1932

Abstract

IgE-mediated food allergy (IgE-FA) occurs due to a breakdown in immune tolerance that leads to a detrimental type 2 helper T cell (T2) adaptive immune response. While the processes governing this loss of tolerance are incompletely understood, several host-related and environmental factors impacting the risk of IgE-FA development have been identified. Mounting evidence supports the role of an impaired epithelial barrier in the development of IgE-FA, with exposure of allergens through damaged skin and gut epithelium leading to the aberrant production of alarmins and activation of T2-type allergic inflammation. The treatment of IgE-FA has historically been avoidance with acute management of allergic reactions, but advances in allergen-specific immunotherapy and the development of biologics and other novel therapeutics are rapidly changing the landscape of food allergy treatment. Here, we discuss the pathogenesis and immunobiology of IgE-FA in addition to its diagnosis, prognosis, and treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090122-043501
2024-06-28
2025-03-24
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-090122-043501.html?itemId=/content/journals/10.1146/annurev-immunol-090122-043501&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Warren CM, Jiang J, Gupta RS. 2020.. Epidemiology and burden of food allergy. . Curr. Allergy Asthma Rep. 20::6
    [Crossref] [Google Scholar]
  2. 2.
    Warren CM, Aktas ON, Manalo LJ, Bartell TR, Gupta RS. 2023.. The epidemiology of multifood allergy in the United States: a population-based study. . Ann. Allergy Asthma Immunol. 130::63748.e5
    [Crossref] [Google Scholar]
  3. 3.
    Gupta R, Holdford D, Bilaver L, Dyer A, Holl JL, Meltzer D. 2013.. The economic impact of childhood food allergy in the United States. . JAMA Pediatr. 167::102631
    [Crossref] [Google Scholar]
  4. 4.
    Bilaver LA, Chadha AS, Doshi P, O'Dwyer L, Gupta RS. 2019.. Economic burden of food allergy: a systematic review. . Ann. Allergy Asthma Immunol. 122::37380.e1
    [Crossref] [Google Scholar]
  5. 5.
    Jeong K, Lee S. 2023.. The natural course of IgE-mediated food allergy in children. . Clin. Exp. Pediatr. 66::50411
    [Crossref] [Google Scholar]
  6. 6.
    Spergel JM, Du Toit G, Davis CM. 2023.. Might biologics serve to interrupt the atopic march?. J. Allergy Clin. Immunol. 151::59094
    [Crossref] [Google Scholar]
  7. 7.
    Scarpone R, Kimkool P, Ierodiakonou D, Leonardi-Bee J, Garcia-Larsen V, et al. 2023.. Timing of allergenic food introduction and risk of immunoglobulin E–mediated food allergy: a systematic review and meta-analysis. . JAMA Pediatr. 177::48997
    [Crossref] [Google Scholar]
  8. 8.
    Sampson HA, Aceves S, Bock SA, James J, Jones S, et al. 2014.. Food allergy: a practice parameter update: 2014. . J. Allergy Clin. Immunol. 134::101625.e43
    [Crossref] [Google Scholar]
  9. 9.
    Berin MC. 2023.. Targeting type 2 immunity and the future of food allergy treatment. . J. Exp. Med. 220::e20221104
    [Crossref] [Google Scholar]
  10. 10.
    Erlich D. 2022.. Peanut allergen powder (Palforzia) for peanut allergy. . Am. Fam. Phys. 105::2021
    [Google Scholar]
  11. 11.
    Dantzer JA, Kim EH, Chinthrajah RS, Wood RA. 2023.. Treatment for food allergy: current status and unmet needs. . J. Allergy Clin. Immunol. 151::114
    [Crossref] [Google Scholar]
  12. 12.
    Bohle B, Werfel T. 2021.. Treatment approaches to food allergy. . Handb. Exp. Pharmacol. 268::17393
    [Crossref] [Google Scholar]
  13. 13.
    Sampath V, Sindher SB, Alvarez Pinzon AM, Nadeau KC. 2020.. Can food allergy be cured? What are the future prospects?. Allergy 75::131626
    [Crossref] [Google Scholar]
  14. 14.
    Davidson WF, Leung DYM, Beck LA, Berin CM, Boguniewicz M, et al. 2019.. Report from the National Institute of Allergy and Infectious Diseases workshop on “Atopic Dermatitis and the Atopic March: Mechanisms and Interventions. .” J. Allergy Clin. Immunol. 143::894913
    [Crossref] [Google Scholar]
  15. 15.
    Schneider L, Hanifin J, Boguniewicz M, Eichenfield LF, Spergel JM, et al. 2016.. Study of the atopic march: development of atopic comorbidities. . Pediatr. Dermatol. 33::38898
    [Crossref] [Google Scholar]
  16. 16.
    Hill DA, Spergel JM. 2018.. The atopic march: critical evidence and clinical relevance. . Ann. Allergy Asthma Immunol. 120::13137
    [Crossref] [Google Scholar]
  17. 17.
    Yang L, Fu J, Zhou Y. 2020.. Research progress in atopic march. . Front. Immunol. 11::1907
    [Crossref] [Google Scholar]
  18. 18.
    Kapoor R, Menon C, Hoffstad O, Bilker W, Leclerc P, Margolis DJ. 2008.. The prevalence of atopic triad in children with physician-confirmed atopic dermatitis. . J. Am. Acad. Dermatol. 58::6873
    [Crossref] [Google Scholar]
  19. 19.
    Berni Canani R, Paparo L, Nocerino R, Di Scala C, Della Gatta G, et al. 2019.. Gut microbiome as target for innovative strategies against food allergy. . Front. Immunol. 10::191
    [Crossref] [Google Scholar]
  20. 20.
    Celebi Sozener Z, Cevhertas L, Nadeau K, Akdis M, Akdis CA. 2020.. Environmental factors in epithelial barrier dysfunction. . J. Allergy Clin. Immunol. 145::151728
    [Crossref] [Google Scholar]
  21. 21.
    Rachid R, Stephen-Victor E, Chatila TA. 2021.. The microbial origins of food allergy. . J. Allergy Clin. Immunol. 147::80813
    [Crossref] [Google Scholar]
  22. 22.
    Zhao W, Ho HE, Bunyavanich S. 2019.. The gut microbiome in food allergy. . Ann. Allergy Asthma Immunol. 122::27682
    [Crossref] [Google Scholar]
  23. 23.
    Azad MB, Konya T, Guttman DS, Field CJ, Sears MR, et al. 2015.. Infant gut microbiota and food sensitization: associations in the first year of life. . Clin. Exp. Allergy 45::63243
    [Crossref] [Google Scholar]
  24. 24.
