1932

Abstract

Autoimmune diseases with B cell–directed therapeutics approved by the US Food and Drug Administration are surprisingly diverse in clinical manifestations and pathophysiology. In this review, we focus on recent clinical and mechanistic insights into the efficacy of B cell depletion in these diverse autoimmune disorders, the rapidly expanding armamentarium of approved agents, and future approaches. The pathogenic roles for B cells include direct functions such as production of autoantibodies and proinflammatory cytokines and indirect functions via antigen presentation to T cells. The efficacy of B cell–depleting strategies varies across diseases and likely reflects the complexity of disease pathogenesis and relative contribution of B cell roles. Additionally, B cell–depleting therapies do not equally target all B cell subsets in all patients, and this likely explains some of the variability in responses. Recent reports of B cell depletion with novel chimeric antigen receptor (CAR) T cell approaches in an expanding number of autoimmune diseases highlight the potential role of B cell depletion in resetting immune tolerance. The relative importance of eliminating autoreactive B cells and plasma cells and approaches to doing so will also be discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-083122-044829
2024-06-28
2025-03-24
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-083122-044829.html?itemId=/content/journals/10.1146/annurev-immunol-083122-044829&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Craft JE. 2012.. Follicular helper T cells in immunity and systemic autoimmunity. . Nat. Rev. Rheumatol. 8::33747
    [Crossref] [Google Scholar]
  2. 2.
    Satterthwaite AB. 2017.. Bruton's tyrosine kinase, a component of B cell signaling pathways, has multiple roles in the pathogenesis of lupus. . Front. Immunol. 8::1986
    [Crossref] [Google Scholar]
  3. 3.
    Chalmers SA, Wen J, Doerner J, Stock A, Cuda CM, et al. 2018.. Highly selective inhibition of Bruton's tyrosine kinase attenuates skin and brain disease in murine lupus. . Arthritis Res. Ther. 20::10
    [Crossref] [Google Scholar]
  4. 4.
    Hiepe F, Radbruch A. 2016.. Plasma cells as an innovative target in autoimmune disease with renal manifestations. . Nat. Rev. Nephrol. 12::23240
    [Crossref] [Google Scholar]
  5. 5.
    Klein U, Rajewsky K, Kuppers R. 1998.. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. . J. Exp. Med. 188::167989
    [Crossref] [Google Scholar]
  6. 6.
    Sanz I, Wei C, Lee FE, Anolik J. 2008.. Phenotypic and functional heterogeneity of human memory B cells. . Semin. Immunol. 20::6782
    [Crossref] [Google Scholar]
  7. 7.
    Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, et al. 2018.. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. . Immunity 49::72539.e6. Erratum . 2020.. Immunity 52::203
    [Google Scholar]
  8. 8.
    Tipton CM, Hom JR, Fucile CF, Rosenberg AF, Sanz I. 2018.. Understanding B-cell activation and autoantibody repertoire selection in systemic lupus erythematosus: a B-cell immunomics approach. . Immunol. Rev. 284::12031
    [Crossref] [Google Scholar]
  9. 9.
    Rubtsova K, Rubtsov AV, Thurman JM, Mennona JM, Kappler JW, Marrack P. 2017.. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. . J. Clin. Investig. 127::1392404
    [Crossref] [Google Scholar]
  10. 10.
    Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KG, et al. 2006.. Competence and competition: the challenge of becoming a long-lived plasma cell. . Nat. Rev. Immunol. 6::74150
    [Crossref] [Google Scholar]
  11. 11.
    Halliley JL, Tipton CM, Liesveld J, Rosenberg AF, Darce J, et al. 2015.. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. . Immunity 43::13245
    [Crossref] [Google Scholar]
  12. 12.
    Nguyen DC, Garimalla S, Xiao H, Kyu S, Albizua I, et al. 2018.. Factors of the bone marrow microniche that support human plasma cell survival and immunoglobulin secretion. . Nat. Commun. 9::3698
    [Crossref] [Google Scholar]
  13. 13.
    Neubert K, Meister S, Moser K, Weisel F, Maseda D, et al. 2008.. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. . Nat. Med. 14::74855
    [Crossref] [Google Scholar]
  14. 14.
    Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, et al. 2012.. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. . Arthritis Rheum. 64::493503
    [Crossref] [Google Scholar]
  15. 15.
