1932

Abstract

Effective bidirectional communication between the innate and adaptive immune systems is crucial for tissue homeostasis and protective immunity against infections. The innate immune system is responsible for the early sensing of and initial response to threats, including microbial ligands, toxins, and tissue damage. Pathogen-related information, detected primarily by the innate immune system via dendritic cells, is relayed to adaptive immune cells, leading to the priming and differentiation of naive T cells into effector and memory lineages. Memory T cells that persist long after pathogen clearance are integral for durable protective immunity. In addition to rapidly responding to reinfections, memory T cells also directly instruct the interacting myeloid cells to induce innate inflammation, which resembles microbial inflammation. As such, memory T cells act as newly emerging activators of the innate immune system and function independently of direct microbial recognition. While T cell–mediated activation of the innate immune system likely evolved as a protective mechanism to combat reinfections by virulent pathogens, the detrimental outcomes of this mechanism manifest in the forms of autoimmunity and other T cell–driven pathologies. Here, we review the complexities and layers of regulation at the interface between the innate and adaptive immune systems to highlight the implications of adaptive instruction of innate immunity in health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-083122-040624
2025-04-25
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-083122-040624.html?itemId=/content/journals/10.1146/annurev-immunol-083122-040624&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Janeway CA Jr., Medzhitov R. 2002.. Innate immune recognition. . Annu. Rev. Immunol. 20::197216
    [Crossref] [Google Scholar]
  2. 2.
    Janeway CA Jr. 1989.. Approaching the asymptote? Evolution and revolution in immunology. . Cold Spring Harb. Symp. Quant. Biol. 54:(Part 1):113
    [Crossref] [Google Scholar]
  3. 3.
    Akira S, Uematsu S, Takeuchi O. 2006.. Pathogen recognition and innate immunity. . Cell 124::783801
    [Crossref] [Google Scholar]
  4. 4.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. 1997.. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. . Nature 388::39497
    [Crossref] [Google Scholar]
  5. 5.
    Palm NW, Medzhitov R. 2009.. Pattern recognition receptors and control of adaptive immunity. . Immunol. Rev. 227::22133
    [Crossref] [Google Scholar]
  6. 6.
    Iwasaki A, Medzhitov R. 2010.. Regulation of adaptive immunity by the innate immune system. . Science 327::29195
    [Crossref] [Google Scholar]
  7. 7.
    Iwasaki A, Medzhitov R. 2015.. Control of adaptive immunity by the innate immune system. . Nat. Immunol. 16::34353
    [Crossref] [Google Scholar]
  8. 8.
    Carroll SL, Pasare C, Barton GM. 2024.. Control of adaptive immunity by pattern recognition receptors. . Immunity 57::63248
    [Crossref] [Google Scholar]
  9. 9.
    Lenschow DJ, Walunas TL, Bluestone JA. 1996.. CD28/B7 system of T cell costimulation. . Annu. Rev. Immunol. 14::23358
    [Crossref] [Google Scholar]
  10. 10.
    Inaba K, Metlay JP, Crowley MT, Steinman RM. 1990.. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. . J. Exp. Med. 172::63140
    [Crossref] [Google Scholar]
  11. 11.
    Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, et al. 1999.. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. . J. Immunol. 162::325662
    [Crossref] [Google Scholar]
  12. 12.
    London CA, Lodge MP, Abbas AK. 2000.. Functional responses and costimulator dependence of memory CD4+ T cells. . J. Immunol. 164::26572
    [Crossref] [Google Scholar]
  13. 13.
    Croft M, Bradley LM, Swain SL. 1994.. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. . J. Immunol. 152::267585
    [Crossref] [Google Scholar]
  14. 14.
    Li H, Matte-Martone C, Tan HS, Venkatesan S, McNiff J, et al. 2011.. Graft-versus-host disease is independent of innate signaling pathways triggered by pathogens in host hematopoietic cells. . J. Immunol. 186::23041
    [Crossref] [Google Scholar]
  15. 15.
    McDaniel MM, Meibers HE, Pasare C. 2021.. Innate control of adaptive immunity and adaptive instruction of innate immunity: bi-directional flow of information. . Curr. Opin. Immunol. 73::2533
    [Crossref] [Google Scholar]
  16. 16.
    Si Y, Wen Y, Chen J, Pompano RR, Han H, et al. 2018.. MyD88 in antigen-presenting cells is not required for CD4+ T-cell responses during peptide nanofiber vaccination. . MedChemComm 9::13848
    [Crossref] [Google Scholar]
  17. 17.
    Pasare C, Medzhitov R. 2004.. Toll-dependent control mechanisms of CD4 T cell activation. . Immunity 21::73341
    [Crossref] [Google Scholar]
  18. 18.
    Chandok MR, Okoye FI, Ndejembi MP, Farber DL. 2007.. A biochemical signature for rapid recall of memory CD4 T cells. . J. Immunol. 179::368998
    [Crossref] [Google Scholar]
  19. 19.
    Ndejembi MP, Teijaro JR, Patke DS, Bingaman AW, Chandok MR, et al. 2006.. Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway. . J. Immunol. 177::7698706
    [Crossref] [Google Scholar]
  20. 20.
    Fuse S, Zhang W, Usherwood EJ. 2008.. Control of memory CD8+ T cell differentiation by CD80/CD86-CD28 costimulation and restoration by IL-2 during the recall response. . J. Immunol. 180::114857
    [Crossref] [Google Scholar]
  21. 21.
    Strutt TM, McKinstry KK, Kuang Y, Finn CM, Hwang JH, et al. 2016.. Direct IL-6 signals maximize protective secondary CD4 T cell responses against influenza. . J. Immunol. 197::326070
    [Crossref] [Google Scholar]
  22. 22.