    Brough HA, Nadeau KC, Sindher SB, Alkotob SS, Chan S, et al. 2020.. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented?. Allergy 75::2185205
    [Crossref] [Google Scholar]
  25. 25.
    Brough HA, Liu AH, Sicherer S, Makinson K, Douiri A, et al. 2015.. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. . J. Allergy Clin. Immunol. 135::16470
    [Crossref] [Google Scholar]
  26. 26.
    Han H, Roan F, Johnston LK, Smith DE, Bryce PJ, Ziegler SF. 2018.. IL-33 promotes gastrointestinal allergy in a TSLP-independent manner. . Mucosal Immunol. 11::394403
    [Crossref] [Google Scholar]
  27. 27.
    Han X, Krempski JW, Nadeau K. 2020.. Advances and novel developments in mechanisms of allergic inflammation. . Allergy 75::310011
    [Crossref] [Google Scholar]
  28. 28.
    Drislane C, Irvine AD. 2020.. The role of filaggrin in atopic dermatitis and allergic disease. . Ann. Allergy Asthma Immunol. 124::3643
    [Crossref] [Google Scholar]
  29. 29.
    Leung DYM, Berdyshev E, Goleva E. 2020.. Cutaneous barrier dysfunction in allergic diseases. . J. Allergy Clin. Immunol. 145::148597
    [Crossref] [Google Scholar]
  30. 30.
    Kanchan K, Clay S, Irizar H, Bunyavanich S, Mathias RA. 2021.. Current insights into the genetics of food allergy. . J. Allergy Clin. Immunol. 147::1528
    [Crossref] [Google Scholar]
  31. 31.
    Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, et al. 2015.. Randomized trial of peanut consumption in infants at risk for peanut allergy. . N. Engl. J. Med. 372::80313
    [Crossref] [Google Scholar]
  32. 32.
    du Toit G, Sayre PH, Roberts G, Lawson K, Sever ML, et al. 2018.. The allergen-specificity of early peanut consumption and the impact on the development of allergic disease in the LEAP Study Cohort. . J. Allergy Clin. Immunol. 141::134353
    [Crossref] [Google Scholar]
  33. 33.
    Perkin MR, Logan K, Tseng A, Raji B, Ayis S, et al. 2016.. Randomized trial of introduction of allergenic foods in breast-fed infants. . N. Engl. J. Med. 374::173343
    [Crossref] [Google Scholar]
  34. 34.
    Kuper P, Hasenpusch C, Proebstl S, Matterne U, Hornung CJ, et al. 2023.. Timing of complementary feeding for early childhood allergy prevention: an overview of systematic reviews. . Clin. Exp. Allergy. 53::124355
    [Crossref] [Google Scholar]
  35. 35.
    Fleischer DM, Chan ES, Venter C, Spergel JM, Abrams EM, et al. 2021.. A consensus approach to the primary prevention of food allergy through nutrition: guidance from the American Academy of Allergy, Asthma, and Immunology; American College of Allergy, Asthma, and Immunology; and the Canadian Society for Allergy and Clinical Immunology. . J. Allergy Clin. Immunol. Pract. 9::2243.e4
    [Crossref] [Google Scholar]
  36. 36.
    Peters RL, Guarnieri I, Tang MLK, Lowe AJ, Dharmage SC, et al. 2022.. The natural history of peanut and egg allergy in children up to age 6 years in the HealthNuts population-based longitudinal study. . J. Allergy Clin. Immunol. 150::65765.e13
    [Crossref] [Google Scholar]
  37. 37.
    Berin MC. 2019.. Mechanisms that define transient versus persistent food allergy. . J. Allergy Clin. Immunol. 143::45357
    [Crossref] [Google Scholar]
  38. 38.
    Vickery BP, Berglund JP, Burk CM, Fine JP, Kim EH, et al. 2017.. Early oral immunotherapy in peanut-allergic preschool children is safe and highly effective. . J. Allergy Clin. Immunol. 139::17381.e8
    [Crossref] [Google Scholar]
  39. 39.
    Jones SM, Kim EH, Nadeau KC, Nowak-Wegrzyn A, Wood RA, et al. 2022.. Efficacy and safety of oral immunotherapy in children aged 1–3 years with peanut allergy (the Immune Tolerance Network IMPACT trial): a randomised placebo-controlled study. . Lancet 399::35971
    [Crossref] [Google Scholar]
  40. 40.
    Loke P, Vickery BP, Jones SM, Peters RL, Roberts G, Koplin JJ. 2023.. Food allergen immunotherapy in preschool children: Do we have the evidence?. J. Allergy Clin. Immunol. Pract. 11::102835
    [Crossref] [Google Scholar]
  41. 41.
    Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. 2020.. IgE and IgG antibodies as regulators of mast cell and basophil functions in food allergy. . Front. Immunol. 11::603050
    [Crossref] [Google Scholar]
  42. 42.
    Hoh RA, Joshi SA, Lee JY, Martin BA, Varma S, et al. 2020.. Origins and clonal convergence of gastrointestinal IgE+ B cells in human peanut allergy. . Sci. Immunol. 5::eaay4209
    [Crossref] [Google Scholar]
  43. 43.
    Soleto I, Jimenez-Saiz R, Carrasco YR. 2021.. Enlightening human B-cell diversity. . Allergy 76::264446
    [Crossref] [Google Scholar]
  44. 44.
    He JS, Subramaniam S, Narang V, Srinivasan K, Saunders SP, et al. 2017.. IgG1 memory B cells keep the memory of IgE responses. . Nat. Commun. 8::641
    [Crossref] [Google Scholar]
  45. 45.
    Jabara HH, Fu SM, Geha RS, Vercelli D. 1990.. CD40 and IgE: synergism between anti-CD40 monoclonal antibody and interleukin 4 in the induction of IgE synthesis by highly purified human B cells. . J. Exp. Med. 172::186164
    [Crossref] [Google Scholar]
  46. 46.
    Lin AA, Freeman AF, Nutman TB. 2018.. IL-10 indirectly downregulates IL-4-induced IgE production by human B cells. . Immunohorizons 2::398406
    [Crossref] [Google Scholar]
  47. 47.
    Croote D, Darmanis S, Nadeau KC, Quake SR. 2018.. High-affinity allergen-specific human antibodies cloned from single IgE B cell transcriptomes. . Science 362::13069
    [Crossref] [Google Scholar]
  48. 48.
