1932

Abstract

Barrier tissues are highly innervated by sensory and autonomic nerves that are positioned in close proximity to both stromal and immune cell populations. Together with a growing awareness of the far-reaching consequences of neuroimmune interactions, recent studies have uncovered key mechanisms through which they contribute to organ homeostasis and immunity. It has also become clear that dysregulation of such interactions is implicated in the development of chronic lung diseases. This review describes the characteristics of the lung nervous system and discusses the molecular mechanisms that underlie lung neuroimmune interactions in infection and disease. We have contextualized the current literature and identified opportune areas for further investigation. Indeed, both the lung-brain axis and local neuroimmune interactions hold enormous potential for the exploration and development of novel therapeutic strategies targeting lung diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-083122-042512
2024-06-28
2025-03-24
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-083122-042512.html?itemId=/content/journals/10.1146/annurev-immunol-083122-042512&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Blake KJ, Jiang XR, Chiu IM. 2019.. Neuronal regulation of immunity in the skin and lungs. . Trends Neurosci. 42:(8):53751
    [Crossref] [Google Scholar]
  2. 2.
    Cardoso WV, J. 2006.. Regulation of early lung morphogenesis: questions, facts and controversies. . Development 133:(9):161124
    [Crossref] [Google Scholar]
  3. 3.
    Aven L, Ai X. 2013.. Mechanisms of respiratory innervation during embryonic development. . Organogenesis (3):19498
    [Crossref] [Google Scholar]
  4. 4.
    Su Y, Barr J, Jaquish A, Xu J, Verheyden JM, Sun X. 2022.. Identification of lung innervating sensory neurons and their target specificity. . Am. J. Physiol. Lung. Cell Mol. Physiol. 322:(1):L5063
    [Crossref] [Google Scholar]
  5. 5.
    Langsdorf A, Radzikinas K, Kroten A, Jain S, Ai X. 2011.. Neural crest cell origin and signals for intrinsic neurogenesis in the mammalian respiratory tract. . Am. J. Respir. Cell Mol. Biol. 44:(3):293301
    [Crossref] [Google Scholar]
  6. 6.
    Van Lommel A. 2001.. Pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEB): chemoreceptors and regulators of lung development. . Paediatr. Respir. Rev. 2:(2):17176
    [Google Scholar]
  7. 7.
    Haxhiu MA, Kc P, Moore CT, Acquah SS, Wilson CG, et al. 2005.. Brain stem excitatory and inhibitory signaling pathways regulating bronchoconstrictive responses. . J. Appl. Physiol. 98:(6):196182
    [Crossref] [Google Scholar]
  8. 8.
    Barnes PJ. 1984.. The third nervous system in the lung: physiology and clinical perspectives. . Thorax 39:(8):56167
    [Crossref] [Google Scholar]
  9. 9.
    Canning BJ, Undem BJ. 1993.. Evidence that distinct neural pathways mediate parasympathetic contractions and relaxations of guinea-pig trachealis. . J. Physiol. 471:(1):2540
    [Crossref] [Google Scholar]
  10. 10.
    Caulfield MP, Birdsall NJ. 1998.. International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. . Pharmacol. Rev. 50:(2):27990
    [Google Scholar]
  11. 11.
    Patel HJ, Barnes PJ, Takahashi T, Tadjkarimi S, Yacoub MH, Belvisi MG. 1995.. Evidence for prejunctional muscarinic autoreceptors in human and guinea pig trachea. . Am. J. Respir. Crit. Care Med. 152:(3):87278
    [Crossref] [Google Scholar]
  12. 12.
    Igarashi H, Fujimori N, Ito T, Nakamura T, Oono T, et al. 2011.. Vasoactive intestinal peptide (VIP) and VIP receptors-elucidation of structure and function for therapeutic applications. . Int. J. Clin. Med. 2:(4):5008
    [Crossref] [Google Scholar]
  13. 13.
    Canning BJ. 2006.. Reflex regulation of airway smooth muscle tone. . J. Appl. Physiol. 101:(3):97185
    [Crossref] [Google Scholar]
  14. 14.
    Sheppard MN, Polak JM, Allen JM, Bloom SR. 1984.. Neuropeptide tyrosine (NPY): A newly discovered peptide is present in the mammalian respiratory tract. . Thorax 39:(5):32630
    [Crossref] [Google Scholar]
  15. 15.
    Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. 2006.. Central pathways of pulmonary and lower airway vagal afferents. . J. Appl. Physiol. 101:(2):61827
    [Crossref] [Google Scholar]
  16. 16.
    Lee LY, Yu J. 2014.. Sensory nerves in lung and airways. . Compr. Physiol. 4:(1):287324
    [Crossref] [Google Scholar]
  17. 17.
    Mazzone SB, Undem BJ. 2016.. Vagal afferent innervation of the airways in health and disease. . Physiol. Rev. 96:(3):9751024
    [Crossref] [Google Scholar]
  18. 18.
    Kim SH, Patil MJ, Hadley SH, Bahia PK, Butler SG, et al. 2022.. Mapping of the sensory innervation of the mouse lung by specific vagal and dorsal root ganglion neuronal subsets. . eNeuro 9:(2):ENEURO.0026-22.2022
    [Crossref] [Google Scholar]
  19. 19.
    Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. 2015.. Vagal sensory neuron subtypes that differentially control breathing. . Cell 161:(3):62233
    [Crossref] [Google Scholar]
  20. 20.
    Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P. 2019.. An atlas of vagal sensory neurons and their molecular specialization. . Cell Rep. 27:(8):250823
    [Crossref] [Google Scholar]
  21. 21.
    Ito T, Udaka N, Yazawa T, Okudela K, Hayashi H, et al. 2000.. Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. . Development 127:(18):391321
    [Crossref] [Google Scholar]
  22. 22.