    Alexander T, Cheng Q, Klotsche J, Khodadadi L, Waka A, et al. 2018.. Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors. . Eur. J. Immunol. 48::157379
    [Crossref] [Google Scholar]
  16. 16.
    Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D. 1994.. The role of B cells in lpr/lpr-induced autoimmunity. . J. Exp. Med. 180::1295306
    [Crossref] [Google Scholar]
  17. 17.
    Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ. 1999.. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. . J. Exp. Med. 189::163948
    [Crossref] [Google Scholar]
  18. 18.
    Tedder TF, Engel P. 1994.. CD20: a regulator of cell-cycle progression of B lymphocytes. . Immunol. Today 15::45054
    [Crossref] [Google Scholar]
  19. 19.
    Glass DR, Tsai AG, Oliveria JP, Hartmann FJ, Kimmey SC, et al. 2020.. An integrated multi-omic single-cell atlas of human B cell identity. . Immunity 53::21732.e5
    [Crossref] [Google Scholar]
  20. 20.
    Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, et al. 2004.. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. . Arthritis Rheum. 50::258089
    [Crossref] [Google Scholar]
  21. 21.
    Albert D, Dunham J, Khan S, Stansberry J, Kolasinski S, et al. 2008.. Variability in the biological response to anti-CD20 B cell depletion in systemic lupus erythaematosus. . Ann. Rheum. Dis. 67::172431
    [Crossref] [Google Scholar]
  22. 22.
    Lindholm C, Borjesson-Asp K, Zendjanchi K, Sundqvist AC, Tarkowski A, Bokarewa M. 2008.. Longterm clinical and immunological effects of anti-CD20 treatment in patients with refractory systemic lupus erythematosus. . J. Rheumatol. 35::82633
    [Google Scholar]
  23. 23.
    Jonsdottir T, Gunnarsson I, Risselada A, Welin Henriksson E, Klareskog L, van Vollenhoven RF. 2007.. Treatment of refractory SLE with rituximab plus cyclophosphamide: clinical effects, serological changes, and predictors of response. . Ann. Rheum. Dis. 67:(3):33034
    [Crossref] [Google Scholar]
  24. 24.
    Amoura Z, Mazodier K, Michel M, Viallard J-F, Huong D, et al. 2007.. Efficacy of rituximab in systemic lupus erythematosus: a series of 22 cases. . Arthritis Rheum. 56::S458
    [Google Scholar]
  25. 25.
    Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, et al. 2010.. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. . Arthritis Rheum. 62::22233
    [Crossref] [Google Scholar]
  26. 26.
    Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, et al. 2012.. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. . Arthritis Rheum. 64::121526
    [Crossref] [Google Scholar]
  27. 27.
    Merrill JT, Manzi S, Aranow C, Askanase A, Bruce I, et al. 2018.. Lupus community panel proposals for optimising clinical trials: 2018. . Lupus Sci. Med. 5::e000258
    [Crossref] [Google Scholar]
  28. 28.
    Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y, et al. 2019.. The immune cell landscape in kidneys of patients with lupus nephritis. . Nat. Immunol. 20::90214
    [Crossref] [Google Scholar]
  29. 29.
    Abraham R, Durkee MS, Ai J, Veselits M, Casella G, et al. 2022.. Specific in situ inflammatory states associate with progression to renal failure in lupus nephritis. . J. Clin. Invest. 132:(13):e155350
    [Crossref] [Google Scholar]
  30. 30.
    Gong Q, Ou Q, Ye S, Lee W, Cornelius J, et al. 2005.. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. . J. Immunol. 174::81726
    [Crossref] [Google Scholar]
  31. 31.
    Bekar KW, Owen T, Dunn R, Ichikawa T, Wang W, et al. 2010.. Prolonged effects of short-term anti-CD20 B cell depletion therapy in murine systemic lupus erythematosus. . Arthritis Rheum. 62::244357
    [Crossref] [Google Scholar]
  32. 32.
    Mamani-Matsuda M, Cosma A, Weller S, Faili A, Staib C, et al. 2008.. The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. . Blood 111::465359
    [Crossref] [Google Scholar]
  33. 33.
    Vos K, Thurlings RM, Wijbrandts CA, van Schaardenburg D, Gerlag DM, Tak PP. 2007.. Early effects of rituximab on the synovial cell infiltrate in patients with rheumatoid arthritis. . Arthritis Rheum. 56::77278
    [Crossref] [Google Scholar]
  34. 34.