    Karlsson MR, Johansen FE, Kahu H, Macpherson A, Brandtzaeg P. 2010.. Hypersensitivity and oral tolerance in the absence of a secretory immune system. . Allergy 65::56170
    [Crossref] [Google Scholar]
  49. 49.
    Strait RT, Morris SC, Finkelman FD. 2006.. IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and FcγRIIb cross-linking. . J. Clin. Investig. 116::83341
    [Crossref] [Google Scholar]
  50. 50.
    Burks AW, Jones SM, Wood RA, Fleischer DM, Sicherer SH, et al. 2012.. Oral immunotherapy for treatment of egg allergy in children. . N. Engl. J. Med. 367::23343
    [Crossref] [Google Scholar]
  51. 51.
    Chinthrajah RS, Purington N, Andorf S, Long A, O'Laughlin KL, et al. 2019.. Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double-blind, placebo-controlled, phase 2 study. . Lancet 394::143749
    [Crossref] [Google Scholar]
  52. 52.
    Suarez-Farinas M, Suprun M, Chang HL, Gimenez G, Grishina G, et al. 2019.. Predicting development of sustained unresponsiveness to milk oral immunotherapy using epitope-specific antibody binding profiles. . J. Allergy Clin. Immunol. 143::103846
    [Crossref] [Google Scholar]
  53. 53.
    Wright BL, Kulis M, Orgel KA, Burks AW, Dawson P, et al. 2016.. Component-resolved analysis of IgA, IgE, and IgG4 during egg OIT identifies markers associated with sustained unresponsiveness. . Allergy 71::155260
    [Crossref] [Google Scholar]
  54. 54.
    Sindher SB, Kumar D, Cao S, Purington N, Long A, et al. 2022.. Phase 2, randomized multi oral immunotherapy with omalizumab “real life” study. . Allergy 77::187384
    [Crossref] [Google Scholar]
  55. 55.
    Andorf S, Purington N, Kumar D, Long A, O'Laughlin KL, et al. 2019.. A phase 2 randomized controlled multisite study using omalizumab-facilitated rapid desensitization to test continued versus discontinued dosing in multifood allergic individuals. . EClinicalMedicine 7::2738
    [Crossref] [Google Scholar]
  56. 56.
    Li MY, Zhu M, Linghu EQ, Feng F, Zhu B, et al. 2016.. Interleukin-13 suppresses interleukin-10 via inhibiting A20 in peripheral B cells of patients with food allergy. . Oncotarget 7::7991424
    [Crossref] [Google Scholar]
  57. 57.
    Noh J, Noh G, Kim HS, Kim AR, Choi WS. 2012.. Allergen-specific responses of CD19+CD5+Foxp3+ regulatory B cells (Bregs) and CD4+Foxp3+ regulatory T cell (Tregs) in immune tolerance of cow milk allergy of late eczematous reactions. . Cell. Immunol. 274::10914
    [Crossref] [Google Scholar]
  58. 58.
    van Neerven RJ, Knol EF, Ejrnaes A, Wurtzen PA. 2006.. IgE-mediated allergen presentation and blocking antibodies: regulation of T-cell activation in allergy. . Int. Arch. Allergy Immunol. 141::11929
    [Crossref] [Google Scholar]
  59. 59.
    Dhaliwal B, Pang MO, Keeble AH, James LK, Gould HJ, et al. 2017.. IgE binds asymmetrically to its B cell receptor CD23. . Sci. Rep. 7::45533
    [Crossref] [Google Scholar]
  60. 60.
    Selb R, Eckl-Dorna J, Neunkirchner A, Schmetterer K, Marth K, et al. 2017.. CD23 surface density on B cells is associated with IgE levels and determines IgE-facilitated allergen uptake, as well as activation of allergen-specific T cells. . J. Allergy Clin. Immunol. 139::29099.e4
    [Crossref] [Google Scholar]
  61. 61.
    Poole JA, Meng J, Reff M, Spellman MC, Rosenwasser LJ. 2005.. Anti-CD23 monoclonal antibody, lumiliximab, inhibited allergen-induced responses in antigen-presenting cells and T cells from atopic subjects. . J. Allergy Clin. Immunol. 116::78088
    [Crossref] [Google Scholar]
  62. 62.
    Rosenwasser LJ, Busse WW, Lizambri RG, Olejnik TA, Totoritis MC. 2003.. Allergic asthma and an anti-CD23 mAb (IDEC-152): results of a phase I, single-dose, dose-escalating clinical trial. . J. Allergy Clin. Immunol. 112::56370
    [Crossref] [Google Scholar]
  63. 63.
    Dispenza MC, Bochner BS, MacGlashan DW Jr. 2020.. Targeting the FcεRI pathway as a potential strategy to prevent food-induced anaphylaxis. . Front. Immunol. 11::614402
    [Crossref] [Google Scholar]
  64. 64.
    Akdis CA. 2006.. Allergy and hypersensitivity: mechanisms of allergic disease. . Curr. Opin. Immunol. 18::71826
    [Crossref] [Google Scholar]
  65. 65.
    Yu W, Freeland DMH, Nadeau KC. 2016.. Food allergy: immune mechanisms, diagnosis and immunotherapy. . Nat. Rev. Immunol. 16::75165
    [Crossref] [Google Scholar]
  66. 66.
    Sampson HA, O'Mahony L, Burks AW, Plaut M, Lack G, Akdis CA. 2018.. Mechanisms of food allergy. . J. Allergy Clin. Immunol. 141::1119
    [Crossref] [Google Scholar]
  67. 67.
    Chiang D, Chen X, Jones SM, Wood RA, Sicherer SH, et al. 2018.. Single-cell profiling of peanut-responsive T cells in patients with peanut allergy reveals heterogeneous effector TH2 subsets. . J. Allergy Clin. Immunol. 141::210720
    [Crossref] [Google Scholar]
  68. 68.
    Zhou X, Yu W, Lyu SC, Macaubas C, Bunning B, et al. 2021.. A positive feedback loop reinforces the allergic immune response in human peanut allergy. . J. Exp. Med. 218::e20201793
    [Crossref] [Google Scholar]
  69. 69.
    Berin MC, Agashe C, Burks AW, Chiang D, Davidson WF, et al. 2022.. Allergen-specific T cells and clinical features of food allergy: lessons from CoFAR immunotherapy cohorts. . J. Allergy Clin. Immunol. 149::137382.e12
    [Crossref] [Google Scholar]
  70. 70.
