1932

Abstract

Elite controllers are a heterogeneous group of people living with HIV who control viral replication without antiretroviral therapy. There is substantial evidence that at least some elite controllers are infected with replication-competent virus, thus they may serve as a model of a functional cure of HIV. The mechanisms responsible for virologic control have been actively studied. The most objective data support CD8+ T cell–based mechanisms of control, but other immune responses, mediated by antibodies and natural killer cells, may also play a role in controlling viral replication. In this article, we review the evidence for different mechanisms of immune control in these remarkable individuals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-083122-035233
2024-06-28
2025-03-24
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-083122-035233.html?itemId=/content/journals/10.1146/annurev-immunol-083122-035233&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, et al. 2008.. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. . J. Infect. Dis. 197::56371
    [Crossref] [Google Scholar]
  2. 2.
    Zaunders J, Dyer WB, Churchill M. 2011.. The Sydney Blood Bank Cohort: implications for viral fitness as a cause of elite control. . Curr. Opin. HIV AIDS 6::15156
    [Crossref] [Google Scholar]
  3. 3.
    Ali A, Ng HL, Blankson JN, Burton DR, Buckheit RW 3rd, et al. 2018.. Highly attenuated infection with a Vpr-deleted molecular clone of human immunodeficiency virus-1. . J. Infect. Dis. 218::144752
    [Crossref] [Google Scholar]
  4. 4.
    Casado C, Marrero-Hernández S, Márquez-Arce D, Pernas M, Marfil S, et al. 2018.. Viral characteristics associated with the clinical nonprogressor phenotype are inherited by viruses from a cluster of HIV-1 elite controllers. . mBio 9::e0233817
    [Crossref] [Google Scholar]
  5. 5.
    Woldemeskel BA, Kwaa AK, Blankson JN. 2020.. Viral reservoirs in elite controllers of HIV-1 infection: implications for HIV cure strategies. . eBioMedicine 62::103118
    [Crossref] [Google Scholar]
  6. 6.
    Sugawara S, Reeves RK, Jost S. 2022.. Learning to be elite: lessons from HIV-1 controllers and animal models on trained innate immunity and virus suppression. . Front. Immunol. 13::858383
    [Crossref] [Google Scholar]
  7. 7.
    Shi Y, Su J, Chen R, Wei W, Yuan Z, et al. 2022.. The role of innate immunity in natural elite controllers of HIV-1 infection. . Front. Immunol. 13::780922
    [Crossref] [Google Scholar]
  8. 8.
    Moris A, Pereira M, Chakrabarti L. 2019.. A role for antibodies in natural HIV control. . Curr. Opin. HIV AIDS 14::26572
    [Crossref] [Google Scholar]
  9. 9.
    Rutishauser RL, Trautmann L. 2022.. CD8+ T-cell responses in HIV controllers: potential implications for novel HIV remission strategies. . Curr. Opin. HIV AIDS 17::31524
    [Crossref] [Google Scholar]
  10. 10.
    Bernard NF, Kant S, Kiani Z, Tremblay C, Dupuy FP. 2022. Natural killer cells in antibody independent and antibody dependent HIV control. . Front. Immunol. 13::879124
    [Crossref] [Google Scholar]
  11. 11.
    Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, et al. 2007.. A whole-genome association study of major determinants for host control of HIV-1. . Science 317::94447
    [Crossref] [Google Scholar]
  12. 12.
    Int. HIV Controll. Study Pereyra F, Jia X, McLaren PJ, Telenti A, et al. 2010.. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. . Science 330::155157
    [Crossref] [Google Scholar]
  13. 13.
    Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, et al. 2000.. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. . PNAS 97::270914
    [Crossref] [Google Scholar]
  14. 14.
    Friedrich TC, Valentine LE, Yant LJ, Rakasz EG, Piaskowski SM, et al. 2007.. Subdominant CD8+ T-cell responses are involved in durable control of AIDS virus replication. . J. Virol. 81::346576
    [Crossref] [Google Scholar]
  15. 15.
    Pandrea I, Gaufin T, Gautam R, Kristoff J, Mandell D, et al. 2011.. Functional cure of SIVagm infection in rhesus macaques results in complete recovery of CD4+ T cells and is reverted by CD8+ cell depletion. . PLOS Pathog. 7::e1002170
    [Crossref] [Google Scholar]
  16. 16.
    Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, et al. 2006.. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. . Blood 107::478189
    [Crossref] [Google Scholar]
  17. 17.
    Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, et al. 2002.. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. . Nat. Immunol. 3::106168
    [Crossref] [Google Scholar]
  18. 18.
    Sáez-Cirión A, Lacabaratz C, Lambotte O, Versmisse P, Urrutia A, et al. 2007.. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. . PNAS 104::677681
    [Crossref] [Google Scholar]
  19. 19.