    Jain A, Song R, Wakeland EK, Pasare C. 2018.. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. . Nat. Commun. 9::3185
    [Crossref] [Google Scholar]
  23. 23.
    Strutt TM, McKinstry KK, Swain SL. 2011.. Control of innate immunity by memory CD4 T cells. . In Crossroads between Innate and Adaptive Immunity III, ed. B Pulendran, PD Katsikis, SP Schoenberger , pp. 5768. Adv. Exp. Med. Biol. 780 . New York:: Springer
    [Google Scholar]
  24. 24.
    McDaniel MM, Chawla AS, Jain A, Meibers HE, Saha I, et al. 2022.. Effector memory CD4+ T cells induce damaging innate inflammation and autoimmune pathology by engaging CD40 and TNFR on myeloid cells. . Sci. Immunol. 7::eabk0182
    [Crossref] [Google Scholar]
  25. 25.
    Meibers HE, Warrick KA, VonHandorf A, Vallez CN, Kawarizadeh K, et al. 2023.. Effector memory T cells induce innate inflammation by triggering DNA damage and a non-canonical STING pathway in dendritic cells. . Cell Rep. 42::113180
    [Crossref] [Google Scholar]
  26. 26.
    Swain SL, McKinstry KK, Strutt TM. 2012.. Expanding roles for CD4+ T cells in immunity to viruses. . Nat. Rev. Immunol. 12::13648
    [Crossref] [Google Scholar]
  27. 27.
    Strutt TM, McKinstry KK, Dibble JP, Winchell C, Kuang Y, et al. 2010.. Memory CD4+ T cells induce innate responses independently of pathogen. . Nat. Med. 16::55864
    [Crossref] [Google Scholar]
  28. 28.
    Jain A, Irizarry-Caro RA, McDaniel MM, Chawla AS, Carroll KR, et al. 2020.. T cells instruct myeloid cells to produce inflammasome-independent IL-1β and cause autoimmunity. . Nat. Immunol. 21::6574
    [Crossref] [Google Scholar]
  29. 29.
    Martinon F, Mayor A, Tschopp J. 2009.. The inflammasomes: guardians of the body. . Annu. Rev. Immunol. 27::22965
    [Crossref] [Google Scholar]
  30. 30.
    Wu J, Chen ZJ. 2014.. Innate immune sensing and signaling of cytosolic nucleic acids. . Annu. Rev. Immunol. 32::46188
    [Crossref] [Google Scholar]
  31. 31.
    Barbalat R, Ewald SE, Mouchess ML, Barton GM. 2011.. Nucleic acid recognition by the innate immune system. . Annu. Rev. Immunol. 29::185214
    [Crossref] [Google Scholar]
  32. 32.
    Geijtenbeek TBH, van Vliet SJ, Engering A, ’ t Hart BA, van Kooyk Y. 2004.. Self- and nonself-recognition by C-type lectins on dendritic cells. . Annu. Rev. Immunol. 22::3354
    [Crossref] [Google Scholar]
  33. 33.
    Takeda K, Kaisho T, Akira S. 2003.. Toll-like receptors. . Annu. Rev. Immunol. 21::33576
    [Crossref] [Google Scholar]
  34. 34.
    Brubaker SW, Bonham KS, Zanoni I, Kagan JC. 2015.. Innate immune pattern recognition: a cell biological perspective. . Annu. Rev. Immunol. 33::25790
    [Crossref] [Google Scholar]
  35. 35.
    Jain A, Pasare C. 2017.. Innate control of adaptive immunity: beyond the three-signal paradigm. . J. Immunol. 198::3791800
    [Crossref] [Google Scholar]
  36. 36.
    Foster SL, Hargreaves DC, Medzhitov R. 2007.. Gene-specific control of inflammation by TLR-induced chromatin modifications. . Nature 447::97278
    [Crossref] [Google Scholar]
  37. 37.
    Celli J, Tsolis RM. 2015.. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?. Nat. Rev. Microbiol. 13::7182
    [Crossref] [Google Scholar]
  38. 38.
    Janssens S, Pulendran B, Lambrecht BN. 2014.. Emerging functions of the unfolded protein response in immunity. . Nat. Immunol. 15::91019
    [Crossref] [Google Scholar]
  39. 39.
    Charbonneau ME, Passalacqua KD, Hagen SE, Showalter HD, Wobus CE, O'Riordan MXD. 2019.. Perturbation of ubiquitin homeostasis promotes macrophage oxidative defenses. . Sci. Rep. 9::10245
    [Crossref] [Google Scholar]
  40. 40.
    Pulendran B. 2015.. The varieties of immunological experience: of pathogens, stress, and dendritic cells. . Annu. Rev. Immunol. 33::563606
    [Crossref] [Google Scholar]
  41. 41.
    Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, et al. 2018.. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. . Nature 556::11317
    [Crossref] [Google Scholar]
  42. 42.
    Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, et al. 2019.. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. . Immunity 50::43245.e7
    [Crossref] [Google Scholar]
  43. 43.
    Trindade BC, Chen GY. 2020.. NOD1 and NOD2 in inflammatory and infectious diseases. . Immunol. Rev. 297::13961
    [Crossref] [Google Scholar]
  44. 44.
    Tan X, Sun L, Chen J, Chen ZJ. 2018.. Detection of microbial infections through innate immune sensing of nucleic acids. . Annu. Rev. Microbiol. 72::44778
    [Crossref] [Google Scholar]
  45. 45.
    Tamura T, Yanai H, Savitsky D, Taniguchi T. 2008.. The IRF family transcription factors in immunity and oncogenesis. . Annu. Rev. Immunol. 26::53584
    [Crossref] [Google Scholar]
  46. 46.