    Kulis MD, Patil SU, Wambre E, Vickery BP. 2018.. Immune mechanisms of oral immunotherapy. . J. Allergy Clin. Immunol. 141::49198
    [Crossref] [Google Scholar]
  71. 71.
    Gowthaman U, Chen JS, Zhang B, Flynn WF, Lu Y, et al. 2019.. Identification of a T follicular helper cell subset that drives anaphylactic IgE. . Science 365::eaaw6433
    [Crossref] [Google Scholar]
  72. 72.
    Wambre E, Bajzik V, DeLong JH, O'Brien K, Nguyen QA, et al. 2017.. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. . Sci. Transl. Med. 9::eaam9171
    [Crossref] [Google Scholar]
  73. 73.
    Huang Z, Chu M, Chen X, Wang Z, Jiang L, et al. 2022.. Th2A cells: the pathogenic players in allergic diseases. . Front. Immunol. 13::916778
    [Crossref] [Google Scholar]
  74. 74.
    Bajzik V, DeBerg HA, Garabatos N, Rust BJ, Obrien KK, et al. 2022.. Oral desensitization therapy for peanut allergy induces dynamic changes in peanut-specific immune responses. . Allergy 77::253448
    [Crossref] [Google Scholar]
  75. 75.
    Bacher P, Heinrich F, Stervbo U, Nienen M, Vahldieck M, et al. 2016.. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. . Cell 167::106778.e16
    [Crossref] [Google Scholar]
  76. 76.
    Ruiter B, Smith NP, Monian B, Tu AA, Fleming E, et al. 2020.. Expansion of the CD4+ effector T-cell repertoire characterizes peanut-allergic patients with heightened clinical sensitivity. . J. Allergy Clin. Immunol. 145::27082
    [Crossref] [Google Scholar]
  77. 77.
    Kaushik A, Dunham D, Han X, Do E, Andorf S, et al. 2022.. CD8+ T cell differentiation status correlates with the feasibility of sustained unresponsiveness following oral immunotherapy. . Nat. Commun. 13::6646
    [Crossref] [Google Scholar]
  78. 78.
    Boonpiyathad T, Sozener ZC, Akdis M, Akdis CA. 2020.. The role of Treg cell subsets in allergic disease. . Asian Pac. J. Allergy Immunol. 38::13949
    [Google Scholar]
  79. 79.
    Satitsuksanoa P, Jansen K, Globinska A, van de Veen W, Akdis M. 2018.. Regulatory immune mechanisms in tolerance to food allergy. . Front. Immunol. 9::2939
    [Crossref] [Google Scholar]
  80. 80.
    Lan F, Zhang N, Bachert C, Zhang L. 2020.. Stability of regulatory T cells in T helper 2–biased allergic airway diseases. . Allergy 75::191826
    [Crossref] [Google Scholar]
  81. 81.
    Noval Rivas M, Chatila TA. 2016.. Regulatory T cells in allergic diseases. . J. Allergy Clin. Immunol. 138::63952
    [Crossref] [Google Scholar]
  82. 82.
    Smaldini PL, Orsini Delgado ML, Fossati CA, Docena GH. 2015.. Orally-induced intestinal CD4+ CD25+ FoxP3+ Treg controlled undesired responses towards oral antigens and effectively dampened food allergic reactions. . PLOS ONE 10::e0141116
    [Crossref] [Google Scholar]
  83. 83.
    Lozano-Ojalvo D, Tyler SR, Aranda CJ, Wang J, Sicherer S, et al. 2023.. Allergen recognition by specific effector Th2 cells enables IL-2-dependent activation of regulatory T-cell responses in humans. . Allergy 78::697713
    [Crossref] [Google Scholar]
  84. 84.
    Karlsson MR, Rugtveit J, Brandtzaeg P. 2004.. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. . J. Exp. Med. 199::167988
    [Crossref] [Google Scholar]
  85. 85.
    Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, et al. 2014.. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). . J. Allergy Clin. Immunol. 133::50010
    [Crossref] [Google Scholar]
  86. 86.
    Varshney P, Jones SM, Scurlock AM, Perry TT, Kemper A, et al. 2011.. A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response. . J. Allergy Clin. Immunol. 127::65460
    [Crossref] [Google Scholar]
  87. 87.
    Weissler KA, Rasooly M, DiMaggio T, Bolan H, Cantave D, et al. 2018.. Identification and analysis of peanut-specific effector T and regulatory T cells in children allergic and tolerant to peanut. . J. Allergy Clin. Immunol. 141::1699710.e7
    [Crossref] [Google Scholar]
  88. 88.
    Manohar M, Dunham D, Gupta S, Yan Z, Zhang W, et al. 2021.. Immune changes beyond Th2 pathways during rapid multifood immunotherapy enabled with omalizumab. . Allergy 76::280926
    [Crossref] [Google Scholar]
  89. 89.
    Oettgen HC. 2023.. Mast cells in food allergy: inducing immediate reactions and shaping long-term immunity. . J. Allergy Clin. Immunol. 151::2125
    [Crossref] [Google Scholar]
  90. 90.
    Paranjape A, Tsai M, Mukai K, Hoh RA, Joshi SA, et al. 2020.. Oral immunotherapy and basophil and mast cell reactivity in food allergy. . Front. Immunol. 11::602660
    [Crossref] [Google Scholar]
  91. 91.
    Ehrsam C, Rechenauer T, Allabauer I, Siebenlist G, Kaspar S, et al. 2022.. Mucosal mast cell distribution in the gastrointestinal tract of children: a preliminary study for establishing reference values. . J. Pediatr. Gastroenterol. Nutr. 74::4653
    [Crossref] [Google Scholar]
  92. 92.
    Hagel AF, deRossi T, Zopf Y, Konturek P, Dauth W, et al. 2013.. Mast cell tryptase levels in gut mucosa in patients with gastrointestinal symptoms caused by food allergy. . Int. Arch. Allergy Immunol. 160::35055
    [Crossref] [Google Scholar]
  93. 93.
    Chen CY, Lee JB, Liu B, Ohta S, Wang PY, et al. 2015.. Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. . Immunity 43::788802
    [Crossref] [Google Scholar]
  94. 94.
    Burton OT, Tamayo JM, Stranks AJ, Koleoglou KJ, Oettgen HC. 2018.. Allergen-specific IgG antibody signaling through FcγRIIb promotes food tolerance. . J. Allergy Clin. Immunol. 141::189201.e3
    [Crossref] [Google Scholar]
  95. 95.
    Santos AF, Lack G. 2016.. Basophil activation test: food challenge in a test tube or specialist research tool?. Clin. Transl. Allergy 6::10
    [Crossref] [Google Scholar]
  96. 96.