    Noguchi M, Sumiyama K, Morimoto M. 2015.. Directed migration of pulmonary neuroendocrine cells toward airway branches organizes the stereotypic location of neuroepithelial bodies. . Cell Rep. 13:(12):267986
    [Crossref] [Google Scholar]
  23. 23.
    Noguchi M, Furukawa KT, Morimoto M. 2021.. Pulmonary neuroendocrine cells: physiology, tissue homeostasis and disease. . Cell Rep. 13:(12):267986
    [Crossref] [Google Scholar]
  24. 24.
    Kuo CS, Darmanis S, de Arce AD, Liu Y, Almanzar N, et al. 2022.. Neuroendocrinology of the lung revealed by single-cell RNA sequencing. . eLife 11::e78216
    [Crossref] [Google Scholar]
  25. 25.
    Youngson C, Nurse C, Yeger H, Cutz E. 1993.. Oxygen sensing in airway chemoreceptors. . Nature 365:(6442):15355
    [Crossref] [Google Scholar]
  26. 26.
    Gu X, Karp PH, Brody SL, Pierce RA, Welsh MJ, et al. 2014.. Chemosensory functions for pulmonary neuroendocrine cells. . Am. J. Respir. Cell Mol. Biol. 50:(3):63746
    [Crossref] [Google Scholar]
  27. 27.
    Guha A, Vasconcelos M, Cai Y, Yoneda M, Hinds A, et al. 2012.. Neuroepithelial body microenvironment is a niche for a distinct subset of Clara-like precursors in the developing airways. . PNAS 109:(31):1259297
    [Crossref] [Google Scholar]
  28. 28.
    Hol EM, Pekny M. 2015.. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. . Curr. Opin. Cell Biol. 32::12130
    [Crossref] [Google Scholar]
  29. 29.
    Kummer W, Fischer A, Kurkowski R, Heym C. 1992.. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. . Neuroscience 49:(3):71537
    [Crossref] [Google Scholar]
  30. 30.
    Moe AAK, McGovern AE, Mazzone SB. 2021.. Jugular vagal ganglia neurons and airway nociception: a target for treating chronic cough. . Int. J. Biochem. Cell Biol. 135::105981
    [Crossref] [Google Scholar]
  31. 31.
    Suarez-Mier GB, Buckwalter MS. 2015.. Glial fibrillary acidic protein-expressing glia in the mouse lung. . ASN Neuro. 7:(5):1759091415601636
    [Crossref] [Google Scholar]
  32. 32.
    Ydens E, Lornet G, Smits V, Goethals S, Timmerman V, Janssens S. 2013.. The neuroinflammatory role of Schwann cells in disease. . Neurobiol. Dis. 55::95103
    [Crossref] [Google Scholar]
  33. 33.
    Seguella L, Gulbransen BD. 2021.. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. . Nat. Rev. Gastroenterol. Hepatol. 18:(8):57187
    [Crossref] [Google Scholar]
  34. 34.
    Godinho-Silva C, Cardoso F, Veiga-Fernandes H. 2019.. Neuro-immune cell units: a new paradigm in physiology. . Annu. Rev. Immunol. 37::1946
    [Crossref] [Google Scholar]
  35. 35.
    Cremin M, Schreiber S, Murray K, Tay EXY, Reardon C. 2023.. The diversity of neuroimmune circuits controlling lung inflammation. . Am. J. Physiol. Lung Cell. Mol. Physiol. 324:(1):L5363
    [Crossref] [Google Scholar]
  36. 36.
    Chu C, Artis D, Chiu IM. 2020.. Neuro-immune interactions in the tissues. . Immunity 52:(3):46474
    [Crossref] [Google Scholar]
  37. 37.
    Su X, Matthay MA, Malik AB. 2010.. Requisite role of the cholinergic α7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. . J. Immunol. 184:(1):40110
    [Crossref] [Google Scholar]
  38. 38.
    Liu T, Yang L, Han X, Ding X, Li J, Yang J. 2020.. Local sympathetic innervations modulate the lung innate immune responses. . Sci. Adv. 6:(20):eaay1497
    [Crossref] [Google Scholar]
  39. 39.
    Baral P, Umans BD, Li L, Wallrapp A, Bist M, et al. 2018.. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. . Nat. Med. 24:(4):41726
    [Crossref] [Google Scholar]
  40. 40.
    Ruhl CR, Pasko BL, Khan HS, Kindt LM, Stamm CE, et al. 2020.. Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough. . Cell 181:(2):293305
    [Crossref] [Google Scholar]
  41. 41.
    Grebe KM, Takeda K, Hickman HD, Bailey AM, Embry AC, et al. 2010.. Cutting edge: Sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza A virus pathogenesis. . J. Immunol. 184:(2):54044
    [Crossref] [Google Scholar]
  42. 42.
    Gao Z-W, Li L, Huang Y-Y, Zhao C-Q, Xue S-J, et al. 2021.. Vagal-α7nAChR signaling is required for lung anti-inflammatory responses and arginase 1 expression during an influenza infection. . Acta Pharmacol. Sin. 42:(10):164252
    [Crossref] [Google Scholar]
  43. 43.
    Verzele NAJ, Chua BY, Law CW, Zhang A, Ritchie ME, et al. 2021.. The impact of influenza pulmonary infection and inflammation on vagal bronchopulmonary sensory neurons. . FASEB J. 35:(3):e21320
    [Crossref] [Google Scholar]
  44. 44.
    Horkowitz AP, Schwartz AV, Alvarez CA, Herrera EB, Thoman ML, et al. 2020.. Acetylcholine regulates pulmonary pathology during viral infection and recovery. . Immunotargets Ther. 9::33350
    [Crossref] [Google Scholar]
  45. 45.