    Reddy VR, Pepper RJ, Shah K, Cambridge G, Henderson SR, et al. 2021.. Disparity in peripheral and renal B-cell depletion with rituximab in systemic lupus erythematosus: an opportunity for obinutuzumab?. Rheumatology 61::2894904
    [Crossref] [Google Scholar]
  35. 35.
    Crickx E, Chappert P, Sokal A, Weller S, Azzaoui I, et al. 2021.. Rituximab-resistant splenic memory B cells and newly engaged naive B cells fuel relapses in patients with immune thrombocytopenia. . Sci. Transl. Med. 13::eabc3961
    [Crossref] [Google Scholar]
  36. 36.
    Carter LM, Isenberg DA, Ehrenstein MR. 2013.. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. . Arthritis Rheum. 65::267279
    [Crossref] [Google Scholar]
  37. 37.
    Anolik JH, Barnard J, Cappione A, Pugh-Bernard AE, Felgar RE, et al. 2004.. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. . Arthritis Rheum. 50::358090
    [Crossref] [Google Scholar]
  38. 38.
    Anolik JH, Barnard J, Owen T, Zheng B, Kemshetti S, et al. 2007.. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. . Arthritis Rheum. 56::304456
    [Crossref] [Google Scholar]
  39. 39.
    Gomez Mendez LM, Cascino MD, Garg J, Katsumoto TR, Brakeman P, et al. 2018.. Peripheral blood B cell depletion after rituximab and complete response in lupus nephritis. . Clin. J. Am. Soc. Nephrol. 13::15029
    [Crossref] [Google Scholar]
  40. 40.
    Meyer S, Evers M, Jansen JHM, Buijs J, Broek B, et al. 2018.. New insights in Type I and II CD20 antibody mechanisms-of-action with a panel of novel CD20 antibodies. . Br. J. Haematol. 180::80820
    [Crossref] [Google Scholar]
  41. 41.
    Marinov AD, Wang H, Bastacky SI, van Puijenbroek E, Schindler T, et al. 2021.. The type II anti-CD20 antibody obinutuzumab (GA101) is more effective than rituximab at depleting B cells and treating disease in a murine lupus model. . Arthritis Rheum. 73::82636
    [Crossref] [Google Scholar]
  42. 42.
    Furie RA, Aroca G, Cascino MD, Garg JP, Rovin BH, et al. 2022.. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. . Ann. Rheum. Dis. 81::1007
    [Crossref] [Google Scholar]
  43. 43.
    Arnold J, Dass S, Twigg S, Jones CH, Rhodes B, et al. 2022.. Efficacy and safety of obinutuzumab in systemic lupus erythematosus patients with secondary non-response to rituximab. . Rheumatology 61::49059
    [Crossref] [Google Scholar]
  44. 44.
    Jackson SW, Davidson A. 2019.. BAFF inhibition in SLE—is tolerance restored?. Immunol. Rev. 292::10219
    [Crossref] [Google Scholar]
  45. 45.
    Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, et al. 2011.. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. . Arthritis Rheum. 63::391830
    [Crossref] [Google Scholar]
  46. 46.
    Furie R, Rovin BH, Houssiau F, Malvar A, Teng YKO, et al. 2020.. Two-year, randomized, controlled trial of belimumab in lupus nephritis. . N. Engl. J. Med. 383::111728
    [Crossref] [Google Scholar]
  47. 47.
    Shipa M, Embleton-Thirsk A, Parvaz M, Santos LR, Muller P, et al. 2021.. Effectiveness of belimumab after rituximab in systemic lupus erythematosus: a randomized controlled trial. . Ann. Intern. Med. 174::164757
    [Crossref] [Google Scholar]
  48. 48.
    Sellam J, Hendel-Chavez H, Rouanet S, Abbed K, Combe B, et al. 2011.. B cell activation biomarkers as predictive factors for the response to rituximab in rheumatoid arthritis: a six-month, national, multicenter, open-label study. . Arthritis Rheum. 63::93338
    [Crossref] [Google Scholar]
  49. 49.
    Cambridge G, Leandro MJ, Lahey LJ, Fairhead T, Robinson WH, Sokolove J. 2016.. B cell depletion with rituximab in patients with rheumatoid arthritis: Multiplex bead array reveals the kinetics of IgG and IgA antibodies to citrullinated antigens. . J. Autoimmun. 70::2230
    [Crossref] [Google Scholar]
  50. 50.