    Santos AF, Shreffler WG. 2017.. Road map for the clinical application of the basophil activation test in food allergy. . Clin. Exp. Allergy 47::111524
    [Crossref] [Google Scholar]
  97. 97.
    Wanich N, Nowak-Wegrzyn A, Sampson HA, Shreffler WG. 2009.. Allergen-specific basophil suppression associated with clinical tolerance in patients with milk allergy. . J. Allergy Clin. Immunol. 123::78994.e20
    [Crossref] [Google Scholar]
  98. 98.
    Ford LS, Bloom KA, Nowak-Wegrzyn AH, Shreffler WG, Masilamani M, Sampson HA. 2013.. Basophil reactivity, wheal size, and immunoglobulin levels distinguish degrees of cow's milk tolerance. . J. Allergy Clin. Immunol. 131::18086.e1–3
    [Crossref] [Google Scholar]
  99. 99.
    Patil SU, Steinbrecher J, Calatroni A, Smith N, Ma A, et al. 2019.. Early decrease in basophil sensitivity to Ara h 2 precedes sustained unresponsiveness after peanut oral immunotherapy. . J. Allergy Clin. Immunol. 144::131019.e4
    [Crossref] [Google Scholar]
  100. 100.
    Tsai M, Mukai K, Chinthrajah RS, Nadeau KC, Galli SJ. 2020.. Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut-specific IgE. . J. Allergy Clin. Immunol. 145::88596.e6
    [Crossref] [Google Scholar]
  101. 101.
    Kashiwakura JI, Ando T, Karasuyama H, Kubo M, Matsumoto K, et al. 2019.. The basophil–IL-4–mast cell axis is required for food allergy. . Allergy 74::199296
    [Crossref] [Google Scholar]
  102. 102.
    Liu EG, Yin X, Swaminathan A, Eisenbarth SC. 2020.. Antigen-presenting cells in food tolerance and allergy. . Front. Immunol. 11::616020
    [Crossref] [Google Scholar]
  103. 103.
    Fucikova J, Palova-Jelinkova L, Bartunkova J, Spisek R. 2019.. Induction of tolerance and immunity by dendritic cells: mechanisms and clinical applications. . Front. Immunol. 10::2393
    [Crossref] [Google Scholar]
  104. 104.
    Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, et al. 2000.. Identification of DC-SIGN, a novel dendritic cell–specific ICAM-3 receptor that supports primary immune responses. . Cell 100::57585
    [Crossref] [Google Scholar]
  105. 105.
    Kamalakannan M, Chang LM, Grishina G, Sampson HA, Masilamani M. 2016.. Identification and characterization of DC-SIGN-binding glycoproteins in allergenic foods. . Allergy 71::114555
    [Crossref] [Google Scholar]
  106. 106.
    Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G, et al. 2006.. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell–specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. . J. Immunol. 177::367785
    [Crossref] [Google Scholar]
  107. 107.
    Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, et al. 2005.. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. . J. Exp. Med. 202::121323
    [Crossref] [Google Scholar]
  108. 108.
    Ito T, Yang M, Wang YH, Lande R, Gregorio J, et al. 2007.. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. . J. Exp. Med. 204::10515
    [Crossref] [Google Scholar]
  109. 109.
    Mazzini E, Massimiliano L, Penna G, Rescigno M. 2014.. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. . Immunity 40::24861
    [Crossref] [Google Scholar]
  110. 110.
    Semple K, Nguyen A, Yu Y, Wang H, Anasetti C, Yu XZ. 2011.. Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling. . Blood 117::3096103
    [Crossref] [Google Scholar]
  111. 111.
    Gorelik M, Narisety SD, Guerrerio AL, Chichester KL, Keet CA, et al. 2015.. Suppression of the immunologic response to peanut during immunotherapy is often transient. . J. Allergy Clin. Immunol. 135::128392
    [Crossref] [Google Scholar]
  112. 112.
    Zheng H, Zhang Y, Pan J, Liu N, Qin Y, et al. 2021.. The role of type 2 innate lymphoid cells in allergic diseases. . Front. Immunol. 12::586078
    [Crossref] [Google Scholar]
  113. 113.
    Barshow SM, Kulis MD, Burks AW, Kim EH. 2021.. Mechanisms of oral immunotherapy. . Clin. Exp. Allergy 51::52735
    [Crossref] [Google Scholar]
  114. 114.
    Foong RX, Dantzer JA, Wood RA, Santos AF. 2021.. Improving diagnostic accuracy in food allergy. . J. Allergy Clin. Immunol. Pract. 9::7180
    [Crossref] [Google Scholar]
  115. 115.
    Sampath V, Abrams EM, Adlou B, Akdis C, Akdis M, et al. 2021.. Food allergy across the globe. . J. Allergy Clin. Immunol. 148::134764
    [Crossref] [Google Scholar]
  116. 116.
    Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA, et al. 2011.. Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. . J. Am. Diet. Assoc. 111::1727
    [Crossref] [Google Scholar]
  117. 117.
    Muraro A, Werfel T, Hoffmann-Sommergruber K, Roberts G, Beyer K, et al. 2014.. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. . Allergy 69::100825
    [Crossref] [Google Scholar]
  118. 118.
    Vlieg-Boerstra BJ, van der Heide S, Bijleveld CM, Kukler J, Duiverman EJ, Dubois AE. 2007.. Placebo reactions in double-blind, placebo-controlled food challenges in children. . Allergy 62::90512
    [Crossref] [Google Scholar]
  119. 119.
    Hsu E, Soller L, Abrams EM, Protudjer JLP, Mill C, Chan ES. 2020.. Oral food challenge implementation: the first mixed-methods study exploring barriers and solutions. . J. Allergy Clin. Immunol. Pract. 8::14956.e1
    [Crossref] [Google Scholar]
  120. 120.
    Patel G, Saltoun C. 2019.. Skin testing in allergy. . Allergy Asthma Proc. 40::36668
    [Crossref] [Google Scholar]
  121. 121.
    Schoos AM, Hansen SM, Skov FR, Stokholm J, Bonnelykke K, et al. 2020.. Allergen specificity in specific IgE cutoff. . JAMA Pediatr. 174::99395
    [Crossref] [Google Scholar]
  122. 122.
    Sindher S, Long AJ, Purington N, Chollet M, Slatkin S, et al. 2018.. Analysis of a large standardized food challenge data set to determine predictors of positive outcome across multiple allergens. . Front. Immunol. 9::2689
    [Crossref] [Google Scholar]
  123. 123.