    Abdullah H, Heaney LG, Cosby SL, McGarvey LPA. 2014.. Rhinovirus upregulates transient receptor potential channels in a human neuronal cell line: implications for respiratory virus-induced cough reflex sensitivity. . Thorax 69:(1):4654
    [Crossref] [Google Scholar]
  46. 46.
    Donnelly CR, Chen O, Ji RR. 2020.. How do sensory neurons sense danger signals?. Trends Neurosci. 43:(10):82238
    [Crossref] [Google Scholar]
  47. 47.
    Hiroki CH, Sarden N, Hassanabad MF, Yipp BG. 2021.. Innate receptors expression by lung nociceptors: impact on COVID-19 and aging. . Front. Immunol. 12::785355
    [Crossref] [Google Scholar]
  48. 48.
    Jung WJ, Lee SY, Choi SI, Kim BK, Lee EJ, et al. 2018.. Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model. . PLOS ONE 13:(3):e0193117
    [Crossref] [Google Scholar]
  49. 49.
    Kim HY, Dekruyff RH, Umetsu DT. 2010.. The many paths to asthma: phenotype shaped by innate and adaptive immunity. . Nat. Immunol. 11:(7):57784
    [Crossref] [Google Scholar]
  50. 50.
    Jean EE, Good O, Inclan Rico JM, Rossi HL, Herbert DR. 2022.. Neuroimmune regulatory networks of the airway mucosa in allergic inflammatory disease. . J. Leukoc. Biol. 111:(1):20921
    [Crossref] [Google Scholar]
  51. 51.
    Chachi L, Alzahrani A, Koziol-White C, Biddle M, Bagadood R, et al. 2018.. Increased β2-adrenoceptor phosphorylation in airway smooth muscle in severe asthma: possible role of mast cell-derived growth factors. . Clin. Exp. Immunol. 194:(2):25358
    [Crossref] [Google Scholar]
  52. 52.
    Moriyama S, Brestoff JR, Flamar AL, Moeller JB, Klose CSN, et al. 2018.. β2-Adrenergic receptor–mediated negative regulation of group 2 innate lymphoid cell responses. . Science 359:(6379):105661
    [Crossref] [Google Scholar]
  53. 53.
    Wang W, Cohen JA, Wallrapp A, Trieu KG, Barrios J, et al. 2019.. Age-related dopaminergic innervation augments T helper 2-type allergic inflammation in the postnatal lung. . Immunity 51:(6):110218
    [Crossref] [Google Scholar]
  54. 54.
    Cao Y, Li Y, Wang X, Liu S, Zhang Y, et al. 2023.. Dopamine inhibits group 2 innate lymphoid cell-driven allergic lung inflammation by dampening mitochondrial activity. . Immunity 56:(2):32035
    [Crossref] [Google Scholar]
  55. 55.
    Dragunas G, Woest ME, Nijboer S, Bos ST, van Asselt J, et al. 2020.. Cholinergic neuroplasticity in asthma driven by TrkB signaling. . FASEB J. 34:(6):770317
    [Crossref] [Google Scholar]
  56. 56.
    Nie Z, Nelson CS, Jacoby DB, Fryer AD. 2007.. Expression and regulation of intercellular adhesion molecule-1 on airway parasympathetic nerves. . J. Allergy Clin. Immunol. 119:(6):141522
    [Crossref] [Google Scholar]
  57. 57.
    Galle-Treger L, Suzuki Y, Patel N, Sankaranarayanan I, Aron JL, et al. 2016.. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. . Nat. Commun. 7:(1):13202
    [Crossref] [Google Scholar]
  58. 58.
    Peiyu S, Ling L, Caiqi Z, Mengyao P, Zhikang Q, Su X. 2017.. Deficiency of α7 nicotinic acetylcholine receptor attenuates bleomycin-induced lung fibrosis in mice. . Mol. Med. 23:(1):3449
    [Crossref] [Google Scholar]
  59. 59.
    Shi Y, Jin Y, Guo W, Chen L, Liu C, Lv X. 2012.. Blockage of nerve growth factor modulates T cell responses and inhibits allergic inflammation in a mouse model of asthma. . Inflamm. Res. 61::136978
    [Crossref] [Google Scholar]
  60. 60.
    Päth G, Braun A, Meents N, Kerzel S, Quarcoo D, et al. 2002.. Augmentation of allergic early-phase reaction by nerve growth factor. . Am. J. Respir. Crit. Care Med. 166:(6):81826
    [Crossref] [Google Scholar]
  61. 61.
    Shu X, Mendell LM. 2001.. Acute sensitization by NGF of the response of small-diameter sensory neurons to capsaicin. . J. Neurophysiol. 86:(6):293138
    [Crossref] [Google Scholar]
  62. 62.
    Kabata H, Artis D. 2019.. Neuro-immune crosstalk and allergic inflammation. . J. Clin. Investig. 129:(4):147582
    [Crossref] [Google Scholar]
  63. 63.
    McGarvey LP, Butler CA, Stokesberry S, Polley L, McQuaid S, et al. 2014.. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. . J. Allergy Clin. Immunol. 133:(3):70412
    [Crossref] [Google Scholar]
  64. 64.
    Talbot S, Abdulnour R-EE, Burkett PR, Lee S, Cronin SJF, et al. 2015.. Silencing nociceptor neurons reduces allergic airway inflammation. . Neuron 87:(2):34154
    [Crossref] [Google Scholar]
  65. 65.
    Kamei J, Takahashi Y, Yoshikawa Y, Saitoh A. 2005.. Involvement of P2X receptor subtypes in ATP-induced enhancement of the cough reflex sensitivity. . Eur. J. Pharmacol. 528:(1–3):15861
    [Crossref] [Google Scholar]
  66. 66.
