1932

Abstract

Metazoans have evolved innate antimicrobial defenses that promote cellular survival and proliferation. Countering the inevitable molecular mechanisms by which microbes sabotage these pathways, multicellular organisms rely on an alternative, perhaps more ancient, strategy that is the immune equivalent of suicide bombing: Infection triggers cell death programs that summon localized or even systemic inflammation. The study of human genetics has now unveiled a level of complexity that refutes the naive view that cell death is merely a blunt instrument or an evolutionary afterthought. To the contrary, findings from patients with rare diseases teach us that cell death–induced inflammation is a sophisticated, tightly choreographed process. We herein review the emerging body of evidence describing a group of illnesses—inborn errors of cell death, which define many of the molecular building blocks and regulatory elements controlling cell death–induced inflammation in humans—and provide a possible road map to countering this process across the spectrum of rare and common illnesses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090222-105848
2025-04-25
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-090222-105848.html?itemId=/content/journals/10.1146/annurev-immunol-090222-105848&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. 2017.. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. . Nat. Immunol. 18::83242
    [Crossref] [Google Scholar]
  2. 2.
    Oda H, Kastner DL. 2017.. Genomics, biology, and human illness: advances in the monogenic autoinflammatory diseases. . Rheum. Dis. Clin. North Am. 43::32745
    [Crossref] [Google Scholar]
  3. 3.
    Zhang J, Lee PY, Aksentijevich I, Zhou Q. 2023.. How to build a fire: the genetics of autoinflammatory diseases. . Annu. Rev. Genet. 57::24574
    [Crossref] [Google Scholar]
  4. 4.
    Oda H, Manthiram K, Chavan PP, Rieser E, Veli O, et al. 2024.. Biallelic human SHARPIN loss of function induces autoinflammation and immunodeficiency. . Nat. Immunol. 25::76477
    [Crossref] [Google Scholar]
  5. 5.
    Maekawa T, Kashkar H, Coll NS. 2023.. Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. . Cell Death Differ. 30::25868
    [Crossref] [Google Scholar]
  6. 6.
    van Loo G, Bertrand MJM. 2023.. Death by TNF: a road to inflammation. . Nat. Rev. Immunol. 23::289303
    [Crossref] [Google Scholar]
  7. 7.
    Pasparakis M, Vandenabeele P. 2015.. Necroptosis and its role in inflammation. . Nature 517::31120
    [Crossref] [Google Scholar]
  8. 8.
    Kumari S, Redouane Y, Lopez-Mosqueda J, Shiraishi R, Romanowska M, et al. 2014.. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. . eLife 3::e03422
    [Crossref] [Google Scholar]
  9. 9.
    Rickard JA, Anderton H, Etemadi N, Nachbur U, Darding M, et al. 2014.. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. . eLife 3::e03464
    [Crossref] [Google Scholar]
  10. 10.
    Panayotova-Dimitrova D, Feoktistova M, Ploesser M, Kellert B, Hupe M, et al. 2013.. cFLIP regulates skin homeostasis and protects against TNF-induced keratinocyte apoptosis. . Cell Rep. 5::397408
    [Crossref] [Google Scholar]
  11. 11.
    Weinlich R, Oberst A, Dillon CP, Janke LJ, Milasta S, et al. 2013.. Protective roles for caspase-8 and cFLIP in adult homeostasis. . Cell Rep. 5::34048
    [Crossref] [Google Scholar]
  12. 12.
    Lawlor KE, Murphy JM, Vince JE. 2024.. Gasdermin and MLKL necrotic cell death effectors: signaling and diseases. . Immunity 57::42945
    [Crossref] [Google Scholar]
  13. 13.
    Newton K, Manning G. 2016.. Necroptosis and inflammation. . Annu. Rev. Biochem. 85::74363
    [Crossref] [Google Scholar]
  14. 14.
    Kayagaki N, Webster JD, Newton K. 2024.. Control of cell death in health and disease. . Annu. Rev. Pathol. Mech. Dis. 19::15780
    [Crossref] [Google Scholar]
  15. 15.
    Tu H, Ren H, Jiang J, Shao C, Shi Y, Li P. 2024.. Dying to defend: neutrophil death pathways and their implications in immunity. . Adv. Sci. 11::e2306457
    [Crossref] [Google Scholar]
  16. 16.
    Islam MM, Takeyama N. 2023.. Role of neutrophil extracellular traps in health and disease pathophysiology: recent insights and advances. . Int. J. Mol. Sci. 24::15805
    [Crossref] [Google Scholar]
  17. 17.
    Souza FW, Miao EA. 2023.. Neutrophils only die twice. . Sci. Adv. 9::eadm8715
    [Crossref] [Google Scholar]
  18. 18.
    Newton K, Strasser A, Kayagaki N, Dixit VM. 2024.. Cell death. . Cell 187::23556
    [Crossref] [Google Scholar]
  19. 19.
    Ai Y, Meng Y, Yan B, Zhou Q, Wang X. 2024.. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. . Mol. Cell 84::17079
    [Crossref] [Google Scholar]
  20. 20.