    Dass S, Rawstron AC, Vital EM, Henshaw K, McGonagle D, Emery P. 2008.. Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. . Arthritis Rheum. 58::299399
    [Crossref] [Google Scholar]
  51. 51.
    Adlowitz DG, Barnard J, Biear JN, Cistrone C, Owen T, et al. 2015.. Expansion of activated peripheral blood memory B cells in rheumatoid arthritis, impact of B cell depletion therapy, and biomarkers of response. . PLOS ONE 10::e0128269
    [Crossref] [Google Scholar]
  52. 52.
    Thurlings RM, Vos K, Wijbrandts CA, Zwinderman AH, Gerlag DM, Tak PP. 2008.. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. . Ann. Rheum. Dis. 67::91725
    [Crossref] [Google Scholar]
  53. 53.
    Humby F, Lewis M, Ramamoorthi N, Hackney JA, Barnes MR, et al. 2019.. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. . Ann. Rheum. Dis. 78:(6):76172
    [Crossref] [Google Scholar]
  54. 54.
    Meednu N, Zhang H, Owen T, Sun W, Wang V, et al. 2016.. Production of RANKL by memory B cells: a link between B cells and bone erosion in rheumatoid arthritis. . Arthritis Rheum. 68::80516
    [Crossref] [Google Scholar]
  55. 55.
    Sun W, Meednu N, Rosenberg A, Rangel-Moreno J, Wang V, et al. 2018.. B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation. . Nat. Commun. 9::5127
    [Crossref] [Google Scholar]
  56. 56.
    Triaille C, Lauwerys BR. 2019.. Synovial tissue: turning the page to precision medicine in arthritis. . Front. Med. 6::46
    [Crossref] [Google Scholar]
  57. 57.
    Humby F, Durez P, Buch MH, Lewis MJ, Rizvi H, et al. 2021.. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. . Lancet 397::30517
    [Crossref] [Google Scholar]
  58. 58.
    Rivellese F, Surace AEA, Goldmann K, Sciacca E, Cubuk C, et al. 2022.. Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. . Nat. Med. 28::125668
    [Crossref] [Google Scholar]
  59. 59.
    Carranza-Enríquez F, Meade-Aguilar JA, Hinojosa-Azaola A. 2022.. Rituximab treatment in ANCA-associated vasculitis patients: outcomes of a real-life experience from an observational cohort. . Clin. Rheumatol. 41::280916
    [Crossref] [Google Scholar]
  60. 60.
    Walsh M, Merkel PA, Peh CA, Szpirt WM, Puechal X, et al. 2020.. Plasma exchange and glucocorticoids in severe ANCA-associated vasculitis. . N. Engl. J. Med. 382::62231
    [Crossref] [Google Scholar]
  61. 61.
    Patel NJ, Stone JH. 2022.. Expert perspective: management of antineutrophil cytoplasmic antibody-associated vasculitis. . Arthritis Rheum. 74::130517
    [Crossref] [Google Scholar]
  62. 62.
    Hale M, Rawlings DJ, Jackson SW. 2018.. The long and the short of it: insights into the cellular source of autoantibodies as revealed by B cell depletion therapy. . Curr. Opin. Immunol. 55::8188
    [Crossref] [Google Scholar]
  63. 63.
    Schrezenmeier E, Jayne D, Dorner T. 2018.. Targeting B cells and plasma cells in glomerular diseases: translational perspectives. . J. Am. Soc. Nephrol. 29::74158
    [Crossref] [Google Scholar]
  64. 64.
    Guillevin L, Pagnoux C, Karras A, Khouatra C, Aumaitre O, et al. 2014.. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. . N. Engl. J. Med. 371::177180
    [Crossref] [Google Scholar]
  65. 65.
    Charles P, Dechartres A, Terrier B, Cohen P, Faguer S, et al. 2020.. Reducing the initial number of rituximab maintenance-therapy infusions for ANCA-associated vasculitides: randomized-trial post-hoc analysis. . Rheumatology 59::297075
    [Crossref] [Google Scholar]
  66. 66.
    Smith RM, Jones RB, Specks U, Bond S, Nodale M, et al. 2023.. Rituximab versus azathioprine for maintenance of remission for patients with ANCA-associated vasculitis and relapsing disease: an international randomised controlled trial. . Ann. Rheum. Dis. 82::93744
    [Crossref] [Google Scholar]
  67. 67.