    Arzola-Martínez L, Benavente R, Vega G, Ríos M, Fonseca W, et al. 2021.. Blocking ATP-releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model. . Am. J. Physiol. Lung. Cell Mol. Physiol. 321:(2):L46676
    [Crossref] [Google Scholar]
  67. 67.
    Thompson RJ, Sayers I, Kuokkanen K, Hall IP. 2021.. Purinergic receptors in the airways: potential therapeutic targets for asthma?. Front. Allergy 2::677677
    [Crossref] [Google Scholar]
  68. 68.
    Verma AK, Manohar M, Upparahalli Venkateshaiah S, Mishra A. 2017.. Neuroendocrine cells derived chemokine vasoactive intestinal polypeptide (VIP) in allergic diseases. . Cytokine Growth Factor Rev. 38::3748
    [Crossref] [Google Scholar]
  69. 69.
    Wang J, Shang Y-X, Cai X-X, Liu L-Y. 2018.. Vasoactive intestinal peptide inhibits airway smooth muscle cell proliferation in a mouse model of asthma via the ERK1/2 signaling pathway. . Exp. Cell Res. 364:(2):16874
    [Crossref] [Google Scholar]
  70. 70.
    Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, et al. 2019.. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. . Immunity 51:(4):709723
    [Crossref] [Google Scholar]
  71. 71.
    Rochlitzer S, Veres TZ, Kühne K, Prenzler F, Pilzner C, et al. 2011.. The neuropeptide calcitonin gene-related peptide affects allergic airway inflammation by modulating dendritic cell function. . Clin. Exp. Allergy 41:(11):160921
    [Crossref] [Google Scholar]
  72. 72.
    Bellibaş SE. 1996.. The effect of human calcitonin gene-related peptide on eosinophil chemotaxis in the rat airway. . Peptides 17:(3):56364
    [Crossref] [Google Scholar]
  73. 73.
    Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, et al. 2018.. Pulmonary neuroendocrine cells amplify allergic asthma responses. . Science 360:(6393):eaan8546
    [Crossref] [Google Scholar]
  74. 74.
    Bonner K, Pease JE, Corrigan CJ, Clark P, Kay AB. 2013.. CCL17/thymus and activation-regulated chemokine induces calcitonin gene-related peptide in human airway epithelial cells through CCR4. . J. Allergy Clin. Immunol. 132:(4):94250
    [Crossref] [Google Scholar]
  75. 75.
    Barrios J, Patel KR, Aven L, Achey R, Minns MS, et al. 2017.. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. . FASEB J. 31:(9):411728
    [Crossref] [Google Scholar]
  76. 76.
    Mizuta K, Xu D, Pan Y, Comas G, Sonett JR, et al. 2008.. GABAA receptors are expressed and facilitate relaxation in airway smooth muscle. . Am. J. Physiol. Lung Cell Mol. Physiol. 294:(6):L120616
    [Crossref] [Google Scholar]
  77. 77.
    Fu XW, Nurse CA, Wong V, Cutz E. 2002.. Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. . J. Physiol. 539:(2):50310
    [Crossref] [Google Scholar]
  78. 78.
    Kushnir-Sukhov NM, Brown JM, Wu Y, Kirshenbaum A, Metcalfe DD. 2007.. Human mast cells are capable of serotonin synthesis and release. . J. Allergy Clin. Immunol. 119:(2):49899
    [Crossref] [Google Scholar]
  79. 79.
    Dürk T, Duerschmied D, Müller T, Grimm M, Reuter S, et al. 2013.. Production of serotonin by tryptophan hydroxylase 1 and release via platelets contribute to allergic airway inflammation. . Am. J. Respir. Crit. Care Med. 187:(5):47685
    [Crossref] [Google Scholar]
  80. 80.
    Lechin F, van der Dijs B, Orozco B, Lechin M, Lechin AE. 1996.. Increased levels of free serotonin in plasma of symptomatic asthmatic patients. . Ann. Allergy Asthma Immunol. 77:(3):24553
    [Crossref] [Google Scholar]
  81. 81.
    Nau F, Miller J, Saravia J, Ahlert T, Yu B, et al. 2015.. Serotonin 5-HT2 receptor activation prevents allergic asthma in a mouse model. . Am. J. Physiol. Lung. Cell Mol. Physiol. 308:(2):L19198
    [Crossref] [Google Scholar]
  82. 82.
    Numao T, Agrawal DK. 1992.. Neuropeptides modulate human eosinophil chemotaxis. . J. Immunol. 149:(10):330915
    [Crossref] [Google Scholar]
  83. 83.
    Drake MG, Scott GD, Blum ED, Lebold KM, Nie Z, et al. 2018.. Eosinophils increase airway sensory nerve density in mice and in human asthma. . Sci. Transl. Med. 10:(457):eaar8477
    [Crossref] [Google Scholar]
  84. 84.
    Chu HW, Kraft M, Krause JE, Rex MD, Martin RJ. 2000.. Substance P and its receptor neurokinin 1 expression in asthmatic airways. . J. Allergy Clin. Immunol. 106:(4):71322
    [Crossref] [Google Scholar]
  85. 85.
    Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. 2019.. A mast-cell-specific receptor mediates neurogenic inflammation and pain. . Neuron 101:(3):41220
    [Crossref] [Google Scholar]
  86. 86.
    An J, Lee JH, Won HK, Kang Y, Song WJ, et al. 2020.. Clinical significance of serum MRGPRX2 as a new biomarker in allergic asthma. . Allergy 75:(4):95962
    [Crossref] [Google Scholar]
  87. 87.