    Lieberman J. 2019.. Component testing for food allergies: “to order or not to order. .” Ann. Allergy Asthma Immunol. 122::549
    [Crossref] [Google Scholar]
  124. 124.
    Anagnostou A. 2019.. Component resolved diagnostic testing adds clinical utility over existing testing for food allergy-PRO. . Ann. Allergy Asthma Immunol. 122::57679
    [Crossref] [Google Scholar]
  125. 125.
    Kaur N, Mehr S, Katelaris C, Wainstein B, Altavilla B, et al. 2021.. Added diagnostic value of peanut component testing: a cross-sectional study in Australian children. . J. Allergy Clin. Immunol. Pract. 9::24553.e4
    [Crossref] [Google Scholar]
  126. 126.
    Kukkonen AK, Pelkonen AS, Makinen-Kiljunen S, Voutilainen H, Makela MJ. 2015.. Ara h 2 and Ara 6 are the best predictors of severe peanut allergy: a double-blind placebo-controlled study. . Allergy 70::123945
    [Crossref] [Google Scholar]
  127. 127.
    Eller E, Baumann K, Skov PS, Bindslev-Jensen C. 2023.. Measurement of Ara h 6 can improve diagnosis in patients suspected of peanut allergy. . Clin. Exp. Allergy 53::68385
    [Crossref] [Google Scholar]
  128. 128.
    Hazebrouck S, Guillon B, Paty E, Dreskin SC, Adel-Patient K, Bernard H. 2019.. Variable IgE cross-reactivity between peanut 2S-albumins: the case for measuring IgE to both Ara h 2 and Ara h 6. . Clin. Exp. Allergy 49::110715
    [Crossref] [Google Scholar]
  129. 129.
    Suarez-Farinas M, Suprun M, Kearney P, Getts R, Grishina G, et al. 2021.. Accurate and reproducible diagnosis of peanut allergy using epitope mapping. . Allergy 76::378997
    [Crossref] [Google Scholar]
  130. 130.
    Santos AF, James LK, Bahnson HT, Shamji MH, Couto-Francisco NC, et al. 2015.. IgG4 inhibits peanut-induced basophil and mast cell activation in peanut-tolerant children sensitized to peanut major allergens. . J. Allergy Clin. Immunol. 135::124956
    [Crossref] [Google Scholar]
  131. 131.
    Datema MR, Eller E, Zwinderman AH, Poulsen LK, Versteeg SA, et al. 2019.. Ratios of specific IgG4 over IgE antibodies do not improve prediction of peanut allergy nor of its severity compared to specific IgE alone. . Clin. Exp. Allergy 49::21626
    [Crossref] [Google Scholar]
  132. 132.
    Foong RX, Santos AF. 2021.. Biomarkers of diagnosis and resolution of food allergy. . Pediatr. Allergy Immunol. 32::22333
    [Crossref] [Google Scholar]
  133. 133.
    Santos AF, Alpan O, Hoffmann HJ. 2021.. Basophil activation test: mechanisms and considerations for use in clinical trials and clinical practice. . Allergy 76::242032
    [Crossref] [Google Scholar]
  134. 134.
    Bahri R, Custovic A, Korosec P, Tsoumani M, Barron M, et al. 2018.. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. . J. Allergy Clin. Immunol. 142::48596.e16
    [Crossref] [Google Scholar]
  135. 135.
    Santos AF, Couto-Francisco N, Becares N, Kwok M, Bahnson HT, Lack G. 2018.. A novel human mast cell activation test for peanut allergy. . J. Allergy Clin. Immunol. 142::68991.e9
    [Crossref] [Google Scholar]
  136. 136.
    Mukai K, Gaudenzio N, Gupta S, Vivanco N, Bendall SC, et al. 2017.. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. . J. Allergy Clin. Immunol. 139::88999.e11
    [Crossref] [Google Scholar]
  137. 137.
    Santos AF, Du Toit G, O'Rourke C, Becares N, Couto-Francisco N, et al. 2020.. Biomarkers of severity and threshold of allergic reactions during oral peanut challenges. . J. Allergy Clin. Immunol. 146::34455
    [Crossref] [Google Scholar]
  138. 138.
    van Zelm MC, McKenzie CI, Varese N, Rolland JM, O'Hehir RE. 2021.. Advances in allergen-specific immune cell measurements for improved detection of allergic sensitization and immunotherapy responses. . Allergy 76::337482
    [Crossref] [Google Scholar]
  139. 139.
    Dhondalay GK, Rael E, Acharya S, Zhang W, Sampath V, et al. 2018.. Food allergy and omics. . J. Allergy Clin. Immunol. 141::2029
    [Crossref] [Google Scholar]
  140. 140.
    Sindher SB, Chin AR, Aghaeepour N, Prince L, Maecker H, et al. 2023.. Advances and potential of omics studies for understanding the development of food allergy. . Front. Allergy 4::1149008
    [Crossref] [Google Scholar]
  141. 141.
    Vadas P, Perelman B, Liss G. 2013.. Platelet-activating factor, histamine, and tryptase levels in human anaphylaxis. . J. Allergy Clin. Immunol. 131::14449
    [Crossref] [Google Scholar]
  142. 142.
    Vadas P, Gold M, Perelman B, Liss GM, Lack G, et al. 2008.. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. . N. Engl. J. Med. 358::2835
    [Crossref] [Google Scholar]
  143. 143.
    Upton JEM, Hoang JA, Leon-Ponte M, Finkelstein Y, Du YJ, et al. 2022.. Platelet-activating factor acetylhydrolase is a biomarker of severe anaphylaxis in children. . Allergy 77::266576
    [Crossref] [Google Scholar]
  144. 144.
    Kacar M, Rijavec M, Selb J, Korosec P. 2023.. Clonal mast cell disorders and hereditary alpha-tryptasemia as risk factors for anaphylaxis. . Clin. Exp. Allergy 53::392404
    [Crossref] [Google Scholar]
  145. 145.
    Giannetti MP, Weller E, Bormans C, Novak P, Hamilton MJ, Castells M. 2021.. Hereditary alpha-tryptasemia in 101 patients with mast cell activation–related symptomatology including anaphylaxis. . Ann. Allergy Asthma Immunol. 126::65560
    [Crossref] [Google Scholar]
  146. 146.
    Shaker MS, Wallace DV, Golden DBK, Oppenheimer J, Bernstein JA, et al. 2020.. Anaphylaxis: a 2020 practice parameter update, systematic review, and Grading of Recommendations, Assessment, Development and Evaluation (GRADE) analysis. . J. Allergy Clin. Immunol. 145::1082123
    [Crossref] [Google Scholar]
  147. 147.