    Hellmich B, Sanchez-Alamo B, Schirmer JH, Berti A, Blockmans D, et al. 2024.. EULAR recommendations for the management of ANCA-associated vasculitis: 2022 update. . Ann. Rheum. Dis. 83:(1):3047
    [Crossref] [Google Scholar]
  68. 68.
    Charles P, Terrier B, Perrodeau E, Cohen P, Faguer S, et al. 2018.. Comparison of individually tailored versus fixed-schedule rituximab regimen to maintain ANCA-associated vasculitis remission: results of a multicentre, randomised controlled, phase III trial (MAINRITSAN2). . Ann. Rheum. Dis. 77::114349
    [Crossref] [Google Scholar]
  69. 69.
    Schmidt E, Kasperkiewicz M, Joly P. 2019.. Pemphigus. . Lancet 394::88294
    [Crossref] [Google Scholar]
  70. 70.
    Kasperkiewicz M, Ellebrecht CT, Takahashi H, Yamagami J, Zillikens D, et al. 2017.. Pemphigus. . Nat. Rev. Dis. Primers 3::17026
    [Crossref] [Google Scholar]
  71. 71.
    Joly P, Maho-Vaillant M, Prost-Squarcioni C, Hebert V, Houivet E, et al. 2017.. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. . Lancet 389::203140
    [Crossref] [Google Scholar]
  72. 72.
    Chen DM, Odueyungbo A, Csinady E, Gearhart L, Lehane P, et al. 2020.. Rituximab is an effective treatment in patients with pemphigus vulgaris and demonstrates a steroid-sparing effect. . Br. J. Dermatol. 182::111119
    [Crossref] [Google Scholar]
  73. 73.
    Werth VP, Joly P, Mimouni D, Maverakis E, Caux F, et al. 2021.. Rituximab versus mycophenolate mofetil in patients with pemphigus vulgaris. . N. Engl. J. Med. 384::2295305
    [Crossref] [Google Scholar]
  74. 74.
    Hammers CM, Chen J, Lin C, Kacir S, Siegel DL, et al. 2015.. Persistence of anti-desmoglein 3 IgG+ B-cell clones in pemphigus patients over years. . J. Investig. Dermatol. 135::74249
    [Crossref] [Google Scholar]
  75. 75.
    Colliou N, Picard D, Caillot F, Calbo S, Le Corre S, et al. 2013.. Long-term remissions of severe pemphigus after rituximab therapy are associated with prolonged failure of desmoglein B cell response. . Sci. Transl. Med. 5::175ra30
    [Crossref] [Google Scholar]
  76. 76.
    Kushner CJ, Wang S, Tovanabutra N, Tsai DE, Werth VP, Payne AS. 2019.. Factors associated with complete remission after rituximab therapy for pemphigus. . JAMA Dermatol. 155::14049
    [Crossref] [Google Scholar]
  77. 77.
    Horváth B, Huizinga J, Pas HH, Mulder AB, Jonkman MF. 2012.. Low-dose rituximab is effective in pemphigus. . Br. J. Dermatol. 166::40512
    [Crossref] [Google Scholar]
  78. 78.
    Reddy V, Klein C, Isenberg DA, Glennie MJ, Cambridge G, et al. 2017.. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. . Rheumatology 56::122737
    [Crossref] [Google Scholar]
  79. 79.
    Ruggenenti P, Fervenza FC, Remuzzi G. 2017.. Treatment of membranous nephropathy: time for a paradigm shift. . Nat. Rev. Nephrol. 13::56379
    [Crossref] [Google Scholar]
  80. 80.
    Lee DSW, Rojas OL, Gommerman JL. 2021.. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. . Nat. Rev. Drug Discov. 20::17999
    [Crossref] [Google Scholar]
  81. 81.
    Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, et al. 2018.. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. . Cell 175::85100.e23
    [Crossref] [Google Scholar]
  82. 82.
    Hausler D, Hausser-Kinzel S, Feldmann L, Torke S, Lepennetier G, et al. 2018.. Functional characterization of reappearing B cells after anti-CD20 treatment of CNS autoimmune disease. . PNAS 115::977378
    [Crossref] [Google Scholar]
  83. 83.
    Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, et al. 2015.. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. . Sci. Transl. Med. 7::310ra166
    [Google Scholar]
  84. 84.