    Sha WC, Liou HC, Tuomanen EI, Baltimore D. 1995.. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. . Cell 80::32130
    [Crossref] [Google Scholar]
  47. 47.
    Schroder K, Tschopp J. 2010.. The inflammasomes. . Cell 140::82132
    [Crossref] [Google Scholar]
  48. 48.
    Broz P, Dixit VM. 2016.. Inflammasomes: mechanism of assembly, regulation and signalling. . Nat. Rev. Immunol. 16::40720
    [Crossref] [Google Scholar]
  49. 49.
    Martinon F, Burns K, Tschopp J. 2002.. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. . Mol. Cell 10::41726
    [Crossref] [Google Scholar]
  50. 50.
    McDaniel MM, Lara HI, von Moltke J. 2023.. Initiation of type 2 immunity at barrier surfaces. . Mucosal Immunol. 16::8697
    [Crossref] [Google Scholar]
  51. 51.
    Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, et al. 2007.. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. . Annu. Rev. Immunol. 25::193219
    [Crossref] [Google Scholar]
  52. 52.
    Dong C. 2021.. Cytokine regulation and function in T cells. . Annu. Rev. Immunol. 39::5176
    [Crossref] [Google Scholar]
  53. 53.
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, et al. 2005.. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. . Immunity 23::47990
    [Crossref] [Google Scholar]
  54. 54.
    Kitajima M, Lee HC, Nakayama T, Ziegler SF. 2011.. TSLP enhances the function of helper type 2 cells. . Eur. J. Immunol. 41::186271
    [Crossref] [Google Scholar]
  55. 55.
    Sallusto F, Cella M, Danieli C, Lanzavecchia A. 1995.. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. . J. Exp. Med. 182::389400
    [Crossref] [Google Scholar]
  56. 56.
    Thery C, Amigorena S. 2001.. The cell biology of antigen presentation in dendritic cells. . Curr. Opin. Immunol. 13::4551
    [Crossref] [Google Scholar]
  57. 57.
    Kupiec-Weglinski JW, Austyn JM, Morris PJ. 1988.. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. . J. Exp. Med. 167::63245
    [Crossref] [Google Scholar]
  58. 58.
    Willems F, Amraoui Z, Vanderheyde N, Verhasselt V, Aksoy E, et al. 2000.. Expression of c-FLIPL and resistance to CD95-mediated apoptosis of monocyte-derived dendritic cells: inhibition by bisindolylmaleimide. . Blood 95::347882
    [Crossref] [Google Scholar]
  59. 59.
    Riol-Blanco L, Delgado-Martin C, Sanchez-Sanchez N, Alonso CL, Gutierrez-Lopez MD, et al. 2009.. Immunological synapse formation inhibits, via NF-κB and FOXO1, the apoptosis of dendritic cells. . Nat. Immunol. 10::75360
    [Crossref] [Google Scholar]
  60. 60.
    Leverkus M, Walczak H, McLellan A, Fries HW, Terbeck G, et al. 2000.. Maturation of dendritic cells leads to up-regulation of cellular FLICE-inhibitory protein and concomitant down-regulation of death ligand–mediated apoptosis. . Blood 96::262831
    [Crossref] [Google Scholar]
  61. 61.
    Erlich Z, Shlomovitz I, Edry-Botzer L, Cohen H, Frank D, et al. 2019.. Macrophages, rather than DCs, are responsible for inflammasome activity in the GM-CSF BMDC model. . Nat. Immunol. 20::397406
    [Crossref] [Google Scholar]
  62. 62.
    McDaniel MM, Kottyan LC, Singh H, Pasare C. 2020.. Suppression of inflammasome activation by IRF8 and IRF4 in cDCs is critical for T cell priming. . Cell Rep. 31::107604
    [Crossref] [Google Scholar]
  63. 63.
    Zanoni I, Tan Y, Di Gioia M, Springstead JR, Kagan JC. 2017.. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. . Immunity 47::697709.e3
    [Crossref] [Google Scholar]
  64. 64.
    Deets KA, Vance RE. 2021.. Inflammasomes and adaptive immune responses. . Nat. Immunol. 22::41222
    [Crossref] [Google Scholar]
  65. 65.
    Jenkins MK, Schwartz RH. 1987.. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. . J. Exp. Med. 165::30219
    [Crossref] [Google Scholar]
  66. 66.
    Steinman RM, Cohn ZA. 1974.. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. . J. Exp. Med. 139::38097
    [Crossref] [Google Scholar]
  67. 67.
    Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013.. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. . Annu. Rev. Immunol. 31::563604
    [Crossref] [Google Scholar]
  68. 68.
    Yin X, Chen S, Eisenbarth SC. 2021.. Dendritic cell regulation of T helper cells. . Annu. Rev. Immunol. 39::75990
    [Crossref] [Google Scholar]
  69. 69.
    Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A, et al. 2011.. CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. . Immunity 35::24959
    [Crossref] [Google Scholar]
  70. 70.
    Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B, et al. 1999.. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. . J. Exp. Med. 189::58792
    [Crossref] [Google Scholar]
  71. 71.
    Liu TT, Kim S, Desai P, Kim DH, Huang X, et al. 2022.. Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. . Nature 607::14248
    [Crossref] [Google Scholar]
  72. 72.
    Williams JW, Tjota MY, Clay BS, Vander Lugt B, Bandukwala HS, et al. 2013.. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. . Nat. Commun. 4::2990
    [Crossref] [Google Scholar]
  73. 73.
    Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, et al. 2013.. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. . Immunity 38::97083
    [Crossref] [Google Scholar]
  74. 74.
    Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e Sousa C. 2021.. Dendritic cells revisited. . Annu. Rev. Immunol. 39::13166
    [Crossref] [Google Scholar]
  75. 75.