    Dribin TE, Waserman S, Turner PJ. 2023.. Who needs epinephrine? Anaphylaxis, autoinjectors, and parachutes. . J. Allergy Clin. Immunol. Pract. 11::103646
    [Crossref] [Google Scholar]
  148. 148.
    Patel N, Isaacs E, Duca B, Nagaratnam N, Donovan J, et al. 2023.. Optimal dose of adrenaline auto-injector for children and young people at risk of anaphylaxis: a phase IV randomized controlled crossover study. . Allergy 78::19972006
    [Crossref] [Google Scholar]
  149. 149.
    Simons FE, Gu X, Simons KJ. 2001.. Epinephrine absorption in adults: intramuscular versus subcutaneous injection. . J. Allergy Clin. Immunol. 108::87173
    [Crossref] [Google Scholar]
  150. 150.
    Tanimoto S, Kaliner M, Ellis AK, Lowenthal R. 2022.. Comparison of the pharmacokinetics between intramuscular and subcutaneous manual epinephrine administration. . Ann. Allergy Asthma Immunol. 130::51516
    [Crossref] [Google Scholar]
  151. 151.
    Tanimoto S, Kaliner M, Lockey RF, Ebisawa M, Koplowitz LP, et al. 2023.. Pharmacokinetic and pharmacodynamic comparison of epinephrine, administered intranasally and intramuscularly: an integrated analysis. . Ann. Allergy Asthma Immunol. 130::50814.e1
    [Crossref] [Google Scholar]
  152. 152.
    Noon L. 1911.. Prophylactic inoculation against hay fever. . Lancet 177::157273
    [Crossref] [Google Scholar]
  153. 153.
    de Silva D, Rodríguez Del Río P, de Jong NW, Khaleva E, Singh C, et al. 2022.. Allergen immunotherapy and/or biologicals for IgE-mediated food allergy: a systematic review and meta-analysis. . Allergy 77::185262
    [Crossref] [Google Scholar]
  154. 154.
    Tirumalasetty J, Barshow S, Kost L, Morales L, Sharma R, et al. 2023.. Peanut allergy: risk factors, immune mechanisms, and best practices for oral immunotherapy success. . Expert Rev. Clin. Immunol. 19::78595
    [Crossref] [Google Scholar]
  155. 155.
    Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. 2016.. Molecular and cellular mechanisms of food allergy and food tolerance. . J. Allergy Clin. Immunol. 137::98497
    [Crossref] [Google Scholar]
  156. 156.
    Tang L, Yu Y, Pu X, Chen J. 2022.. Oral immunotherapy for immunoglobulin E–mediated cow's milk allergy in children: a systematic review and meta analysis. . Immun. Inflamm. Dis. 10::e704
    [Crossref] [Google Scholar]
  157. 157.
    Bartha I, Rodriguez Del Rio P. 2023.. Clinical outcomes of efficacy in food allergen immunotherapy trials. . Curr. Opin. Allergy Clin. Immunol. 23::23945
    [Crossref] [Google Scholar]
  158. 158.
    Ozdemir PG, Sato S, Yanagida N, Ebisawa M. 2023.. Oral immunotherapy in food allergy: Where are we now?. Allergy Asthma Immunol. Res. 15::12544
    [Crossref] [Google Scholar]
  159. 159.
    Cafone J, Capucilli P, Hill DA, Spergel JM. 2019.. Eosinophilic esophagitis during sublingual and oral allergen immunotherapy. . Curr. Opin. Allergy Clin. Immunol. 19::35057
    [Crossref] [Google Scholar]
  160. 160.
    Votto M, De Filippo M, Caminiti L, Carella F, de Castro G, et al. 2021.. Eosinophilic gastrointestinal disorders and allergen immunotherapy: lights and shadows. . Pediatr. Allergy Immunol. 32::81423
    [Crossref] [Google Scholar]
  161. 161.
    van Ree R. 2019.. Sustained unresponsiveness in peanut oral immunotherapy. . Lancet 394::139293
    [Crossref] [Google Scholar]
  162. 162.
    Davis CM, Anagnostou A, Devaraj S, Vita DT, Rivera F, et al. 2022.. Maximum dose food challenges reveal transient sustained unresponsiveness in peanut oral immunotherapy (POIMD Study). . J. Allergy Clin. Immunol. Pract. 10::56676.e6
    [Crossref] [Google Scholar]
  163. 163.
    Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, et al. 2015.. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. . J. Allergy Clin. Immunol. 135::73744.e8
    [Crossref] [Google Scholar]
  164. 164.
    Hsiao K, Ponsonby A, Axelrad C, Pitkin S, Tang M, PPOIT Study Team. 2017.. Long-term clinical and immunological effects of probiotic and peanut oral immunotherapy after treatment cessation: 4-year follow-up of a randomised, double-blind, placebo-controlled trial. . Lancet Child Adolesc. Health 1::97105
    [Crossref] [Google Scholar]
  165. 165.
    Loke P, Hsiao KC, Lozinsky AC, Ashley SE, Lloyd M, et al. 2022.. Probiotic peanut oral immunotherapy is associated with long-term persistence of 8-week sustained unresponsiveness and long-lasting quality-of-life improvement. . Clin. Exp. Allergy 52::80611
    [Crossref] [Google Scholar]
  166. 166.
    Scurlock AM, Burks AW, Sicherer SH, Leung DYM, Kim EH, et al. 2021.. Epicutaneous immunotherapy for treatment of peanut allergy: follow-up from the Consortium for Food Allergy Research. . J. Allergy Clin. Immunol. 147::9921003.e5
    [Crossref] [Google Scholar]
  167. 167.
    Greenhawt M, Sindher SB, Wang J, O'Sullivan M, du Toit G, et al. 2023.. Phase 3 trial of epicutaneous immunotherapy in toddlers with peanut allergy. . N. Engl. J. Med. 388::175566
    [Crossref] [Google Scholar]
  168. 168.
    Schworer SA, Kim EH. 2020.. Sublingual immunotherapy for food allergy and its future directions. . Immunotherapy 12::92131
    [Crossref] [Google Scholar]
  169. 169.
    Kim EH, Yang L, Ye P, Guo R, Li Q, et al. 2019.. Long-term sublingual immunotherapy for peanut allergy in children: clinical and immunologic evidence of desensitization. . J. Allergy Clin. Immunol. 144::132026.e1
    [Crossref] [Google Scholar]
  170. 170.