    Han P, Chen L, Chen D, Yang R, Wang W, et al. 2022.. Upregulated expression of substance P and NK1R in blood monocytes and B cells of patients with allergic rhinitis and asthma. . Clin. Exp. Immunol. 210:(1):3952
    [Crossref] [Google Scholar]
  88. 88.
    Méndez-Enríquez E, Hallgren J. 2019.. Mast cells and their progenitors in allergic asthma. . Front. Immunol. 10::821
    [Crossref] [Google Scholar]
  89. 89.
    Crosson T, Wang JC, Doyle B, Merrison H, Balood M, et al. 2021.. FcεR1-expressing nociceptors trigger allergic airway inflammation. . J. Allergy Clin. Immunol. 147:(6):233042
    [Crossref] [Google Scholar]
  90. 90.
    Moriyama M, Sato T, Inoue H, Fukuyama S, Teranishi H, et al. 2005.. The neuropeptide neuromedin U promotes inflammation by direct activation of mast cells. . J. Exp. Med. 202:(2):21724
    [Crossref] [Google Scholar]
  91. 91.
    Moriyama M, Fukuyama S, Inoue H, Matsumoto T, Sato T, et al. 2006.. The neuropeptide neuromedin U activates eosinophils and is involved in allergen-induced eosinophilia. . Am. J. Physiol. Lung. Cell Mol. Physiol. 290:(5):L97177
    [Crossref] [Google Scholar]
  92. 92.
    Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour R-EE, Nyman J, et al. 2017.. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. . Nature 549:(7672):35156
    [Crossref] [Google Scholar]
  93. 93.
    Modena BD, Bleecker ER, Busse WW, Erzurum SC, Gaston BM, et al. 2017.. Gene expression correlated with severe asthma characteristics reveals heterogeneous mechanisms of severe disease. . Am. J. Respir. Crit. Care Med. 195:(11):144963
    [Crossref] [Google Scholar]
  94. 94.
    Oda N, Miyahara XN, Taniguchi A, Morichika D, Senoo S, et al. 2019.. Requirement for neuropeptide Y in the development of type 2 responses and allergen-induced airway hyperresponsiveness and inflammation. . Am. J. Physiol. Lung. Cell Mol. Physiol. 316:(3):L40717
    [Crossref] [Google Scholar]
  95. 95.
    Chanez P, Springall D, Vignola AM, Moradoghi-Hattvani A, Polak JM, et al. 1998.. Bronchial mucosal immunoreactivity of sensory neuropeptides in severe airway diseases. . Am. J. Respir. Crit. Care Med. 158:(3):98590
    [Crossref] [Google Scholar]
  96. 96.
    Lacroix JS, Mosimann BL. 1996.. Attenuation of allergen-evoked nasal responses by local pretreatment with exogenous neuropeptide Y in atopic patients. . J. Allergy Clin. Immunol. 98:(3):61116
    [Crossref] [Google Scholar]
  97. 97.
    Brothers SP, Wahlestedt C. 2010.. Therapeutic potential of neuropeptide Y (NPY) receptor ligands. . EMBO Mol. Med. 2:(11):42939
    [Crossref] [Google Scholar]
  98. 98.
    Tsiligianni I, Kocks JWH. 2020.. Daytime symptoms of chronic obstructive pulmonary disease: a systematic review. . NPJ Prim. Care Respir. Med. 30:(1):6
    [Crossref] [Google Scholar]
  99. 99.
    Barnes PJ. 2008.. Immunology of asthma and chronic obstructive pulmonary disease. . Nat. Rev. Immunol. 8:(3):18392
    [Crossref] [Google Scholar]
  100. 100.
    van Gestel AJR, Steier J. 2010.. Autonomic dysfunction in patients with chronic obstructive pulmonary disease (COPD). . J. Thorac. Dis. 2:(4):21522
    [Google Scholar]
  101. 101.
    Gross NJ, Skorodin MS. 1984.. Role of the parasympathetic system in airway obstruction due to emphysema. . New Engl. J. Med. 311:(7):42125
    [Crossref] [Google Scholar]
  102. 102.
    Kistemaker LEM, Bos IST, Hylkema MN, Nawijn MC, Hiemstra PS, et al. 2013.. Muscarinic receptor subtype-specific effects on cigarette smoke-induced inflammation in mice. . Eur. Respir. J. 42:(6):167788
    [Crossref] [Google Scholar]
  103. 103.
    Banzato R, Pinheiro NM, Olivo CR, Santana FR, Lopes FDTQS, et al. 2021.. Long-term endogenous acetylcholine deficiency potentiates pulmonary inflammation in a murine model of elastase-induced emphysema. . Sci. Rep. 11:(1):15918
    [Crossref] [Google Scholar]
  104. 104.
    Douaoui S, Djidjik R, Boubakeur M, Ghernaout M, Touil-boukoffa C, et al. 2020.. GTS-21, an α7nAChR agonist, suppressed the production of key inflammatory mediators by PBMCs that are elevated in COPD patients and associated with impaired lung function. . Immunobiology 225:(3):151950
    [Crossref] [Google Scholar]
  105. 105.
    Chhabra SK, Gupta M, Ramaswamy S, Dash DJ, Bansal V, Deepak KK. 2015.. Cardiac sympathetic dominance and systemic inflammation in COPD. . J. Chronic Obstr. Pulm. Dis. 12:(5):55295
    [Crossref] [Google Scholar]
  106. 106.
    Lipworth B, Wedzicha J, Devereux G, Vestbo J, Dransfield MT. 2016.. Beta-blockers in COPD: time for reappraisal. . Eur. Respir. J. 48:(3):88088
    [Crossref] [Google Scholar]
  107. 107.
    Etminan M, Jafari S, Carleton B, FitzGerald JM. 2012.. Beta-blocker use and COPD mortality: a systematic review and meta-analysis. . BMC Pulm. Med. 12::48
    [Crossref] [Google Scholar]
  108. 108.