    Bettigole SE, Glimcher LH. 2015.. Endoplasmic reticulum stress in immunity. . Annu. Rev. Immunol. 33::10738
    [Crossref] [Google Scholar]
  76. 76.
    Rosenberg G, Riquelme S, Prince A, Avraham R. 2022.. Immunometabolic crosstalk during bacterial infection. . Nat. Microbiol. 7::497507
    [Crossref] [Google Scholar]
  77. 77.
    Nobs SP, Zmora N, Elinav E. 2020.. Nutrition regulates innate immunity in health and disease. . Annu. Rev. Nutr. 40::189219
    [Crossref] [Google Scholar]
  78. 78.
    Rogers PR, Dubey C, Swain SL. 2000.. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. . J. Immunol. 164::233846
    [Crossref] [Google Scholar]
  79. 79.
    McKinstry KK, Golech S, Lee WH, Huston G, Weng NP, Swain SL. 2007.. Rapid default transition of CD4 T cell effectors to functional memory cells. . J. Exp. Med. 204::2199211
    [Crossref] [Google Scholar]
  80. 80.
    Adachi K, Davis MM. 2011.. T-cell receptor ligation induces distinct signaling pathways in naive versus antigen-experienced T cells. . PNAS 108::154954
    [Crossref] [Google Scholar]
  81. 81.
    Lai W, Yu M, Huang MN, Okoye F, Keegan AD, Farber DL. 2011.. Transcriptional control of rapid recall by memory CD4 T cells. . J. Immunol. 187::13340
    [Crossref] [Google Scholar]
  82. 82.
    Borowski AB, Boesteanu AC, Mueller YM, Carafides C, Topham DJ, et al. 2007.. Memory CD8+ T cells require CD28 costimulation. . J. Immunol. 179::6494503
    [Crossref] [Google Scholar]
  83. 83.
    Zhu X, Zhu J. 2020.. CD4 T helper cell subsets and related human immunological disorders. . Int. J. Mol. Sci. 21::8011
    [Crossref] [Google Scholar]
  84. 84.
    Weaver CT, Hatton RD, Mangan PR, Harrington LE. 2007.. IL-17 family cytokines and the expanding diversity of effector T cell lineages. . Annu. Rev. Immunol. 25::82152
    [Crossref] [Google Scholar]
  85. 85.
    Nathan CF, Murray HW, Wiebe ME, Rubin BY. 1983.. Identification of interferon-γ as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. . J. Exp. Med. 158::67089
    [Crossref] [Google Scholar]
  86. 86.
    Hu X, Ivashkiv LB. 2009.. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. . Immunity 31::53950
    [Crossref] [Google Scholar]
  87. 87.
    Gieseck RL III, Wilson MS, Wynn TA. 2018.. Type 2 immunity in tissue repair and fibrosis. . Nat. Rev. Immunol. 18::6276
    [Crossref] [Google Scholar]
  88. 88.
    Van Dyken SJ, Locksley RM. 2013.. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. . Annu. Rev. Immunol. 31::31743
    [Crossref] [Google Scholar]
  89. 89.
    McGeachy MJ, Cua DJ. 2008.. Th17 cell differentiation: the long and winding road. . Immunity 28::44553
    [Crossref] [Google Scholar]
  90. 90.
    Ouyang W, Kolls JK, Zheng Y. 2008.. The biological functions of T helper 17 cell effector cytokines in inflammation. . Immunity 28::45467
    [Crossref] [Google Scholar]
  91. 91.
    Grewal IS, Flavell RA. 1996.. A central role of CD40 ligand in the regulation of CD4+ T-cell responses. . Immunol. Today 17::41014
    [Crossref] [Google Scholar]
  92. 92.
    Spriggs MK, Armitage RJ, Strockbine L, Clifford KN, Macduff BM, et al. 1992.. Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion. . J. Exp. Med. 176::154350
    [Crossref] [Google Scholar]
  93. 93.
    Crotty S. 2015.. A brief history of T cell help to B cells. . Nat. Rev. Immunol. 15::18589
    [Crossref] [Google Scholar]
  94. 94.
    Lee BO, Hartson L, Randall TD. 2003.. CD40-deficient, influenza-specific CD8 memory T cells develop and function normally in a CD40-sufficient environment. . J. Exp. Med. 198::175964
    [Crossref] [Google Scholar]
  95. 95.
    Buller RM, Holmes KL, Hugin A, Frederickson TN, Morse HC III. 1987.. Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells. . Nature 328::7779
    [Crossref] [Google Scholar]
  96. 96.
    Johnson S, Zhan Y, Sutherland RM, Mount AM, Bedoui S, et al. 2009.. Selected Toll-like receptor ligands and viruses promote helper-independent cytotoxic T cell priming by upregulating CD40L on dendritic cells. . Immunity 30::21827
    [Crossref] [Google Scholar]
  97. 97.
    Wiesel M, Kratky W, Oxenius A. 2011.. Type I IFN substitutes for T cell help during viral infections. . J. Immunol. 186::75463
    [Crossref] [Google Scholar]
  98. 98.
    Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. 1998.. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. . Nature 393::47880
    [Crossref] [Google Scholar]
  99. 99.
    Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. 1998.. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. . Nature 393::48083
    [Crossref] [Google Scholar]
  100. 100.
    Ridge JP, Di Rosa F, Matzinger P. 1998.. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. . Nature 393::47478
    [Crossref] [Google Scholar]
  101. 101.
    Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W. 2018.. CD4+ T cell help in cancer immunology and immunotherapy. . Nat. Rev. Immunol. 18::63547
    [Crossref] [Google Scholar]
  102. 102.
    Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, et al. 2020.. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. . Nature 584::62429
    [Crossref] [Google Scholar]
  103. 103.
    Wu R, Ohara RA, Jo S, Liu TT, Ferris ST, et al. 2022.. Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. . Nat. Immunol. 23::153650
    [Crossref] [Google Scholar]
  104. 104.
    Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH. 2018.. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. . Immunity 49::75463.e4
    [Crossref] [Google Scholar]
  105. 105.
    Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, et al. 2012.. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. . Nat. Med. 18::27480
    [Crossref] [Google Scholar]
  106. 106.
    Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL. 2011.. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. . J. Immunol. 187::551014
    [Crossref] [Google Scholar]
  107. 107.
    Zens KD, Chen JK, Farber DL. 2016.. Vaccine-generated lung tissue–resident memory T cells provide heterosubtypic protection to influenza infection. . JCI Insight 1::e85832
    [Crossref] [Google Scholar]
  108. 108.
    Arunachalam PS, Charles TP, Joag V, Bollimpelli VS, Scott MKD, et al. 2020.. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. . Nat. Med. 26::93240
    [Crossref] [Google Scholar]
  109. 109.
    Teijaro JR, Verhoeven D, Page CA, Turner D, Farber DL. 2010.. Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. . J. Virol. 84::921726
    [Crossref] [Google Scholar]
  110. 110.
    Tuvim MJ, Evans SE, Clement CG, Dickey BF, Gilbert BE. 2009.. Augmented lung inflammation protects against influenza A pneumonia. . PLOS ONE 4::e4176
    [Crossref] [Google Scholar]
  111. 111.
    Chapman TJ, Lambert K, Topham DJ. 2011.. Rapid reactivation of extralymphoid CD4 T cells during secondary infection. . PLOS ONE 6::e20493
    [Crossref] [Google Scholar]
  112. 112.
    Arunachalam PS, Scott MKD, Hagan T, Li C, Feng Y, et al. 2021.. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. . Nature 596::41016
    [Crossref] [Google Scholar]
  113. 113.
    Croft M. 2009.. The role of TNF superfamily members in T-cell function and diseases. . Nat. Rev. Immunol. 9::27185
    [Crossref] [Google Scholar]
  114. 114.
    Silke J, Brink R. 2010.. Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. . Cell Death Differ. 17::3545
    [Crossref] [Google Scholar]
  115. 115.
    Collette Y, Gilles A, Pontarotti P, Olive D. 2003.. A co-evolution perspective of the TNFSF and TNFRSF families in the immune system. . Trends Immunol. 24::38794
    [Crossref] [Google Scholar]
  116. 116.
    Muller J, Baeyens A, Dustin ML. 2018.. Tumor necrosis factor receptor superfamily in T cell priming and effector function. . Adv. Immunol. 140::2157
    [Crossref] [Google Scholar]
  117. 117.
    Ward-Kavanagh LK, Lin WW, Sedy JR, Ware CF. 2016.. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. . Immunity 44::100519
    [Crossref] [Google Scholar]
  118. 118.
    Watts TH. 2005.. TNF/TNFR family members in costimulation of T cell responses. . Annu. Rev. Immunol. 23::2368
    [Crossref] [Google Scholar]
  119. 119.
    Summers deLuca L, Gommerman JL. 2012.. Fine-tuning of dendritic cell biology by the TNF superfamily. . Nat. Rev. Immunol. 12::33951
    [Crossref] [Google Scholar]
  120. 120.
    De Trez C, Schneider K, Potter K, Droin N, Fulton J, et al. 2008.. The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin β receptor signaling to achieve homeostasis of dendritic cells. . J. Immunol. 180::23848
    [Crossref] [Google Scholar]
  121. 121.
    Kabashima K, Banks TA, Ansel KM, Lu TT, Ware CF, Cyster JG. 2005.. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. . Immunity 22::43950
    [Crossref] [Google Scholar]
  122. 122.
    Josien R, Li HL, Ingulli E, Sarma S, Wong BR, et al. 2000.. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. . J. Exp. Med. 191::495502
    [Crossref] [Google Scholar]
  123. 123.
    van Loo G, Bertrand MJM. 2023.. Death by TNF: a road to inflammation. . Nat. Rev. Immunol. 23::289303
    [Crossref] [Google Scholar]
  124. 124.
    Kalliolias GD, Ivashkiv LB. 2016.. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. . Nat. Rev. Rheumatol. 12::4962
    [Crossref] [Google Scholar]
  125. 125.
    Bradley JR. 2008.. TNF-mediated inflammatory disease. . J. Pathol. 214::14960
    [Crossref] [Google Scholar]
  126. 126.
    Takeuchi O, Akira S. 2010.. Pattern recognition receptors and inflammation. . Cell 140::80520
    [Crossref] [Google Scholar]
  127. 127.
    Shebzukhov YV, Horn K, Brazhnik KI, Drutskaya MS, Kuchmiy AA, et al. 2014.. Dynamic changes in chromatin conformation at the TNF transcription start site in T helper lymphocyte subsets. . Eur. J. Immunol. 44::25164
    [Crossref] [Google Scholar]
  128. 128.
    Allie N, Grivennikov SI, Keeton R, Hsu NJ, Bourigault ML, et al. 2013.. Prominent role for T cell-derived Tumour Necrosis Factor for sustained control of Mycobacterium tuberculosis infection. . Sci. Rep. 3::1809
    [Crossref] [Google Scholar]
  129. 129.
    Grivennikov SI, Tumanov AV, Liepinsh DJ, Kruglov AA, Marakusha BI, et al. 2005.. Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/neutrophils: protective and deleterious effects. . Immunity 22::93104
    [Google Scholar]
  130. 130.
    Torres D, Janot L, Quesniaux VF, Grivennikov SI, Maillet I, et al. 2005.. Membrane tumor necrosis factor confers partial protection to Listeria infection. . Am. J. Pathol. 167::167787
    [Crossref] [Google Scholar]
  131. 131.