    Stathopoulos P, Dalakas MC. 2022.. Evolution of anti-B cell therapeutics in autoimmune neurological diseases. . Neurotherapeutics 19::691710
    [Crossref] [Google Scholar]
  85. 85.
    Jiang R, Fichtner ML, Hoehn KB, Pham MC, Stathopoulos P, et al. 2020.. Single-cell repertoire tracing identifies rituximab-resistant B cells during myasthenia gravis relapses. . JCI Insight 5:(14):e136471
    [Crossref] [Google Scholar]
  86. 86.
    Manjarrez-Orduno N, Quach TD, Sanz I. 2009.. B cells and immunological tolerance. . J. Investig. Dermatol. 129::27888
    [Crossref] [Google Scholar]
  87. 87.
    Sanz I, Anolik JH, Looney RJ. 2007.. B cell depletion therapy in autoimmune diseases. . Front. Biosci. 12::254667
    [Crossref] [Google Scholar]
  88. 88.
    Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, et al. 2011.. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. . Blood 118::130515
    [Crossref] [Google Scholar]
  89. 89.
    Wang S, Wang J, Kumar V, Karnell JL, Naiman B, et al. 2018.. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. . Nat. Commun. 9::1758
    [Crossref] [Google Scholar]
  90. 90.
    Rubtsov AV, Rubtsova K, Kappler JW, Jacobelli J, Friedman RS, Marrack P. 2015.. CD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCs. . J. Immunol. 195::7179
    [Crossref] [Google Scholar]
  91. 91.
    Yeo L, Lom H, Juarez M, Snow M, Buckley CD, et al. 2015.. Expression of FcRL4 defines a pro-inflammatory, RANKL-producing B cell subset in rheumatoid arthritis. . Ann. Rheum. Dis. 74::92835
    [Crossref] [Google Scholar]
  92. 92.
    Qin Y, Cai ML, Jin HZ, Huang W, Zhu C, et al. 2022.. Age-associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing activation of fibroblast-like synoviocytes via TNF-alpha-mediated ERK1/2 and JAK-STAT1 pathways. . Ann. Rheum. Dis. 81::150414
    [Crossref] [Google Scholar]
  93. 93.
    Chan OT, Madaio MP, Shlomchik MJ. 1999.. The central and multiple roles of B cells in lupus pathogenesis. . Immunol. Rev. 169::10721
    [Crossref] [Google Scholar]
  94. 94.
    Lund FE. 2008.. Cytokine-producing B lymphocytes—key regulators of immunity. . Curr. Opin. Immunol. 20::33238
    [Crossref] [Google Scholar]
  95. 95.
    Wei B, Velazquez P, Turovskaya O, Spricher K, Aranda R, et al. 2005.. Mesenteric B cells centrally inhibit CD4+ T cell colitis through interaction with regulatory T cell subsets. . PNAS 102::201015
    [Crossref] [Google Scholar]
  96. 96.
    Rojas OL, Probstel AK, Porfilio EA, Wang AA, Charabati M, et al. 2019.. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. . Cell 176::61024.e18
    [Crossref] [Google Scholar]
  97. 97.
    Rosser EC, Piper CJM, Matei DE, Blair PA, Rendeiro AF, et al. 2020.. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. . Cell Metab. 31::83751.e10
    [Crossref] [Google Scholar]
  98. 98.
    Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, et al. 2021.. Immunosuppressive mechanisms of regulatory B cells. . Front. Immunol. 12::611795
    [Crossref] [Google Scholar]
  99. 99.
    Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, et al. 2010.. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. . Immunity 32::12940
    [Crossref] [Google Scholar]
  100. 100.
    Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, et al. 2013.. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. . Sci. Transl. Med. 5::173ra23
    [Crossref] [Google Scholar]
  101. 101.
    Hu CY, Rodriguez-Pinto D, Du W, Ahuja A, Henegariu O, et al. 2007.. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. . J. Clin. Investig. 117::385767
    [Crossref] [Google Scholar]
  102. 102.
    Menon M, Blair PA, Isenberg DA, Mauri C. 2016.. A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. . Immunity 44::68397
    [Crossref] [Google Scholar]
  103. 103.
    Roll P, Palanichamy A, Kneitz C, Dorner T, Tony HP. 2006.. Regeneration of B cell subsets after transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. . Arthritis Rheum. 54::237786
    [Crossref] [Google Scholar]
  104. 104.
    Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC. 2006.. Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. . Arthritis Rheum. 54::61320
    [Crossref] [Google Scholar]
  105. 105.
    Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, et al. 2009.. Novel human transitional B cell populations revealed by B cell depletion therapy. . J. Immunol. 182::598293
    [Crossref] [Google Scholar]
  106. 106.
    Palanichamy A, Bauer JW, Yalavarthi S, Meednu N, Barnard J, et al. 2014.. Neutrophil-mediated IFN activation in the bone marrow alters B cell development in human and murine systemic lupus erythematosus. . J. Immunol. 192::90618
    [Crossref] [Google Scholar]
  107. 107.
    Chen YJ, Abila B, Mostafa Kamel Y. 2023.. CAR-T: What is next?. Cancers 15:(3):663
    [Crossref] [Google Scholar]
  108. 108.
    Tomasik J, Jasinski M, Basak GW. 2022.. Next generations of CAR-T cells—new therapeutic opportunities in hematology?. Front. Immunol. 13::1034707
    [Crossref] [Google Scholar]
  109. 109.
    Milone MC, O'Doherty U. 2018.. Clinical use of lentiviral vectors. . Leukemia 32::152941
    [Crossref] [Google Scholar]
  110. 110.
    Labanieh L, Mackall CL. 2023.. CAR immune cells: design principles, resistance and the next generation. . Nature 614::63548
    [Crossref] [Google Scholar]
  111. 111.
    Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, et al. 2012.. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. . Sci. Transl. Med. 4::132ra53
    [Crossref] [Google Scholar]
  112. 112.
    Park JR, DiGiusto DL, Slovak M, Wright C, Naranjo A, et al. 2007.. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. . Mol. Ther. 15::82533
    [Crossref] [Google Scholar]
  113. 113.
    Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, et al. 2008.. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. . Nat. Med. 14::126470
    [Crossref] [Google Scholar]
  114. 114.
    Till BG, Jensen MC, Wang J, Chen EY, Wood BL, et al. 2008.. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. . Blood 112::226171
    [Crossref] [Google Scholar]
  115. 115.
    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, et al. 2005.. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. . J. Exp. Med. 202::90712
    [Crossref] [Google Scholar]
  116. 116.
    Wang LX, Shu S, Plautz GE. 2005.. Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. . Cancer Res. 65::954754
    [Crossref] [Google Scholar]
  117. 117.
    Cai C, Tang D, Han Y, Shen E, Abdihamid O, et al. 2020.. A comprehensive analysis of the fatal toxic effects associated with CD19 CAR-T cell therapy. . Aging 12::1874153
    [Crossref] [Google Scholar]
  118. 118.
    Cappell KM, Kochenderfer JN. 2023.. Long-term outcomes following CAR T cell therapy: what we know so far. . Nat. Rev. Clin. Oncol. 20::35971
    [Crossref] [Google Scholar]
  119. 119.
    Finkel TH, Radic M. 2023.. Chimeric receptors broaden the therapeutic landscape for autoimmune disease. . Nat. Rev. Rheumatol. 19::32728
    [Crossref] [Google Scholar]
  120. 120.
    Bergmann C, Muller F, Distler JHW, Gyorfi AH, Volkl S, et al. 2023.. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. . Ann. Rheum. Dis. 82:(8):111720
    [Crossref] [Google Scholar]
  121. 121.
    Mackensen A, Muller F, Mougiakakos D, Boltz S, Wilhelm A, et al. 2022.. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. . Nat. Med. 28::212432
    [Crossref] [Google Scholar]
  122. 122.
    Mougiakakos D, Kronke G, Volkl S, Kretschmann S, Aigner M, et al. 2021.. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. . N. Engl. J. Med. 385::56769
    [Crossref] [Google Scholar]
  123. 123.
    Muller F, Boeltz S, Knitza J, Aigner M, Volkl S, et al. 2023.. CD19-targeted CAR T cells in refractory antisynthetase syndrome. . Lancet 401::81518
    [Crossref] [Google Scholar]
  124. 124.
    Zhang W, Feng J, Cinquina A, Wang Q, Xu H, et al. 2021.. Treatment of systemic lupus erythematosus using BCMA-CD19 compound CAR. . Stem Cell Rev. Rep. 17::212023
    [Crossref] [Google Scholar]
  125. 125.