    Bindslev-Jensen C, de Kam P-J, van Twuijver E, Boot D, El Galta R, et al. 2017.. SCIT-treatment with a chemically modified, aluminum hydroxide adsorbed peanut extract (HAL-MPE1) was generally safe and well tolerated and showed immunological changes in peanut allergic patients. . J. Allergy Clin. Immunol. 129:(2):AB191
    [Crossref] [Google Scholar]
  171. 171.
    Zuidmeer-Jongejan L, Huber H, Swoboda I, Rigby N, Versteeg SA, et al. 2015.. Development of a hypoallergenic recombinant parvalbumin for first-in-man subcutaneous immunotherapy of fish allergy. . Int. Arch. Allergy Immunol. 166::4151
    [Crossref] [Google Scholar]
  172. 172.
    Manka LA, Wechsler ME. 2018.. New biologics for allergic diseases. . Expert Rev. Clin. Immunol. 14::28596
    [Crossref] [Google Scholar]
  173. 173.
    Fiocchi A, Vickery BP, Wood RA. 2021.. The use of biologics in food allergy. . Clin. Exp. Allergy 51::100618
    [Crossref] [Google Scholar]
  174. 174.
    Sindher SB, Barshow S, Tirumalasetty J, Arasi S, Atkins D, et al. 2023.. The role of biologics in pediatric food allergy and eosinophilic gastrointestinal disorders. . J. Allergy Clin. Immunol. 151::595606
    [Crossref] [Google Scholar]
  175. 175.
    Zuberbier T, Wood RA, Bindslev-Jensen C, Fiocchi A, Chinthrajah RS, et al. 2023.. Omalizumab in IgE-mediated food allergy: a systematic review and meta-analysis. . J. Allergy Clin. Immunol. Pract. 11::113446
    [Crossref] [Google Scholar]
  176. 176.
    Azzano P, Paquin M, Langlois A, Morin C, Parizeault G, et al. 2021.. Determinants of omalizumab dose-related efficacy in oral immunotherapy: evidence from a cohort of 181 patients. . J. Allergy Clin. Immunol. 147::23343
    [Crossref] [Google Scholar]
  177. 177.
    Wood RA, Chinthrajah RS, Eggel A, Bottoli I, Gautier A, et al. 2022.. The rationale for development of ligelizumab in food allergy. . World Allergy Organ. J. 15::100690
    [Crossref] [Google Scholar]
  178. 178.
    Bawany F, Franco AI, Beck LA. 2020.. Dupilumab: one therapy to treat multiple atopic diseases. . JAAD Case Rep. 6::115052
    [Crossref] [Google Scholar]
  179. 179.
    Rial MJ, Barroso B, Sastre J. 2019.. Dupilumab for treatment of food allergy. . J. Allergy Clin. Immunol. Pract. 7::67374
    [Crossref] [Google Scholar]
  180. 180.
    Spekhorst LS, van der Rijst LP, de Graaf M, van Megen M, Zuithoff NPA, et al. 2023.. Dupilumab has a profound effect on specific-IgE levels of several food allergens in atopic dermatitis patients. . Allergy 78::87578
    [Crossref] [Google Scholar]
  181. 181.
    Chinthrajah S, Cao S, Liu C, Lyu SC, Sindher SB, et al. 2019.. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. . JCI Insight 4::e131347
    [Crossref] [Google Scholar]
  182. 182.
    Herrero-Beaumont G, Martínez Calatrava MJ, Castañeda S. 2012.. Abatacept mechanism of action: concordance with its clinical profile. . Reumatol. Clin. 8::7883
    [Crossref] [Google Scholar]
  183. 183.
    Kubo K, Takeda S, Uchida M, Maeda M, Endo N, et al. 2022.. Lit-LAMP-DNA-vaccine for shrimp allergy prevents anaphylactic symptoms in a murine model. . Int. Immunopharmacol. 113::109394
    [Crossref] [Google Scholar]
  184. 184.
    Wraith DC, Krishna MT. 2021.. Peptide allergen-specific immunotherapy for allergic airway diseases: state of the art. . Clin. Exp. Allergy 51::75169
    [Crossref] [Google Scholar]
  185. 185.
    Dhar S, Larché M. 2019.. PVX108 peptide immunotherapy significantly reduces markers of peanut-induced anaphylaxis in a dose-dependent manner. . J. Allergy Clin. Immunol. 143::AB426
    [Crossref] [Google Scholar]
  186. 186.
    Sindher SB, Hillier C, Anderson B, Long A, Chinthrajah RS. 2023.. Treatment of food allergy: oral immunotherapy, biologics, and beyond. . Ann. Allergy Asthma Immunol. 131::2936
    [Crossref] [Google Scholar]
  187. 187.
    Xu X, Wang X, Liao YP, Luo L, Xia T, Nel AE. 2023.. Use of a liver-targeting immune-tolerogenic mRNA lipid nanoparticle platform to treat peanut-induced anaphylaxis by single- and multiple-epitope nucleotide sequence delivery. . ACS Nano 17::494257
    [Crossref] [Google Scholar]
  188. 188.
    Rodrigues MA, Torres T. 2020.. JAK/STAT inhibitors for the treatment of atopic dermatitis. . J. Dermatol. Treat. 31::3340
    [Crossref] [Google Scholar]
  189. 189.
    Berin C. 2023.. Jak out of the box: targeting Bruton's tyrosine kinase, sialic acid–binding immunoglobulin-like lectin-8, and Janus kinase 1 in food allergy. . Ann. Allergy Asthma Immunol. 131::2328
    [Crossref] [Google Scholar]
  190. 190.
    Dispenza MC, Pongracic JA, Singh AM, Bochner BS. 2018.. Short-term ibrutinib therapy suppresses skin test responses and eliminates IgE-mediated basophil activation in adults with peanut or tree nut allergy. . J. Allergy Clin. Immunol. 141::191416.e7
    [Crossref] [Google Scholar]
  191. 191.
    Turner PJ, Arasi S, Ballmer-Weber B, Baseggio Conrado A, Deschildre A, et al. 2022.. Risk factors for severe reactions in food allergy: rapid evidence review with meta-analysis. . Allergy 77::263452
    [Crossref] [Google Scholar]
  192. 192.
    Sicherer SH, Abrams EM, Nowak-Wegrzyn A, Hourihane JO. 2022.. Managing food allergy when the patient is not highly allergic. . J. Allergy Clin. Immunol. Pract. 10::4655
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-090122-043501
Loading
/content/journals/10.1146/annurev-immunol-090122-043501
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error