    Cowley SC, Goldberg MF, Ho JA, Elkins KL. 2008.. The membrane form of tumor necrosis factor is sufficient to mediate partial innate immunity to Francisella tularensis live vaccine strain. . J. Infect. Dis. 198::28492
    [Crossref] [Google Scholar]
  132. 132.
    Kruglov AA, Lampropoulou V, Fillatreau S, Nedospasov SA. 2011.. Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. . J. Immunol. 187::566070
    [Crossref] [Google Scholar]
  133. 133.
    Schmaltz C, Alpdogan O, Muriglan SJ, Kappel BJ, Rotolo JA, et al. 2003.. Donor T cell–derived TNF is required for graft-versus-host disease and graft-versus-tumor activity after bone marrow transplantation. . Blood 101::244045
    [Crossref] [Google Scholar]
  134. 134.
    Borsotti C, Franklin AR, Lu SX, Kim TD, Smith OM, et al. 2007.. Absence of donor T-cell–derived soluble TNF decreases graft-versus-host disease without impairing graft-versus-tumor activity. . Blood 110::78386
    [Crossref] [Google Scholar]
  135. 135.
    McKinstry KK, Strutt TM, Buck A, Curtis JD, Dibble JP, et al. 2009.. IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge. . J. Immunol. 182::735363
    [Crossref] [Google Scholar]
  136. 136.
    Josien R, Wong BR, Li HL, Steinman RM, Choi Y. 1999.. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. . J. Immunol. 162::256268
    [Crossref] [Google Scholar]
  137. 137.
    Padigel UM, Kim N, Choi Y, Farrell JP. 2003.. TRANCE-RANK costimulation is required for IL-12 production and the initiation of a Th1-type response to Leishmania major infection in CD40L-deficient mice. . J. Immunol. 171::543741
    [Crossref] [Google Scholar]
  138. 138.
    Doherty TA, Soroosh P, Khorram N, Fukuyama S, Rosenthal P, et al. 2011.. The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. . Nat. Med. 17::596603
    [Crossref] [Google Scholar]
  139. 139.
    Manresa MC, Chiang AWT, Kurten RC, Dohil R, Brickner H, et al. 2020.. Increased production of LIGHT by T cells in eosinophilic esophagitis promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype. . Gastroenterology 159::177892.e13
    [Crossref] [Google Scholar]
  140. 140.
    Pappu BP, Borodovsky A, Zheng TS, Yang X, Wu P, et al. 2008.. TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. . J. Exp. Med. 205::104962
    [Crossref] [Google Scholar]
  141. 141.
    Bamias G, Martin C III, Marini M, Hoang S, Mishina M, et al. 2003.. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. . J. Immunol. 171::486874
    [Crossref] [Google Scholar]
  142. 142.
    Han F, Song J, Jia W, Yang M, Wang D, et al. 2020.. TL1A primed dendritic cells activation exacerbated chronic murine colitis. . Life Sci. 262::118220
    [Crossref] [Google Scholar]
  143. 143.
    Hedl M, Abraham C. 2014.. A TNFSF15 disease-risk polymorphism increases pattern-recognition receptor-induced signaling through caspase-8–induced IL-1. . PNAS 111::1345156
    [Crossref] [Google Scholar]
  144. 144.
    Danese S, Klopocka M, Scherl EJ, Romatowski J, Allegretti JR, et al. 2021.. Anti-TL1A antibody PF-06480605 safety and efficacy for ulcerative colitis: a Phase 2a single-arm study. . Clin. Gastroenterol. Hepatol. 19::232432.e6
    [Crossref] [Google Scholar]
  145. 145.
    Wang X, Hu Y, Charpentier T, Lamarre A, Qi S, et al. 2013.. TNF-like ligand 1A (TL1A) gene knockout leads to ameliorated collagen-induced arthritis in mice: implication of TL1A in humoral immune responses. . J. Immunol. 191::542029
    [Crossref] [Google Scholar]
  146. 146.
    Al Moussawy M, Abdelsamed HA. 2022.. Non-cytotoxic functions of CD8 T cells: “repentance of a serial killer. .” Front. Immunol. 13::1001129
    [Crossref] [Google Scholar]
  147. 147.
    Murray HW, Spitalny GL, Nathan CF. 1985.. Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-γ. . J. Immunol. 134::161922
    [Crossref] [Google Scholar]
  148. 148.
    Schenkel JM, Fraser KA, Vezys V, Masopust D. 2013.. Sensing and alarm function of resident memory CD8+ T cells. . Nat. Immunol. 14::50913
    [Crossref] [Google Scholar]
  149. 149.
    Jiang L, Liu L, Zhang M, Zhang L, Zhu C, et al. 2022.. Prompt antiviral action of pulmonary CD8+ TRM cells is mediated by rapid IFN-γ induction and its downstream ISGs in the lung. . Front. Immunol. 13::839455
    [Crossref] [Google Scholar]
  150. 150.
    Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D. 2014.. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. . Science 346::98101
    [Crossref] [Google Scholar]
  151. 151.
    Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, et al. 2014.. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. . Science 346::1015
    [Crossref] [Google Scholar]
  152. 152.
    Yarilina A, Park-Min KH, Antoniv T, Hu X, Ivashkiv LB. 2008.. TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon–response genes. . Nat. Immunol. 9::37887
    [Crossref] [Google Scholar]
  153. 153.
    White DW, Harty JT. 1998.. Perforin-deficient CD8+ T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-γ but requires TNF-α. . J. Immunol. 160::898905
    [Crossref] [Google Scholar]
  154. 154.
    Wiethe C, Dittmar K, Doan T, Lindenmaier W, Tindle R. 2003.. Enhanced effector and memory CTL responses generated by incorporation of receptor activator of NF-κB (RANK)/RANK ligand costimulatory molecules into dendritic cell immunogens expressing a human tumor-specific antigen. . J. Immunol. 171::412130
    [Crossref] [Google Scholar]
  155. 155.