    Hersperger AR, Pereyra F, Nason M, Demers K, Sheth P, et al. 2010.. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. . PLOS Pathog. 6::e1000917
    [Crossref] [Google Scholar]
  20. 20.
    Migueles SA, Osborne CM, Royce C, Compton AA, Joshi RP, et al. 2008.. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. . Immunity 29::100921
    [Crossref] [Google Scholar]
  21. 21.
    Buckheit RW 3rd, Siliciano RF, Blankson JN. 2013.. Primary CD8+ T cells from elite suppressors effectively eliminate non-productively HIV-1 infected resting and activated CD4+ T cells. . Retrovirology 10::68
    [Crossref] [Google Scholar]
  22. 22.
    Graf EH, Pace MJ, Peterson BA, Lynch LJ, Chukwulebe SB, et al. 2013.. Correction: Gag-positive reservoir cells are susceptible to HIV-specific cytotoxic T lymphocyte mediated clearance in vitro and can be detected in vivo. . PLOS ONE 8:(9). https://doi.org/10.1371/annotation/3aa92c3d-b6dd-4c6e-8cee-9587ce80a9c9
    [Crossref] [Google Scholar]
  23. 23.
    Monel B, McKeon A, Lamothe-Molina P, Jani P, Boucau J, et al. 2019.. HIV controllers exhibit effective CD8+ T cell recognition of HIV-1-infected non-activated CD4+ T cells. . Cell Rep. 27::14253.e4
    [Crossref] [Google Scholar]
  24. 24.
    Chowdhury FZ, Ouyang Z, Buzon M, Walker BD, Lichterfeld M, et al. 2018.. Metabolic pathway activation distinguishes transcriptional signatures of CD8+ T cells from HIV-1 elite controllers. . AIDS 32::266977
    [Crossref] [Google Scholar]
  25. 25.
    Tarancon-Diez L, Rodríguez-Gallego E, Rull A, Peraire J, Viladés C, et al. 2019.. Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection. . eBioMedicine 42::8696
    [Crossref] [Google Scholar]
  26. 26.
    Angin M, Volant S, Passaes C, Lecuroux C, Monceaux V, et al. 2019.. Metabolic plasticity of HIV-specific CD8+ T cells is associated with enhanced antiviral potential and natural control of HIV-1 infection. . Nat. Metab. 1::70416
    [Crossref] [Google Scholar]
  27. 27.
    Loucif H, Dagenais-Lussier X, Beji C, Cassin L, Jrade H, et al. 2021.. Lipophagy confers a key metabolic advantage that ensures protective CD8A T-cell responses against HIV-1. . Autophagy 17::340823
    [Crossref] [Google Scholar]
  28. 28.
    Nguyen S, Deleage C, Darko S, Ransier A, Truong DP, et al. 2019.. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8+ T cells. . Sci. Transl. Med. 11:(523):eaax4077
    [Crossref] [Google Scholar]
  29. 29.
    Ding J, Ma L, Zhao J, Xie Y, Zhou J, et al. 2019.. An integrative genomic analysis of transcriptional profiles identifies characteristic genes and patterns in HIV-infected long-term non-progressors and elite controllers. . J. Transl. Med. 17::35
    [Crossref] [Google Scholar]
  30. 30.
    Hersperger AR, Martin JN, Shin LY, Sheth PM, Kovacs CM, et al. 2011.. Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. . Blood 117::3799808
    [Crossref] [Google Scholar]
  31. 31.
    Simonetta F, Hua S, Lécuroux C, Gérard S, Boufassa F, et al. 2014.. High eomesodermin expression among CD57+ CD8+ T cells identifies a CD8+ T cell subset associated with viral control during chronic human immunodeficiency virus infection. . J. Virol. 88::1186171
    [Crossref] [Google Scholar]
  32. 32.
    Wallace J, Narasipura SD, Sha BE, French AL, Al-Harthi L et al. 2020.. Canonical Wnts mediate CD8+ T cell noncytolytic anti-HIV-1 activity and correlate with HIV-1 clinical status. . J. Immunol. 205::204655
    [Crossref] [Google Scholar]
  33. 33.
    Rutishauser RL, Deguit CDT, Hiatt J, Blaeschke F, Roth TL, et al. 2021.. TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. . JCI Insight 6::e136648
    [Crossref] [Google Scholar]
  34. 34.
    Chun TW, Justement JS, Murray D, Kim CJ, Blazkova J, et al. 2013.. Effect of antiretroviral therapy on HIV reservoirs in elite controllers. . J. Infect. Dis. 208::144347
    [Crossref] [Google Scholar]
  35. 35.
    Sedaghat AR, Rastegar DA, O'Connell KA, Dinoso JB, Wilke CO, et al. 2009.. T cell dynamics and the response to HAART in a cohort of HIV-1-infected elite suppressors. . Clin. Infect. Dis. 49::176366
    [Crossref] [Google Scholar]
  36. 36.