    Schmelz JL, Navsaria L, Goswamy R, Chuang HH, Miranda RN, Lee HJ. 2020.. Chimeric antigen receptor T-cell therapy's role in antiphospholipid syndrome: a case report. . Br. J. Haematol. 188::e58
    [Crossref] [Google Scholar]
  126. 126.
    Qin C, Tian DS, Zhou LQ, Shang K, Huang L, et al. 2023.. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: phase 1 trial interim results. . Signal. Transduct. Target. Ther. 8::5
    [Crossref] [Google Scholar]
  127. 127.
    Pecher AC, Hensen L, Klein R, Schairer R, Lutz K, et al. 2023.. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. . JAMA 329::215462
    [Crossref] [Google Scholar]
  128. 128.
    Albinger N, Hartmann J, Ullrich E. 2021.. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. . Gene Ther. 28::51327
    [Crossref] [Google Scholar]
  129. 129.
    Mackensen A. 2021.. A phase I open label dose escalation study of MB-CART19.1 in relapsed and refractory CD19+ B cell malignancies, interim preliminary results in pediatric ALL, adult ALL including CLL cohorts. . Blood 138::383637
    [Crossref] [Google Scholar]
  130. 130.
    Xiao W, Salem D, McCoy CS, Lee D, Shah NN, et al. 2018.. Early recovery of circulating immature B cells in B-lymphoblastic leukemia patients after CD19 targeted CAR T cell therapy: a pitfall for minimal residual disease detection. . Cytometry B Clin. Cytom. 94::43443
    [Crossref] [Google Scholar]
  131. 131.
    Lundberg IE, Galindo-Feria AS, Horuluoglu B. 2023.. CD19-targeting CAR T-cell therapy for antisynthetase syndrome. . JAMA 329::213031
    [Crossref] [Google Scholar]
  132. 132.
    Granit V, Benatar M, Kurtoglu M, Miljković MD, Chahin N, et al. 2023.. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. . Lancet Neurol. 22::57890
    [Crossref] [Google Scholar]
  133. 133.
    Zhang Z, Xu Q, Huang L. 2023.. B cell depletion therapies in autoimmune diseases: monoclonal antibodies or chimeric antigen receptor-based therapy?. Front. Immunol. 14::1126421
    [Crossref] [Google Scholar]
  134. 134.
    Sun Y, Yuan Y, Zhang B, Zhang X. 2023.. CARs: a new approach for the treatment of autoimmune diseases. . Sci. China Life Sci. 66::71128
    [Crossref] [Google Scholar]
  135. 135.
    Oh S, Payne AS. 2022.. Engineering cell therapies for autoimmune diseases: from preclinical to clinical proof of concept. . Immune Netw. 22:(5):e37
    [Crossref] [Google Scholar]
  136. 136.
    Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, et al. 2016.. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. . Science 353::17984
    [Crossref] [Google Scholar]
  137. 137.
    Lee J, Lundgren DK, Mao X, Manfredo-Vieira S, Nunez-Cruz S, et al. 2020.. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. . J. Clin. Investig. 130::631724
    [Crossref] [Google Scholar]
  138. 138.
    Oh S, Mao X, Manfredo-Vieira S, Lee J, Patel D, et al. 2023.. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. . Nat. Biotechnol. 41:(9):122938
    [Crossref] [Google Scholar]
  139. 139.
    Subklewe M. 2021.. BiTEs better than CAR T cells. . Blood Adv. 5::60712
    [Crossref] [Google Scholar]
  140. 140.
    Labrijn AF, Janmaat ML, Reichert JM, Parren P. 2019.. Bispecific antibodies: a mechanistic review of the pipeline. . Nat. Rev. Drug Discov. 18::585608
    [Crossref] [Google Scholar]
  141. 141.
    Verbrugge SE, Scheper RJ, Lems WF, de Gruijl TD, Jansen G. 2015.. Proteasome inhibitors as experimental therapeutics of autoimmune diseases. . Arthritis Res. Ther. 17::17
    [Crossref] [Google Scholar]
  142. 142.
    Noronha V, Fynan TM, Duffy T. 2006.. Flare in neuropathy following rituximab therapy for Waldenstrom's macroglobulinemia. . J. Clin. Oncol. 24::e3
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-083122-044829
Loading
/content/journals/10.1146/annurev-immunol-083122-044829
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error