    Dransfield MT, Voelker H, Bhatt SP, Brenner K, Casaburi R, et al. 2019.. Metoprolol for the prevention of acute exacerbations of COPD. . New Engl. J. Med. 381:(24):88088
    [Crossref] [Google Scholar]
  109. 109.
    Cazzola M, Page CP, Rogliani P, Matera MG. 2013.. β2-agonist therapy in lung disease. . Am. J. Respir. Crit. Care Med. 187:(7):69096
    [Crossref] [Google Scholar]
  110. 110.
    Haarmann H, Mohrlang C, Tschiesner U, Rubin DB, Bornemann T, et al. 2015.. Inhaled β-agonist does not modify sympathetic activity in patients with COPD. . BMC Pulm. Med. 15:(1):46
    [Crossref] [Google Scholar]
  111. 111.
    Baxter M, Eltom S, Dekkak B, Yew-Booth L, Dubuis ED, et al. 2014.. Role of transient receptor potential and pannexin channels in cigarette smoke-triggered ATP release in the lung. . Thorax 69:(12):108089
    [Crossref] [Google Scholar]
  112. 112.
    Belvisi MG, Birrell MA, Khalid S, Wortley MA, Dockry R, et al. 2016.. Neurophenotypes in airway diseases: insights from translational cough studies. . Am. J. Respir. Crit. Care Med. 193:(12):136472
    [Crossref] [Google Scholar]
  113. 113.
    Pelleg A, Schulman ES. 2002.. Adenosine 5′-triphosphate axis in obstructive airway diseases. . Am. J. Ther. 9:(5):45464
    [Crossref] [Google Scholar]
  114. 114.
    Schneider S, Merfort I, Idzko M, Zech A. 2022.. Blocking P2X purinoceptor 4 signalling alleviates cigarette smoke induced pulmonary inflammation. . Respir. Res. 23:(1):148
    [Crossref] [Google Scholar]
  115. 115.
    Hlapčić I, Hulina-Tomašković A, Somborac-Bačura A, Rajković MG, Dugac AV, et al. 2019.. Extracellular adenosine triphosphate is associated with airflow limitation severity and symptoms burden in patients with chronic obstructive pulmonary disease. . Sci. Rep. 9:(1):15349
    [Crossref] [Google Scholar]
  116. 116.
    Zhang M, Sykes DL, Sadofsky LR, Morice AH. 2022.. ATP, an attractive target for the treatment of refractory chronic cough. . Purinergic Signal. 18:(3):289305
    [Crossref] [Google Scholar]
  117. 117.
    Stabile A, Pistilli A, Crispoltoni L, Montagnoli C, Tiribuzi R, et al. 2016.. A role for NGF and its receptors TrKA and p75NTR in the progression of COPD. . Biol. Chem. 397:(2):15763
    [Crossref] [Google Scholar]
  118. 118.
    Liu P, Li S, Tang L. 2021.. Nerve growth factor: a potential therapeutic target for lung diseases. . Int. J. Mol. Sci. 22:(17):9112
    [Crossref] [Google Scholar]
  119. 119.
    Xu H, Zhao M, Wang X. 1999.. Changes of calcitonin gene-related peptide content in induced sputum from patients with COPD and asthma. . Chin. J. Tuberc. Respir. Dis. 22:(9):55861
    [Google Scholar]
  120. 120.
    Mandal J, Roth M, Costa L, Boeck L, Rakic J, et al. 2015.. Vasoactive intestinal peptide for diagnosing exacerbation in chronic obstructive pulmonary disease. . Respiration 90:(5):35768
    [Crossref] [Google Scholar]
  121. 121.
    Burian B, Angela S, Nadler B, Petkov V, Block LH. 2006.. Inhaled vasoactive intestinal peptide (VIP) improves the 6-minute walk test and quality of life in patients with COPD: the VIP/COPD-trial. . Chest 130:(4):121S
    [Crossref] [Google Scholar]
  122. 122.
    Paulis L, Rajkovicova R, Simko F. 2015.. New developments in the pharmacological treatment of hypertension: dead-end or a glimmer at the horizon?. Curr. Hypertens. Rep. 17::42
    [Crossref] [Google Scholar]
  123. 123.
    Boschetto P, Miotto D, Bononi I, Faggian D, Plebani M, et al. 2005.. Sputum substance P and neurokinin A are reduced during exacerbations of chronic obstructive pulmonary disease. . Pulm. Pharmacol. Ther. 18:(3):199205
    [Crossref] [Google Scholar]
  124. 124.
    Tian L, Cai L, Kang J. 2000.. Elevated substance P content in sputum and plasma in patients with COPD and its relationship with FEV1/FVC. . Chin. J. Tuberc. Respir. Dis. 23:(3):13840
    [Google Scholar]
  125. 125.
    De Swert KO, Bracke KR, Demoor T, Brusselle GG, Joos GF. 2009.. Role of the tachykinin NK1 receptor in a murine model of cigarette smoke-induced pulmonary inflammation. . Respir. Res. 10::37
    [Crossref] [Google Scholar]
  126. 126.
    Pedersen KE, Buckner CK, Meeker SN, Undem BJ. 2000.. Pharmacological examination of the neurokinin-1 receptor mediating relaxation of human intralobar pulmonary artery. . J. Pharmacol. Exp. Ther. 292:(1):31925
    [Google Scholar]
  127. 127.
    Vatrella A, Montagnani S, Calabrese C, Parrella R, Pelaia G, et al. 2010.. Neuropeptide expression in the airways of COPD patients and smokers with normal lung function. . J. Biol. Regul. Homeost. Agents 24:(4):42532
    [Google Scholar]
  128. 128.