    Bailey JR, Williams TM, Siliciano RF, Blankson JN. 2006.. Maintenance of viral suppression in HIV-1-infected HLA-B*57+ elite suppressors despite CTL escape mutations. . J. Exp. Med. 203::135769
    [Crossref] [Google Scholar]
  37. 37.
    Martinez-Picado J, Prado JG, Fry EE, Pfafferott K, Leslie A, et al. 2006.. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. . J. Virol. 80::361723
    [Crossref] [Google Scholar]
  38. 38.
    Miura T, Brockman MA, Schneidewind A, Lobritz M, Pereyra F, et al. 2009.. HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte recognition. . J. Virol. 83::274355 Erratum . 2009.. J. Virol. 83:(11):5961
    [Google Scholar]
  39. 39.
    Bailey JR, O'Connell K, Yang HC, Han Y, Xu J, et al. 2008.. Transmission of human immunodeficiency virus type 1 from a patient who developed AIDS to an elite suppressor. . J. Virol. 82::7395410
    [Crossref] [Google Scholar]
  40. 40.
    Pohlmeyer CW, Buckheit RW 3rd, Siliciano RF, Blankson JN. 2013.. CD8+ T cells from HLA-B*57 elite suppressors effectively suppress replication of HIV-1 escape mutants. . Retrovirology 10::152
    [Crossref] [Google Scholar]
  41. 41.
    Reuter MA, Del Rio Estrada PM, Buggert M, Petrovas C, Ferrando-Martinez S, et al. 2017.. HIV-specific CD8+ T cells exhibit reduced and differentially regulated cytolytic activity in lymphoid tissue. . Cell Rep. 21::345870
    [Crossref] [Google Scholar]
  42. 42.
    Buggert M, Nguyen S, Salgado-Montes de Oca G, Bengsch B, Darko S, et al. 2018.. Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue. . Sci. Immunol. 3::eaar4526
    [Crossref] [Google Scholar]
  43. 43.
    Migueles SA, Mendoza D, Zimmerman MG, Martins KM, Toulmin SA, et al. 2014.. CD8+ T-cell cytotoxic capacity associated with human immunodeficiency virus-1 control can be mediated through various epitopes and human leukocyte antigen types. . eBioMedicine 2::4658
    [Crossref] [Google Scholar]
  44. 44.
    Ndhlovu ZM, Proudfoot J, Cesa K, Alvino DM, McMullen A, et al. 2012.. Elite controllers with low to absent effector CD8+ T cell responses maintain highly functional, broadly directed central memory responses. . J. Virol. 86::695969
    [Crossref] [Google Scholar]
  45. 45.
    Walker-Sperling VE, Pohlmeyer CW, Veenhuis RT, May M, Luna KA, et al. 2017.. Factors associated with the control of viral replication and virologic breakthrough in a recently infected HIV-1 controller. . eBioMedicine 16::14149
    [Crossref] [Google Scholar]
  46. 46.
    Kazer SW, Aicher TP, Muema DM, Carroll SL, Ordovas-Montanes J, et al. 2020.. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. . Nat. Med. 26::51118
    [Crossref] [Google Scholar]
  47. 47.
    Martin MP, Gao X, Lee JH, Nelson GW, Detels R, et al. 2002.. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. . Nat. Genet. 31::42934
    [Crossref] [Google Scholar]
  48. 48.
    Martin MP, Qi Y, Gao X, Yamada E, Martin JN, et al. 2007.. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. . Nat. Genet. 39::73340
    [Crossref] [Google Scholar]
  49. 49.
    Martin MP, Naranbhai V, Shea PR, Qi Y, Ramsuran V, et al. 2018.. Killer cell immunoglobulin-like receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1. . J. Clin. Investig. 128::190312
    [Crossref] [Google Scholar]
  50. 50.
    Tomescu C, Duh FM, Hoh R, Viviani A, Harvill K, et al. 2012.. Impact of protective killer inhibitory receptor/human leukocyte antigen genotypes on natural killer cell and T-cell function in HIV-1-infected controllers. . AIDS 26::186978
    [Crossref] [Google Scholar]
  51. 51.
    Pohlmeyer CW, Gonzalez VD, Irrinki A, Ramirez RN, Li L, et al. 2019.. Identification of NK cell subpopulations that differentiate HIV-infected subject cohorts with diverse levels of virus control. . J. Virol. 93::e0179018
    [Crossref] [Google Scholar]
  52. 52.
    Marras F, Nicco E, Bozzano F, Di Biagio A, Dentone C, et al. 2013.. Natural killer cells in HIV controller patients express an activated effector phenotype and do not up-regulate NKp44 on IL-2 stimulation. . PNAS 110::1197075
    [Crossref] [Google Scholar]
  53. 53.