    Tan JT, Whitmire JK, Ahmed R, Pearson TC, Larsen CP. 1999.. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. . J. Immunol. 163::485968
    [Crossref] [Google Scholar]
  156. 156.
    Lee HW, Park SJ, Choi BK, Kim HH, KO Nam, Kwon BS. 2002.. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. . J. Immunol. 169::488288
    [Crossref] [Google Scholar]
  157. 157.
    Wilcox RA, Chapoval AI, Gorski KS, Otsuji M, Shin T, et al. 2002.. Cutting edge: expression of functional CD137 receptor by dendritic cells. . J. Immunol. 168::426267
    [Crossref] [Google Scholar]
  158. 158.
    Bowie AG, Unterholzner L. 2008.. Viral evasion and subversion of pattern-recognition receptor signalling. . Nat. Rev. Immunol. 8::91122
    [Crossref] [Google Scholar]
  159. 159.
    Rosadini CV, Kagan JC. 2015.. Microbial strategies for antagonizing Toll-like-receptor signal transduction. . Curr. Opin. Immunol. 32::6170
    [Crossref] [Google Scholar]
  160. 160.
    Picard C, Casanova JL, Puel A. 2011.. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. . Clin. Microbiol. Rev. 24::49097
    [Crossref] [Google Scholar]
  161. 161.
    Picard C, von Bernuth H, Ghandil P, Chrabieh M, Levy O, et al. 2010.. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. . Medicine 89::40325
    [Crossref] [Google Scholar]
  162. 162.
    Welsh RM, Che JW, Brehm MA, Selin LK. 2010.. Heterologous immunity between viruses. . Immunol. Rev. 235::24466
    [Crossref] [Google Scholar]
  163. 163.
    Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM. 2013.. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. . Immunity 38::37383
    [Crossref] [Google Scholar]
  164. 164.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, et al. 2013.. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. . N. Engl. J. Med. 368::150918
    [Crossref] [Google Scholar]
  165. 165.
    Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, et al. 2015.. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. . J. Clin. Oncol. 33::54049
    [Crossref] [Google Scholar]
  166. 166.
    He Y, Vlaming M, van Meerten T, Bremer E. 2022.. The implementation of TNFRSF co-stimulatory domains in CAR-T cells for optimal functional activity. . Cancers 14::299
    [Crossref] [Google Scholar]
  167. 167.
    Kuhn NF, Purdon TJ, van Leeuwen DG, Lopez AV, Curran KJ, et al. 2019.. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. . Cancer Cell 35::47388.e6
    [Crossref] [Google Scholar]
  168. 168.
    Zhang Y, Wang P, Wang T, Fang Y, Ding Y, Qian Q. 2021.. Chimeric antigen receptor T cells engineered to secrete CD40 agonist antibodies enhance antitumor efficacy. . J. Transl. Med. 19::82
    [Crossref] [Google Scholar]
  169. 169.
    Lei W, Xie M, Jiang Q, Xu N, Li P, et al. 2021.. Treatment-related adverse events of chimeric antigen receptor T-cell (CAR T) in clinical trials: a systematic review and meta-analysis. . Cancers 13::3912
    [Crossref] [Google Scholar]
  170. 170.
    Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, et al. 2018.. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. . Nat. Rev. Clin. Oncol. 15::4762
    [Crossref] [Google Scholar]
  171. 171.
    Boulch M, Cazaux M, Cuffel A, Ruggiu M, Allain V, et al. 2023.. A major role for CD4+ T cells in driving cytokine release syndrome during CAR T cell therapy. . Cell Rep. Med. 4::101161
    [Crossref] [Google Scholar]
  172. 172.
    Le RQ, Li L, Yuan W, Shord SS, Nie L, et al. 2018.. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. . Oncologist 23::94347
    [Crossref] [Google Scholar]
  173. 173.
    Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. 2018.. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. . Nat. Med. 24::73138
    [Crossref] [Google Scholar]
  174. 174.
    Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, et al. 2018.. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. . Nat. Med. 24::73948
    [Crossref] [Google Scholar]
  175. 175.
    Chen Y, Li R, Shang S, Yang X, Li L, et al. 2021.. Therapeutic potential of TNFα and IL1β blockade for CRS/ICANS in CAR-T therapy via ameliorating endothelial activation. . Front. Immunol. 12::623610
    [Crossref] [Google Scholar]
  176. 176.
    Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benko S, Szucs G. 2021.. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. . Nat. Rev. Rheumatol. 17::58595
    [Crossref] [Google Scholar]
  177. 177.
    Waldner H. 2009.. The role of innate immune responses in autoimmune disease development. . Autoimmun. Rev. 8::4004
    [Crossref] [Google Scholar]
  178. 178.
    Schott WH, Haskell BD, Tse HM, Milton MJ, Piganelli JD, et al. 2004.. Caspase-1 is not required for type 1 diabetes in the NOD mouse. . Diabetes 53::99104
    [Crossref] [Google Scholar]
  179. 179.
    Zheng B, Keen KJ, Fritzler MJ, Ryerson CJ, Wilcox P, et al. 2023.. Circulating cytokine levels in systemic sclerosis related interstitial lung disease and idiopathic pulmonary fibrosis. . Sci. Rep. 13::6647
    [Crossref] [Google Scholar]
  180. 180.
    Shimizu M, Nakagishi Y, Yachie A. 2013.. Distinct subsets of patients with systemic juvenile idiopathic arthritis based on their cytokine profiles. . Cytokine 61::34548
    [Crossref] [Google Scholar]
  181. 181.
