::283309
    [Crossref] [Google Scholar]
  49. 49.
    Chanez-Paredes SD, Abtahi S, Kuo WT, Turner JR. 2021.. Differentiating between tight junction–dependent and tight junction–independent intestinal barrier loss in vivo. . Methods Mol. Biol. 2367::24971
    [Crossref] [Google Scholar]
  50. 50.
    Ahmad R, Sorrell MF, Batra SK, Dhawan P, Singh AB. 2017.. Gut permeability and mucosal inflammation: bad, good or context dependent. . Mucosal Immunol. 10::30717
    [Crossref] [Google Scholar]
  51. 51.
    von Herbay A, Rudi J. 2000.. Role of apoptosis in gastric epithelial turnover. . Microsc. Res. Tech. 48::30311
    [Crossref] [Google Scholar]
  52. 52.
    Watson AJ, Chu S, Sieck L, Gerasimenko O, Bullen T, et al. 2005.. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. . Gastroenterology 129::90212
    [Crossref] [Google Scholar]
  53. 53.
    Kiesslich R, Goetz M, Angus EM, Hu Q, Guan Y, et al. 2007.. Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. . Gastroenterology 133::176978
    [Crossref] [Google Scholar]
  54. 54.
    Bullen TF, Forrest S, Campbell F, Dodson AR, Hershman MJ, et al. 2006.. Characterization of epithelial cell shedding from human small intestine. . Lab. Investig. 86::105263
    [Crossref] [Google Scholar]
  55. 55.
    Guan Y, Watson AJ, Marchiando AM, Bradford E, Shen L, et al. 2011.. Redistribution of the tight junction protein ZO-1 during physiological shedding of mouse intestinal epithelial cells. . Am. J. Physiol. Cell Physiol. 300::C140414
    [Crossref] [Google Scholar]
  56. 56.
    Marchiando AM, Shen L, Graham WV, Edelblum KL, Duckworth CA, et al. 2011.. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. . Gastroenterology 140::120818.e1–2
    [Crossref] [Google Scholar]
  57. 57.
    Sakhon OS, Ross B, Gusti V, Pham AJ, Vu K, Lo DD. 2015.. M cell–derived vesicles suggest a unique pathway for trans-epithelial antigen delivery. . Tissue Barriers 3::e1004975
    [Crossref] [Google Scholar]
  58. 58.
    Rios D, Wood MB, Li J, Chassaing B, Gewirtz AT, Williams IR. 2016.. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. . Mucosal Immunol. 9::90716
    [Crossref] [Google Scholar]
  59. 59.
    Creamer B. 1967.. The turnover of the epithelium of the small intestine. . Br. Med. Bull. 23::22630
    [Crossref] [Google Scholar]
  60. 60.
    McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, et al. 2012.. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. . Nature 483::34549
    [Crossref] [Google Scholar]
  61. 61.
    Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, et al. 2009.. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. . Nature 462::22630
    [Crossref] [Google Scholar]
  62. 62.
    Rand JH, Wu XX, Lin EY, Griffel A, Gialanella P, McKitrick JC. 2012.. Annexin A5 binds to lipopolysaccharide and reduces its endotoxin activity. . mBio 3:(2):e00292-11
    [Crossref] [Google Scholar]
  63. 63.
    Tahoun A, Mahajan S, Paxton E, Malterer G, Donaldson DS, et al. 2012.. Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. . Cell Host Microbe 12::64556
    [Crossref] [Google Scholar]
  64. 64.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, et al. 2007.. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid–dependent mechanism. . J. Exp. Med. 204::175764
    [Crossref] [Google Scholar]
  65. 65.
    Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, et al. 2001.. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. . Nat. Immunol. 2::36167
    [Crossref] [Google Scholar]
  66. 66.
    Scott CL, Aumeunier AM, Mowat AM. 2011.. Intestinal CD103+ dendritic cells: master regulators of tolerance?. Trends Immunol. 32::41219
    [Crossref] [Google Scholar]
  67. 67.
    Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. 2001.. Dendritic cells shuttle microbes across gut epithelial monolayers. . Immunobiology 204::57281
    [Crossref] [Google Scholar]
  68. 68.
    Chieppa M, Rescigno M, Huang AY, Germain RN. 2006.. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. . J. Exp. Med. 203::284152
    [Crossref] [Google Scholar]
  69. 69.
    Niess JH, Brand S, Gu X, Landsman L, Jung S, et al. 2005.. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. . Science 307::25458
    [Crossref] [Google Scholar]
  70. 70.
    Vallon-Eberhard A, Landsman L, Yogev N, Verrier B, Jung S. 2006.. Transepithelial pathogen uptake into the small intestinal lamina propria. . J. Immunol. 176::246569
    [Crossref] [Google Scholar]
  71. 71.
    Farache J, Koren I, Milo I, Gurevich I, Kim KW, et al. 2013.. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. . Immunity 38::58195
    [Crossref] [Google Scholar]
  72. 72.
    Lelouard H, Fallet M, de Bovis B, Meresse S, Gorvel JP. 2012.. Peyer's patch dendritic cells sample antigens by extending dendrites through M cell–specific transcellular pores. . Gastroenterology 142::592601.e3
    [Crossref] [Google Scholar]
  73. 73.
    Kulkarni DH, Gustafsson JK, Knoop KA, McDonald KG, Bidani SS, et al. 2019.. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. . Mucosal Immunol. 13:(2):27182
    [Crossref] [Google Scholar]
  74. 74.
    Morita N, Umemoto E, Fujita S, Hayashi A, Kikuta J, et al. 2019.. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. . Nature 566::11014
    [Crossref] [Google Scholar]
  75. 75.
    Knoop KA, McDonald KG, McCrate S, McDole JR, Newberry RD. 2015.. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. . Mucosal Immunol. 8::198210
    [Crossref] [Google Scholar]
  76. 76.
    Kulkarni DH, McDonald KG, Knoop KA, Gustafsson JK, Kozlowski KM, et al. 2018.. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. . Mucosal Immunol. 11:(4):110313
    [Crossref] [Google Scholar]
  77. 77.
    Gustafsson JK, Davis JE, Rappai T, McDonald KG, Kulkarni DH, et al. 2021.. Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. . eLife 10::e67292
    [Crossref] [Google Scholar]
  78. 78.
    Hill CA, Casterline BW, Valguarnera E, Hecht AL, Shepherd ES, et al. 2024.. Bacteroides fragilis toxin expression enables lamina propria niche acquisition in the developing mouse gut. . Nat. Microbiol. 9::8594
    [Crossref] [Google Scholar]
  79. 79.
    Brant SR, Okou DT, Simpson CL, Cutler DJ, Haritunians T, et al. 2017.. Genome-wide association study identifies African-specific susceptibility loci in African Americans with inflammatory bowel disease. . Gastroenterology 152::20617.e2
    [Crossref] [Google Scholar]
  80. 80.
    Cortez V, Boyd DF, Crawford JC, Sharp B, Livingston B, et al. 2020.. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. . Nat. Commun. 11::2097
    [Crossref] [Google Scholar]
  81. 81.
    Ingle H, Hassan E, Gawron J, Mihi B, Li Y, et al. 2021.. Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. . Mucosal Immunol. 14::75161
    [Crossref] [Google Scholar]
  82. 82.
    Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. 2011.. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. . J. Exp. Med. 208::226377
    [Crossref] [Google Scholar]
  83. 83.
    Noah TK, Knoop KA, McDonald KG, Gustafsson JK, Waggoner L, et al. 2019.. IL-13-induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. . J. Allergy Clin. Immunol. 144::105873.e3
    [Crossref] [Google Scholar]
  84. 84.
    Moxey PC, Trier JS. 1978.. Specialized cell types in the human fetal small intestine. . Anat. Rec. 191::26985
    [Crossref] [Google Scholar]
  85. 85.