    George AF, Luo X, Neidleman J, Hoh R, Vohra P, et al. 2022.. Deep phenotypic analysis of blood and lymphoid T and NK cells from HIV+ controllers and ART-suppressed individuals. . Front. Immunol. 13::803417
    [Crossref] [Google Scholar]
  54. 54.
    O'Connell KA, Han Y, Williams TM, Siliciano RF, Blankson JN. 2009.. Role of natural killer cells in a cohort of elite suppressors: low frequency of the protective KIR3DS1 allele and limited inhibition of human immunodeficiency virus type 1 replication in vitro. . J. Virol. 83::502834
    [Crossref] [Google Scholar]
  55. 55.
    Kwaa AKR, Talana CAG, Blankson JN. 2019.. Interferon alpha enhances NK cell function and the suppressive capacity of HIV-specific CD8+ T cells. . J. Virol. 93::e0154118
    [Crossref] [Google Scholar]
  56. 56.
    Zaunders JJ, Ip S, Munier ML, Kaufmann DE, Suzuki K, et al. 2006.. Infection of CD127+ (interleukin-7 receptor+) CD4+ cells and overexpression of CTLA-4 are linked to loss of antigen-specific CD4 T cells during primary human immunodeficiency virus type 1 infection. . J. Virol. 80::1016272
    [Crossref] [Google Scholar]
  57. 57.
    Chase AJ, Yang HC, Zhang H, Blankson JN, Siliciano RF. 2008.. Preservation of FoxP3+ regulatory T cells in the peripheral blood of human immunodeficiency virus type 1-infected elite suppressors correlates with low CD4+ T-cell activation. . J. Virol. 82::830715
    [Crossref] [Google Scholar]
  58. 58.
    Angin M, Kwon DS, Streeck H, Wen F, King M, et al. 2012.. Preserved function of regulatory T cells in chronic HIV-1 infection despite decreased numbers in blood and tissue. . J. Infect. Dis. 2205::1495500
    [Crossref] [Google Scholar]
  59. 59.
    Owen RE, Heitman JW, Hirschkorn DF, Lanteri MC, Biswas HH, et al. 2010.. HIV+ elite controllers have low HIV-specific T-cell activation yet maintain strong, polyfunctional T-cell responses. . AIDS 24::1095105
    [Crossref] [Google Scholar]
  60. 60.
    Schulze Zur Wiesch J, Thomssen A, Hartjen P, Tóth I, Lehmann C, et al. 2011.. Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+ T regulatory cells correlates with progressive disease. . J. Virol. 85::128797
    [Crossref] [Google Scholar]
  61. 61.
    Caetano DG, de Paula HHS, Bello G, Hoagland B, Villela LM, et al. 2020.. HIV-1 elite controllers present a high frequency of activated regulatory T and Th17 cells. . PLOS ONE 15::e0228745
    [Crossref] [Google Scholar]
  62. 62.
    Gaardbo JC, Ronit A, Hartling HJ, Gjerdrum LM, Springborg K, et al. 2014.. Immunoregulatory T cells may be involved in preserving CD4 T cell counts in HIV-infected long-term nonprogressors and controllers. . J. Acquir. Immune Defic. Syndr. 65::1018
    [Crossref] [Google Scholar]
  63. 63.
    Jenabian MA, Patel M, Kema I, Kanagaratham C, Radzioch D, et al. 2013.. Distinct tryptophan catabolism and Th17/Treg balance in HIV progressors and elite controllers. . PLOS ONE 8::e78146
    [Crossref] [Google Scholar]
  64. 64.
    Brandt L, Benfield T, Mens H, Clausen LN, Katzenstein TL, et al. 2011.. Low level of regulatory T cells and maintenance of balance between regulatory T cells and TH17 cells in HIV-1-infected elite controllers. . J. Acquir. Immune Defic. Syndr. 57::1018
    [Crossref] [Google Scholar]
  65. 65.
    Li D, Chen J, Jia M, Hong K, Ruan Y, et al. 2011.. Loss of balance between T helper type 17 and regulatory T cells in chronic human immunodeficiency virus infection. . Clin. Exp. Immunol. 165::36371
    [Crossref] [Google Scholar]
  66. 66.
    Hartigan-O'Connor DJ, Hirao LA, McCune JM, Dandekar S. 2011.. Th17 cells and regulatory T cells in elite control over HIV and SIV. . Curr. Opin. HIV AIDS 6::22127
    [Crossref] [Google Scholar]
  67. 67.
    Elahi S, Dinges WL, Lejarcegui N, Laing KJ, Collier AC, et al. 2011.. Protective HIV-specific CD8+ T cells evade Treg cell suppression. . Nat. Med. 17::98995
    [Crossref] [Google Scholar]
  68. 68.