    Taniguchi A, Oda N, Morichika D, Senoo S, Itano J, et al. 2022.. Protective effects of neuropeptide Y against elastase-induced pulmonary emphysema. . Am. J. Physiol. Lung. Cell Mol. Physiol. 322:(4):L53949
    [Crossref] [Google Scholar]
  129. 129.
    Barratt SL, Creamer A, Hayton C, Chaudhuri N. 2018.. Idiopathic pulmonary fibrosis (IPF): an overview. . J. Clin. Med. 7:(8):201
    [Crossref] [Google Scholar]
  130. 130.
    Todd NW, Atamas SP, Luzina IG, Galvin JR. 2015.. Permanent alveolar collapse is the predominant mechanism in idiopathic pulmonary fibrosis. . Expert Rev. Respir. Med. 9:(4):41118
    [Crossref] [Google Scholar]
  131. 131.
    Biernacka A, Dobaczewski M, Frangogiannis NG. 2011.. TGF-β signaling in fibrosis. . Growth Factors 29:(5):196202
    [Crossref] [Google Scholar]
  132. 132.
    Song N, Liu J, Shaheen S, Du L, Proctor M, et al. 2015.. Vagotomy attenuates bleomycin-induced pulmonary fibrosis in mice. . Sci. Rep. 5::13419
    [Crossref] [Google Scholar]
  133. 133.
    Pieper MP, Chaudhary NI, Park JE. 2007.. Acetylcholine-induced proliferation of fibroblasts and myofibroblasts in vitro is inhibited by tiotropium bromide. . Life Sci. 80:(24–25):227073
    [Crossref] [Google Scholar]
  134. 134.
    Liu Y, Jiang Y, Wang C, Zhang H, Liu Y. 2022.. Muscarinic acetylcholine receptor antagonist darifenacin protects against pulmonary fibrosis through ERK/NF-κB/miR-21 pathway. . Am. J. Mol. Biol. 12:(02):1122
    [Crossref] [Google Scholar]
  135. 135.
    Gao R, Peng X, Perry C, Sun H, Ntokou A, et al. 2021.. Macrophage-derived netrin-1 drives adrenergic nerve-associated lung fibrosis. . J. Clin. Investig. 131:(1):e136542
    [Crossref] [Google Scholar]
  136. 136.
    Mou Y, Liu J, Pan T, Wang Q, Miao K, et al. 2021.. Dopamine receptor agonists ameliorate bleomycin-induced pulmonary fibrosis by repressing fibroblast differentiation and proliferation. . Biomed. Pharmacother. 139::111500
    [Crossref] [Google Scholar]
  137. 137.
    Riteau N, Gasse P, Fauconnier L, Gombault A, Couegnat M, et al. 2010.. Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. . Am. J. Respir. Crit. Care Med. 182:(6):77483
    [Crossref] [Google Scholar]
  138. 138.
    Müller T, Fay S, Vieira RP, Harry KQ, Cicko S, et al. 2017.. The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease. . Oncotarget 8:(22):3596272
    [Crossref] [Google Scholar]
  139. 139.
    Kohyama T, Liu X, Wen FQ, Kobayashi T, Abe S, et al. 2002.. Nerve growth factor stimulates fibronectin-induced fibroblast migration. . J. Lab. Clin. Med. 140:(5):32935
    [Crossref] [Google Scholar]
  140. 140.
    Micera A, Vigneti E, Pickholtz D, Reich R, Pappo O, et al. 2001.. Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. . PNAS 98:(11):616267
    [Crossref] [Google Scholar]
  141. 141.
    Freeman MR, Sathish V, Manlove L, Wang S, Britt RD, et al. 2017.. Brain-derived neurotrophic factor and airway fibrosis in asthma. . Am. J. Physiol. Lung. Cell Mol. Physiol. 313:(2):L36070
    [Crossref] [Google Scholar]
  142. 142.
    Harrison NK, Dawes KE, Kwon OJ, Barnes PJ, Laurent GJ, Chung KF. 1995.. Effects of neuropeptides on human lung fibroblast proliferation and chemotaxis. . Am. J. Physiol. Lung. Cell Mol. Physiol. 268:(2):L27883
    [Crossref] [Google Scholar]
  143. 143.
    Takeyama M, Nagai S, Mori K, Ikawa K, Satake N, Izumi T. 1996.. Substance P-like immunoreactive substance in bronchoalveolar lavage fluids from patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. . Sarcoidosis Vasc. Diffuse Lung. Dis. 13:(1):3337
    [Google Scholar]
  144. 144.
    Ramos C, Montaño M, Cisneros J, Sommer B, Delgado J, Gonzalez-Avila G. 2007.. Substance P up-regulates matrix metalloproteinase-1 and down-regulates collagen in human lung fibroblast. . Exp. Lung. Res. 33:(3–4):15167
    [Crossref] [Google Scholar]
  145. 145.
    Itano J, Taniguchi A, Senoo S, Asada N, Gion Y, et al. 2022.. Neuropeptide Y antagonizes development of pulmonary fibrosis through IL-1β inhibition. . Am. J. Respir. Cell Mol. Biol. 67:(6):65465
    [Crossref] [Google Scholar]
  146. 146.
    Szema AM, Forsyth E, Ying B, Hamidi SA, Chen JJ, et al. 2017.. NFATc3 and VIP in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. . PLOS ONE 12:(1):e0170606
    [Crossref] [Google Scholar]
  147. 147.
    Duan JX, Guan XX, Yang HH, Mei WX, Chen P, et al. 2021.. Vasoactive intestinal peptide attenuates bleomycin-induced murine pulmonary fibrosis by inhibiting epithelial-mesenchymal transition: restoring autophagy in alveolar epithelial cells. . Int. Immunopharmacol. 101::108211
    [Crossref] [Google Scholar]
  148. 148.