    Trahair JF, Robinson PM. 1989.. Enterocyte ultrastructure and uptake of immunoglobulins in the small intestine of the neonatal lamb. . J. Anat. 166::10311
    [Google Scholar]
  86. 86.
    Trahair J, Robinson P. 1986.. The development of the ovine small intestine. . Anat. Rec. 214::294303
    [Crossref] [Google Scholar]
  87. 87.
    Sangild PT, Trahair JF, Loftager MK, Fowden AL. 1999.. Intestinal macromolecule absorption in the fetal pig after infusion of colostrum in utero. . Pediatr. Res. 45::595602
    [Crossref] [Google Scholar]
  88. 88.
    Skrzypek T, Valverde Piedra JL, Skrzypek H, Kazimierczak W, Biernat M, Zabielski R. 2007.. Gradual disappearance of vacuolated enterocytes in the small intestine of neonatal piglets. . J. Physiol. Pharmacol. 58:(3):8795
    [Google Scholar]
  89. 89.
    Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD. 2003.. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. . J. Immunol. 170::547582
    [Crossref] [Google Scholar]
  90. 90.
    McDonald KG, McDonough JS, Newberry RD. 2005.. Adaptive immune responses are dispensable for isolated lymphoid follicle formation: Antigen-naive, lymphotoxin-sufficient B lymphocytes drive the formation of mature isolated lymphoid follicles. . J. Immunol. 174::572028
    [Crossref] [Google Scholar]
  91. 91.
    Lorenz RG, Newberry RD. 2004.. Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. . Ann. N. Y. Acad. Sci. 1029::4457
    [Crossref] [Google Scholar]
  92. 92.
    Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, et al. 2008.. Requirement for lymphoid tissue–inducer cells in isolated follicle formation and T cell–independent immunoglobulin A generation in the gut. . Immunity 29::26171
    [Crossref] [Google Scholar]
  93. 93.
    Borghesi C, Taussig MJ, Nicoletti C. 1999.. Rapid appearance of M cells after microbial challenge is restricted at the periphery of the follicle-associated epithelium of Peyer's patch. . Lab. Investig. 79::1393401
    [Google Scholar]
  94. 94.
    Savidge TC, Smith MW, James PS, Aldred P. 1991.. Salmonella-induced M-cell formation in germ-free mouse Peyer's patch tissue. . Am. J. Pathol. 139::17784
    [Google Scholar]
  95. 95.
    Veenbergen S, van Berkel LA, du Pré MF, He J, Karrich JJ, et al. 2016.. Colonic tolerance develops in the iliac lymph nodes and can be established independent of CD103+ dendritic cells. . Mucosal Immunol. 9:(4):894906
    [Crossref] [Google Scholar]
  96. 96.
    Ferrier L, Mazelin L, Cenac N, Desreumaux P, Janin A, et al. 2003.. Stress-induced disruption of colonic epithelial barrier: role of interferon-gamma and myosin light chain kinase in mice. . Gastroenterology 125::795804
    [Crossref] [Google Scholar]
  97. 97.
    Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Coughlin PE, et al. 2017.. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. . Sci. Immunol. 2::eaao1314
    [Crossref] [Google Scholar]
  98. 98.
    Knoop KA, McDonald KG, Coughlin PE, Kulkarni DH, Gustafsson JK, et al. 2020.. Synchronization of mothers and offspring promotes tolerance and limits allergy. . JCI Insight 5::e137943
    [Crossref] [Google Scholar]
  99. 99.
    Knoop KA, McDonald KG, Hsieh CS, Tarr PI, Newberry RD. 2020.. Regulatory T cells developing peri-weaning are continually required to restrain Th2 systemic responses later in life. . Front. Immunol. 11::603059
    [Crossref] [Google Scholar]
  100. 100.
    Knoop KA, McDonald KG, Kulkarni DH, Newberry RD. 2016.. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. . Gut 65::11009
    [Crossref] [Google Scholar]
  101. 101.
    Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, et al. 2013.. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. . Science 342::44753
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-082523-090154
Loading
/content/journals/10.1146/annurev-immunol-082523-090154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error