    Claireaux M, Galperin M, Benati D, Nouël A, Mukhopadhyay M, et al. 2018.. a high frequency of HIV-specific circulating follicular helper T cells is associated with preserved memory B cell responses in HIV controllers. . mBio 9::e0031718
    [Crossref] [Google Scholar]
  69. 69.
    Buranapraditkun S, Pissani F, Teigler JE, Schultz BT, Alter G, et al. 2017.. Preservation of peripheral T follicular helper cell function in HIV controllers. . J. Virol. 91::e0049717
    [Crossref] [Google Scholar]
  70. 70.
    Emu B, Sinclair E, Favre D, Moretto WJ, Hsue P, et al. 2005.. Phenotypic, functional, and kinetic parameters associated with apparent T-cell control of human immunodeficiency virus replication in individuals with and without antiretroviral treatment. . J. Virol. 79::1416978
    [Crossref] [Google Scholar]
  71. 71.
    Ferre AL, Hunt PW, McConnell DH, Morris MM, Garcia JC, et al. 2010.. HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong, polyfunctional mucosal CD4+ T-cell responses. . J. Virol. 84::1102029
    [Crossref] [Google Scholar]
  72. 72.
    Vingert B, Perez-Patrigeon S, Jeannin P, Lambotte O, Boufassa F, et al. 2010.. HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity. . PLOS Pathog. 6::e1000780
    [Crossref] [Google Scholar]
  73. 73.
    Benati D, Galperin M, Lambotte O, Gras S, Lim A, et al. 2016.. Public T cell receptors confer high-avidity CD4 responses to HIV controllers. . J. Clin. Investig. 126::2093108
    [Crossref] [Google Scholar]
  74. 74.
    Soghoian DZ, Jessen H, Flanders M, Sierra-Davidson K, Cutler S, et al. 2012.. HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome. . Sci. Transl. Med. 4:(123):123ra25
    [Crossref] [Google Scholar]
  75. 75.
    Johnson S, Eller M, Teigler JE, Maloveste SM, Schultz BT, et al. 2015.. Cooperativity of HIV-specific cytolytic CD4 T cells and CD8 T cells in control of HIV viremia. . J. Virol. 89::7494505
    [Crossref] [Google Scholar]
  76. 76.
    Phetsouphanh C, Aldridge D, Marchi E, Munier CML, Meyerowitz J, et al. 2019.. Maintenance of functional CD57+ cytolytic CD4+ T cells in HIV+ elite controllers. . Front. Immunol. 10::1844
    [Crossref] [Google Scholar]
  77. 77.
    Walker-Sperling VE, Buckheit RW 3rd, Blankson JN. 2014.. Comparative analysis of the capacity of elite suppressor CD4+ and CD8+ T cells to inhibit HIV-1 replication in monocyte-derived macrophages. . J. Virol. 88::978998
    [Crossref] [Google Scholar]
  78. 78.
    Buggert M, Nguyen S, McLane LM, Steblyanko M, Anikeeva N, et al. 2018.. Limited immune surveillance in lymphoid tissue by cytolytic CD4+ T cells during health and HIV disease. . PLOS Pathog. 14::e1006973
    [Crossref] [Google Scholar]
  79. 79.
    Claireaux M, Robinot R, Kervevan J, Patgaonkar M, Staropoli I, et al. 2022.. Low CCR5 expression protects HIV-specific CD4+ T cells of elite controllers from viral entry. . Nat. Commun. 13::521
    [Crossref] [Google Scholar]
  80. 80.
    Martin-Gayo E, Gao C, Calvet-Mirabent M, Ouyang Z, Lichterfeld M, et al. 2022.. Cooperation between cGAS and RIG-I sensing pathways enables improved innate recognition of HIV-1 by myeloid dendritic cells in elite controllers. . Front. Immunol. 13::1017164
    [Crossref] [Google Scholar]
  81. 81.
    Martin-Gayo E, Buzon MJ, Ouyang Z, Hickman T, Cronin J, et al. 2015.. Potent cell-intrinsic immune responses in dendritic cells facilitate HIV-1-specific T cell immunity in HIV-1 elite controllers. . PLOS Pathog. 11::e1004930
    [Crossref] [Google Scholar]
  82. 82.
    Hartana CA, Rassadkina Y, Gao C, Martin-Gayo E, Walker BD, et al. 2021.. Long noncoding RNA MIR4435–2HG enhances metabolic function of myeloid dendritic cells from HIV-1 elite controllers. . J. Clin. Investig. 131::e146136
    [Crossref] [Google Scholar]
  83. 83.
    Coindre S, Tchitchek N, Alaoui L, Vaslin B, Bourgeois C, et al. 2019.. Mass cytometry analysis reveals complex cell-state modifications of blood myeloid cells during HIV infection. . Front. Immunol. 10::2677
    [Crossref] [Google Scholar]
  84. 84.