    Li XW, Zuo DZ, Shen YY, Hao W. 2017.. Effects of calcitonin gene-related peptide on eIF3a and p27 expression in bleomycin-induced pulmonary fibrosis of rats. . Chin. J. Appl. Physiol. 33:(1):1621
    [Google Scholar]
  149. 149.
    Kayalar O, Oztay F. 2022.. CGRP induces myofibroblast differentiation and the production of extracellular matrix in MRC5s via autocrine and paracrine signalings. . J. Biochem. Mol. Toxicol. 36:(12):e23204
    [Crossref] [Google Scholar]
  150. 150.
    Liu J, Song N, Tian S, Yu J. 2014.. Neuroepithelial body increases in bleomycin-treated mice. . Respir. Physiol. Neurobiol. 193:(1):5254
    [Crossref] [Google Scholar]
  151. 151.
    Kayalar O, Oztay F, Ongen HG. 2020.. Gastrin-releasing peptide induces fibrotic response in MRC5s and proliferation in A549s. . Cell Commun. Signal. 18:(1):96
    [Crossref] [Google Scholar]
  152. 152.
    Ashour K, Shan L, Jong HL, Schlicher W, Wada K, et al. 2006.. Bombesin inhibits alveolarization and promotes pulmonary fibrosis in newborn mice. . Am. J. Respir. Crit. Care Med. 173:(12):137785
    [Crossref] [Google Scholar]
  153. 153.
    Fabre A, Marchal-Sommé J, Marchand-Adam S, Quesnel C, Borie R, et al. 2008.. Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice. . Eur. Respir. J. 32:(2):42636
    [Crossref] [Google Scholar]
  154. 154.
    Li Y, Song D, Bo F, Deng M, Tang X. 2019.. Diazepam inhibited lipopolysaccharide (LPS)-induced pyroptotic cell death and alleviated pulmonary fibrosis in mice by specifically activating GABAA receptor α4-subunit. . Biomed. Pharmacother. 118::109239
    [Crossref] [Google Scholar]
  155. 155.
    Wang H, Foong JPP, Harris NL, Bornstein JC. 2022.. Enteric neuroimmune interactions coordinate intestinal responses in health and disease. . Mucosal Immunol. 15:(1):2739
    [Crossref] [Google Scholar]
  156. 156.
    Jin R, Luo L, Zheng J. 2022.. The trinity of skin: skin homeostasis as a neuro-endocrine-immune organ. . Life 12:(5):725
    [Crossref] [Google Scholar]
  157. 157.
    Mazzone SB, Tian L, Moe AAK, Trewella MW, Ritchie ME, McGovern AE. 2020.. Transcriptional profiling of individual airway projecting vagal sensory neurons. . Mol. Neurobiol. 57:(2):94963
    [Crossref] [Google Scholar]
  158. 158.
    Dickman KG, Youssef JG, Mathew SM, Said SI. 2004.. Ionotropic glutamate receptors in lungs and airways: molecular basis for glutamate toxicity. . Am. J. Respir. Cell Mol. Biol. 30:(2):13944
    [Crossref] [Google Scholar]
  159. 159.
    Dumas SJ, Bru-Mercier G, Courboulin A, Quatredeniers M, Rücker-Martin C, et al. 2018.. NMDA-type glutamate receptor activation promotes vascular remodeling and pulmonary arterial hypertension. . Circulation 137:(22):237189
    [Crossref] [Google Scholar]
  160. 160.
    Hamanaka RB, O'Leary EM, Witt LJ, Tian Y, Gökalp GA, et al. 2019.. Glutamine metabolism is required for collagen protein synthesis in lung fibroblasts. . Am. J. Respir. Cell Mol. Biol. 61:(5):597606
    [Crossref] [Google Scholar]
  161. 161.
    Mayer EA, Nance K, Chen S. 2022.. The gut-brain axis. . Annu. Rev. Med. 73::43953
    [Crossref] [Google Scholar]
  162. 162.
    Rhyou HI, Nam YH. 2021.. Association between cognitive function and asthma in adults. . Ann. Allergy Asthma Immunol. 126:(1):6974
    [Crossref] [Google Scholar]
  163. 163.
    Yin M, Wang H, Hu X, Li X, Fei G, Yu Y. 2019.. Patterns of brain structural alteration in COPD with different levels of pulmonary function impairment and its association with cognitive deficits. . BMC Pulm. Med. 19:(1):203
    [Crossref] [Google Scholar]
  164. 164.
    Bors M, Tomic R, Perlman DM, Kim HJ, Whelan TPM. 2015.. Cognitive function in idiopathic pulmonary fibrosis. . Chron. Respir. Dis. 12:(4):36572
    [Crossref] [Google Scholar]
  165. 165.
    Bin NR, Prescott SL, Horio N, Wang Y, Chiu IM, Liberles SD. 2023.. An airway-to-brain sensory pathway mediates influenza-induced sickness. . Nature 615::66067
    [Crossref] [Google Scholar]
  166. 166.
    Wypych TP, Wickramasinghe LC, Marsland BJ. 2019.. The influence of the microbiome on respiratory health. . Nat. Immunol. 20:(10):127990
    [Crossref] [Google Scholar]
  167. 167.
    Hosang L, Canals RC, van der Flier FJ, Hollensteiner J, Daniel R, et al. 2022.. The lung microbiome regulates brain autoimmunity. . Nature 603:(7899):138144
    [Crossref] [Google Scholar]
  168. 168.
    Magistretti PJ, Allaman I. 2015.. A cellular perspective on brain energy metabolism and functional imaging. . Neuron 86:(4):883901
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-083122-042512
Loading
/content/journals/10.1146/annurev-immunol-083122-042512
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error