    Taylor PC, Feldmann M. 2009.. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. . Nat. Rev. Rheumatol. 5::57882
    [Crossref] [Google Scholar]
  182. 182.
    Rutgeerts P, Van Assche G, Vermeire S. 2004.. Optimizing anti-TNF treatment in inflammatory bowel disease. . Gastroenterology 126::1593610
    [Crossref] [Google Scholar]
  183. 183.
    Gisbert JP, Panes J. 2009.. Loss of response and requirement of infliximab dose intensification in Crohn's disease: a review. . Am. J. Gastroenterol. 104::76067
    [Google Scholar]
  184. 184.
    Billioud V, Sandborn WJ, Peyrin-Biroulet L. 2011.. Loss of response and need for adalimumab dose intensification in Crohn's disease: a systematic review. . Am. J. Gastroenterol. 106::67484
    [Crossref] [Google Scholar]
  185. 185.
    Kristinsson SY, Landgren O, Samuelsson J, Bjorkholm M, Goldin LR. 2010.. Autoimmunity and the risk of myeloproliferative neoplasms. . Haematologica 95::121620
    [Crossref] [Google Scholar]
  186. 186.
    Landgren O, Linet MS, McMaster ML, Gridley G, Hemminki K, Goldin LR. 2006.. Familial characteristics of autoimmune and hematologic disorders in 8,406 multiple myeloma patients: a population-based case-control study. . Int. J. Cancer 118::309598
    [Crossref] [Google Scholar]
  187. 187.
    Boddu PC, Zeidan AM. 2019.. Myeloid disorders after autoimmune disease. . Best Pract. Res. Clin. Haematol. 32::7488
    [Crossref] [Google Scholar]
  188. 188.
    Brown LM, Gridley G, Check D, Landgren O. 2008.. Risk of multiple myeloma and monoclonal gammopathy of undetermined significance among white and black male United States veterans with prior autoimmune, infectious, inflammatory, and allergic disorders. . Blood 111::338894
    [Crossref] [Google Scholar]
  189. 189.
    Fesneau O, Thevin V, Pinet V, Goldsmith C, Vieille B, et al. 2024.. An intestinal TH17 cell-derived subset can initiate cancer. . Nat. Immunol. 25::163749
    [Crossref] [Google Scholar]
  190. 190.
    Wiman K, Curman B, Forsum U, Klareskog L, Malmnäs-Tjernlund U, et al. 1978.. Occurrence of Ia antigens on tissues on non-lymphoid origin. . Nature 276::71113
    [Crossref] [Google Scholar]
  191. 191.
    Heuberger CE, Janney A, Ilott N, Bertocchi A, Pott S, et al. 2024.. MHC class II antigen presentation by intestinal epithelial cells fine-tunes bacteria-reactive CD4 T-cell responses. . Mucosal Immunol. 17::41630
    [Crossref] [Google Scholar]
  192. 192.
    DeWolf S, Grinshpun B, Savage T, Lau SP, Obradovic A, et al. 2018.. Quantifying size and diversity of the human T cell alloresponse. . JCI Insight 3::e121256
    [Crossref] [Google Scholar]
  193. 193.
    Laberko A, Sultanova E, Idarmacheva A, Skvortsova Y, Shelikhova L, et al. 2023.. Second allogeneic hematopoietic stem cell transplantation in patients with inborn errors of immunity. . Bone Marrow Transplant. 58::27381
    [Crossref] [Google Scholar]
  194. 194.
    Adams AB, Williams MA, Jones TR, Shirasugi N, Durham MM, et al. 2003.. Heterologous immunity provides a potent barrier to transplantation tolerance. . J. Clin. Investig. 111::188795
    [Crossref] [Google Scholar]
  195. 195.
    Briem-Richter A, Leuschner A, Haag F, Grabhorn E, Ganschow R. 2013.. Cytokine concentrations and regulatory T cells in living donor and deceased donor liver transplant recipients. . Pediatr. Transplant. 17::18590
    [Crossref] [Google Scholar]
  196. 196.
    Matsuoka N, Itoh T, Watarai H, Sekine-Kondo E, Nagata N, et al. 2010.. High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in mice. . J. Clin. Investig. 120::73543
    [Crossref] [Google Scholar]
  197. 197.
    Kaczorowski DJ, Nakao A, Mollen KP, Vallabhaneni R, Sugimoto R, et al. 2007.. Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion. . Transplantation 84::127987
    [Crossref] [Google Scholar]
  198. 198.
    Saha I, Chawla AS, Oliveira A, Elfers EE, Warrick K, et al. 2024.. Alloreactive memory CD4 T cells promote transplant rejection by engaging DCs to induce innate inflammation and CD8 T cell priming. . PNAS 121::e2401658121
    [Crossref] [Google Scholar]
  199. 199.
    Filatenkov AA, Jacovetty EL, Fischer UB, Curtsinger JM, Mescher MF, Ingulli E. 2005.. CD4 T cell-dependent conditioning of dendritic cells to produce IL-12 results in CD8-mediated graft rejection and avoidance of tolerance. . J. Immunol. 174::690917
    [Crossref] [Google Scholar]
  200. 200.
    Markees TG, Phillips NE, Gordon EJ, Noelle RJ, Shultz LD, et al. 1998.. Long-term survival of skin allografts induced by donor splenocytes and anti-CD154 antibody in thymectomized mice requires CD4+ T cells, interferon-γ, and CTLA4. . J. Clin. Investig. 101::244655
    [Crossref] [Google Scholar]
  201. 201.
    Adams AB, Larsen CP, Pearson TC, Newell KA. 2002.. The role of TNF receptor and TNF superfamily molecules in organ transplantation. . Am. J. Transplant. 2::1218
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-083122-040624
Loading
/content/journals/10.1146/annurev-immunol-083122-040624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error