    Buckner CM, Kardava L, Zhang X, Gittens K, Justement JS, et al. 2016.. Maintenance of HIV-specific memory B-cell responses in elite controllers despite low viral burdens. . J. Infect. Dis. 214::39098
    [Crossref] [Google Scholar]
  85. 85.
    Rouers A, Klingler J, Su B, Samri A, Laumond G, et al. 2017.. HIV-specific B cell frequency correlates with neutralization breadth in patients naturally controlling HIV-infection. . eBioMedicine 21::15869
    [Crossref] [Google Scholar]
  86. 86.
    Guan Y, Sajadi MM, Kamin-Lewis R, Fouts TR, Dimitrov A, et al. 2009.. Discordant memory B cell and circulating anti-Env antibody responses in HIV-1 infection. . PNAS 106::395257
    [Crossref] [Google Scholar]
  87. 87.
    Bonsignori M, Liao HX, Gao F, Williams WB, Alam SM, et al. 2017.. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. . Immunol. Rev. 27::14560
    [Crossref] [Google Scholar]
  88. 88.
    Bailey JR, Lassen KG, Yang HC, Quinn TC, Ray SC, et al. 2006.. Neutralizing antibodies do not mediate suppression of human immunodeficiency virus type 1 in elite suppressors or selection of plasma virus variants in patients on highly active antiretroviral therapy. . J. Virol. 80::475870
    [Crossref] [Google Scholar]
  89. 89.
    Mahalanabis M, Jayaraman P, Miura T, Pereyra F, Chester EM, et al. 2009.. Continuous viral escape and selection by autologous neutralizing antibodies in drug-naive human immunodeficiency virus controllers. . J. Virol. 83::66272
    [Crossref] [Google Scholar]
  90. 90.
    Lambotte O, Ferrari G, Moog C, Yates NL, Liao HX, et al. 2009.. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. . AIDS 23::897906
    [Crossref] [Google Scholar]
  91. 91.
    Doria-Rose NA, Klein RM, Daniels MG, O'Dell S, Nason M, et al. 2010.. Breadth of human immunodeficiency virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables. . J. Virol. 84::163136
    [Crossref] [Google Scholar]
  92. 92.
    Sajadi MM, Guan Y, DeVico AL, Seaman MS, Hossain M, et al. 2011.. Correlation between circulating HIV-1 RNA and broad HIV-1 neutralizing antibody activity. . J. Acquir. Immune Defic. Syndr. 57::915
    [Crossref] [Google Scholar]
  93. 93.
    Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K, et al. 2009.. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. . Nature 458::63640
    [Crossref] [Google Scholar]
  94. 94.
    González N, McKee K, Lynch RM, Georgiev IS, Jimenez L, et al. 2018.. Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors. . PLOS ONE 13::e0193773
    [Crossref] [Google Scholar]
  95. 95.
    Lorin V, Fernández I, Masse-Ranson G, Bouvin-Pley M, Molinos-Albert LM, et al. 2022.. Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller. . J. Exp. Med. 219::e20212045
    [Crossref] [Google Scholar]
  96. 96.
    Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, et al. 2017.. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. . Sci. Transl. Med. 9::eaal2144
    [Crossref] [Google Scholar]
  97. 97.
    Kammers K, Chen A, Monaco DR, Hudelson SE, Grant-McAuley W, et al. 2021.. HIV antibody profiles in HIV controllers and persons with treatment-induced viral suppression. . Front. Immunol. 12::740395
    [Crossref] [Google Scholar]
  98. 98.
    Lambotte O, Pollara J, Boufassa F, Moog C, Venet A, et al. 2013.. High antibody-dependent cellular cytotoxicity responses are correlated with strong CD8 T cell viral suppressive activity but not with B57 status in HIV-1 elite controllers. . PLOS ONE 8::e74855
    [Crossref] [Google Scholar]
  99. 99.
    Bendenoun M, Samri A, Avettand-Fènoël V, Cardinaud S, Descours B, et al. 2018.. what is the most important for elite control: genetic background of patient, genetic background of partner, both or neither? Description of complete natural history within a couple of MSM. . eBioMedicine 27::5160
    [Crossref] [Google Scholar]
  100. 100.
    Madhavi V, Wines BD, Amin J, Emery SENCORE1 Study Group et al. 2017.. HIV-1 Env- and Vpu-specific antibody-dependent cellular cytotoxicity responses associated with elite control of HIV. . J. Virol. 91::e0070017
    [Crossref] [Google Scholar]
  101. 101.
    Johansson SE, Rollman E, Chung AW, Center RJ, Hejdeman B, et al. 2011.. NK cell function and antibodies mediating ADCC in HIV-1-infected viremic and controller patients. . Viral Immunol. 24::35968
    [Crossref] [Google Scholar]
  102. 102.
    Smalls-Mantey A, Doria-Rose N, Klein R, Patamawenu A, Migueles SA, et al. 2012.. Antibody-dependent cellular cytotoxicity against primary HIV-infected CD4+ T cells is directly associated with the magnitude of surface IgG binding. . J. Virol. 86::867280
    [Crossref] [Google Scholar]
  103. 103.
    Marras F, Casabianca A, Bozzano F, Ascierto ML, Orlandi C, et al. 2017.. Control of the HIV-1 DNA reservoir is associated in vivo and in vitro with NKp46/NKp30 (CD335 CD337) inducibility and interferon gamma production by transcriptionally unique NK cells. . J. Virol. 91::e0064717
    [Crossref] [Google Scholar]
  104. 104.
    Alsahafi N, Richard J, Prévost J, Coutu M, Brassard N, et al. 2017.. Impaired downregulation of NKG2D ligands by Nef proteins from elite controllers sensitizes HIV-1-infected cells to antibody-dependent cellular cytotoxicity. . J. Virol. 91::e0010917
    [Crossref] [Google Scholar]
  105. 105.
    Ackerman ME, Mikhailova A, Brown EP, Dowell KG, Walker BD, et al. 2016.. Polyfunctional HIV-specific antibody responses are associated with spontaneous HIV control. . PLOS Pathog. 12::e1005315
    [Crossref] [Google Scholar]
  106. 106.
    Kant S, Zhang N, Barbé A, Routy JP, Tremblay C, et al. 2020.. Polyfunctional Fc dependent activity of antibodies to native trimeric envelope in HIV elite controllers. . Front. Immunol. 11::583820
    [Crossref] [Google Scholar]
  107. 107.
    Sadanand S, Das J, Chung AW, Schoen MK, Lane S, et al. 2018.. Temporal variation in HIV-specific IgG subclass antibodies during acute infection differentiates spontaneous controllers from chronic progressors. . AIDS 32::44350
    [Crossref] [Google Scholar]
  108. 108.
    Bailey JR, Zhang H, Wegweiser BW, Yang HC, Herrera L, et al. 2007.. Evolution of HIV-1 in an HLA-B*57-positive patient during virologic escape. . J. Infect. Dis. 196::5055
    [Crossref] [Google Scholar]
  109. 109.
    Vieira VA, Adland E, Grayson NE, Csala A, Richards F, et al. 2022.. Two distinct mechanisms leading to loss of virological control in the rare group of antiretroviral therapy-naive, transiently aviremic children living with HIV. . J. Virol. 96::e0153521
    [Crossref] [Google Scholar]
  110. 110.
    Bailey JR, Brennan TP, O'Connell KA, Siliciano RF, Blankson JN. 2009.. Evidence of CD8+ T-cell-mediated selective pressure on human immunodeficiency virus type 1 nef in HLA-B*57+ elite suppressors. . J. Virol. 83::8897
    [Crossref] [Google Scholar]
  111. 111.
    Brockman MA, Brumme ZL, Brumme CJ, Miura T, Sela J, et al. 2010.. Early selection in Gag by protective HLA alleles contributes to reduced HIV-1 replication capacity that may be largely compensated for in chronic infection. . J. Virol. 84::1193749
    [Crossref] [Google Scholar]
  112. 112.
    Crawford H, Prado JG, Leslie A, Hué S, Honeyborne I, et al. 2007.. Compensatory mutation partially restores fitness and delays reversion of escape mutation within the immunodominant HLA-B*5703-restricted Gag epitope in chronic human immunodeficiency virus type 1 infection. . J. Virol. 81::834651
    [Crossref] [Google Scholar]
  113. 113.
    Goonetilleke N, Liu MK, Salazar-Gonzalez JF, Ferrari G, Giorgi E, et al. 2009.. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. . J. Exp. Med. 206::125372
    [Crossref] [Google Scholar]
  114. 114.
    Durand CM, O'Connell KA, Apuzzo LG, Langan SJ, Imteyaz H, et al. 2010.. HIV-1 Gag evolution in recently infected human leukocyte antigen-B*57 patients with low-level viremia. . AIDS 24::24058
    [Crossref] [Google Scholar]
  115. 115.
    Collins DR, Urbach JM, Racenet ZJ, Arshad U, Power KA, et al. 2021.. Functional impairment of HIV-specific CD8+ T cells precedes aborted spontaneous control of viremia. . Immunity 54::237284.e7
    [Crossref] [Google Scholar]
  116. 116.
    Rodríguez-Gallego E, Tarancón-Diez L, García F, Del Romero J, Benito JM, et al. 2019.. Proteomic profile associated with loss of spontaneous human immunodeficiency virus type 1 elite control. . J. Infect. Dis. 219::86776
    [Crossref] [Google Scholar]
  117. 117.
    Sepúlveda-Crespo D, Rallón N, Muñoz-Gómez MJ, Brochado-Kith O, Jiménez JL, et al. 2022.. High plasma sTNF-R1 level is related to loss of natural HIV control in long-term elite controllers. . Front. Cell Infect. Microbiol. 12::858872
    [Crossref] [Google Scholar]
  118. 118.
    Malo AI, Peraire J, Ruiz-Mateos E, Masip J, Amigó N, et al. 2021.. Evolution of serum acute-phase glycoproteins assessed by 1H-NMR in HIV elite controllers. . Front. Immunol. 12::730691
    [Crossref] [Google Scholar]
  119. 119.
    Pernas M, Tarancón-Diez L, Rodríguez-Gallego E, Gómez J, Prado JG, et al. 2018.. Factors leading to the loss of natural elite control of HIV-1 infection. . J. Virol. 92::e0180517
    [Crossref] [Google Scholar]
  120. 120.
    Rosás-Umbert M, Llano A, Bellido R, Olvera A, Ruiz-Riol M, et al. 2019.. Mechanisms of abrupt loss of virus control in a cohort of previous HIV controllers. . J. Virol. 93::e0143618
    [Crossref] [Google Scholar]
  121. 121.
    Migueles SA, Chairez C, Lin S, Gavil NV, Rosenthal DM, et al. 2019.. Adoptive lymphocyte transfer to an HIV-infected progressor from an elite controller. . JCI Insight 4::e130664
    [Crossref] [Google Scholar]
  122. 122.
    Mothe B, Brander C. 2018.. HIV T-cell vaccines. . Adv. Exp. Med. Biol. 1075::3151
    [Crossref] [Google Scholar]
  123. 123.
    Picker LJ, Lifson JD, Gale M Jr., Hansen SG, Früh K. 2023.. Programming cytomegalovirus as an HIV vaccine. . Trends Immunol. 44::287304
    [Crossref] [Google Scholar]
  124. 124.
    Veenhuis RT, Garliss CC, Bailey JR, Blankson JN. 2021.. CD8 effector T cells function synergistically with broadly neutralizing antibodies to enhance suppression of HIV infection. . Front. Immunol. 12::708355
    [Crossref] [Google Scholar]
  125. 125.
    May ME, Pohlmeyer CW, Kwaa AK, Mankowski MC, Bailey JR, et al. 2020.. Combined effects of HLA-B*57/5801 elite suppressor CD8+ T cells and NK cells on HIV-1 replication. . Front. Cell Infect. Microbiol. 10::113
    [Crossref] [Google Scholar]
  126. 126.
    Nishimura Y, Gautam R, Chun TW, Sadjadpour R, Foulds KE, et al. 2017.. Early antibody therapy can induce long-lasting immunity to SHIV. . Nature 543::55963
    [Crossref] [Google Scholar]
  127. 127.
    Goulder P, Deeks SG. 2018.. HIV control: Is getting there the same as staying there?. PLOS Pathog. 14::e1007222
    [Crossref] [Google Scholar]
  128. 128.
    Li JZ, Blankson JN. 2021.. How elite controllers and posttreatment controllers inform our search for an HIV-1 cure. . J. Clin. Investig. 131::e149414
    [Crossref] [Google Scholar]
  129. 129.
    Sáez-Cirión A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, et al. 2013.. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. . PLOS Pathog. 9::e1003211
    [Crossref] [Google Scholar]
  130. 130.
    Veenhuis RT, Kwaa AK, Garliss CC, Latanich R, Salgado M, et al. 2018.. Long-term remission despite clonal expansion of replication-competent HIV-1 isolates. . JCI Insight 3::e122795
    [Crossref] [Google Scholar]
  131. 131.
    Blazkova J, Gao F, Marichannegowda MH, Justement JS, Shi V, et al. 2021.. Distinct mechanisms of long-term virologic control in two HIV-infected individuals after treatment interruption of anti-retroviral therapy. . Nat. Med. 27::189398
    [Crossref] [Google Scholar]
  132. 132.
    Bertagnolli LN, Varriale J, Sweet S, Brockhurst J, Simonetti FR, et al. 2020.. Autologous IgG antibodies block outgrowth of a substantial but variable fraction of viruses in the latent reservoir for HIV-1. . PNAS 117::3206677
    [Crossref] [Google Scholar]
  133. 133.
    Esmaeilzadeh E, Etemad B, Lavine CL, Garneau L, Li Y, et al. 2023.. Autologous neutralizing antibodies increase with early antiretroviral therapy and shape HIV rebound after treatment interruption. . Sci. Transl. Med. 15::eabq4490
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-083122-035233
Loading
/content/journals/10.1146/annurev-immunol-083122-035233
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error