    Alehashemi S, Goldbach-Mansky R. 2020.. Human autoinflammatory diseases mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18. . Front. Immunol. 11::1840
    [Crossref] [Google Scholar]
  21. 21.
    Harapas CR, Steiner A, Davidson S, Masters SL. 2018.. An update on autoinflammatory diseases: inflammasomopathies. . Curr. Rheumatol. Rep. 20::40
    [Crossref] [Google Scholar]
  22. 22.
    Lin B, Goldbach-Mansky R. 2022.. Pathogenic insights from genetic causes of autoinflammatory inflammasomopathies and interferonopathies. . J. Allergy Clin. Immunol. 149::81932
    [Crossref] [Google Scholar]
  23. 23.
    Nigrovic PA, Lee PY, Hoffman HM. 2020.. Monogenic autoinflammatory disorders: conceptual overview, phenotype, and clinical approach. . J. Allergy Clin. Immunol. 146::92537
    [Crossref] [Google Scholar]
  24. 24.
    Coll RC, Schroder K. 2025.. Inflammasome components as new therapeutic targets in inflammatory disease. . Nat. Rev. Immunol. 25::2241. Publisher correction . 2025.. Nat. Rev. Immunol. 25::153. Author correction . 2025.. Nat. Rev. Immunol. 25::153
    [Google Scholar]
  25. 25.
    Zhang Q, Lenardo MJ, Baltimore D. 2017.. 30 years of NF-κB: a blossoming of relevance to human pathobiology. . Cell 168::3757
    [Crossref] [Google Scholar]
  26. 26.
    Anderton H, Wicks IP, Silke J. 2020.. Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. . Nat. Rev. Rheumatol. 16::496513
    [Crossref] [Google Scholar]
  27. 27.
    Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. 1998.. The death domain kinase RIP mediates the TNF-induced NF-κB signal. . Immunity 8::297303
    [Crossref] [Google Scholar]
  28. 28.
    Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, et al. 2010.. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. . EMBO J. 29::4198209
    [Crossref] [Google Scholar]
  29. 29.
    Annibaldi A, Wicky John S, Vanden Berghe T, Swatek KN, Ruan J, et al. 2018.. Ubiquitin-mediated regulation of RIPK1 kinase activity independent of IKK and MK2. . Mol. Cell 69::56680.e5
    [Crossref] [Google Scholar]
  30. 30.
    Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, et al. 2011.. Linear ubiquitination prevents inflammation and regulates immune signalling. . Nature 471::59196
    [Crossref] [Google Scholar]
  31. 31.
    Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, et al. 2011.. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. . Nature 471::63741
    [Crossref] [Google Scholar]
  32. 32.
    Draber P, Kupka S, Reichert M, Draberova H, Lafont E, et al. 2015.. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. . Cell Rep. 13::225872
    [Crossref] [Google Scholar]
  33. 33.
    Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, et al. 2009.. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. . Cell 136::1098109
    [Crossref] [Google Scholar]
  34. 34.
    Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, et al. 2009.. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. . Mol. Cell 36::83144
    [Crossref] [Google Scholar]
  35. 35.
    Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, et al. 2009.. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. . Nat. Cell Biol. 11::12332
    [Crossref] [Google Scholar]
  36. 36.
    Ori D, Kato H, Sanjo H, Tartey S, Mino T, et al. 2013.. Essential roles of K63-linked polyubiquitin-binding proteins TAB2 and TAB3 in B cell activation via MAPKs. . J. Immunol. 190::403745
    [Crossref] [Google Scholar]
  37. 37.
    Xu D, Jin T, Zhu H, Chen H, Ofengeim D, et al. 2018.. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. . Cell 174::147791.e19
    [Crossref] [Google Scholar]
  38. 38.
    Lafont E, Draber P, Rieser E, Reichert M, Kupka S, et al. 2018.. TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. . Nat. Cell Biol. 20::138999
    [Crossref] [Google Scholar]
  39. 39.
    Heger K, Wickliffe KE, Ndoja A, Zhang J, Murthy A, et al. 2018.. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. . Nature 559::12024
    [Crossref] [Google Scholar]
  40. 40.
    Annibaldi A, Meier P. 2018.. Checkpoints in TNF-induced cell death: implications in inflammation and cancer. . Trends Mol. Med. 24::4965
    [Crossref] [Google Scholar]
  41. 41.
    Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J. 2001.. NF-κB signals induce the expression of c-FLIP. . Mol. Cell. Biol. 21::5299305
    [Crossref] [Google Scholar]
  42. 42.
    Wittkopf N, Gunther C, Martini E, He G, Amann K, et al. 2013.. Cellular FLICE-like inhibitory protein secures intestinal epithelial cell survival and immune homeostasis by regulating caspase-8. . Gastroenterology 145::136979
    [Crossref] [Google Scholar]
  43. 43.
    Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, et al. 2011.. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. . Nature 471::36367
    [Crossref] [Google Scholar]
  44. 44.
    Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, et al. 2015.. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. . Mol. Cell 60::6376
    [Crossref] [Google Scholar]
  45. 45.
    Legarda-Addison D, Hase H, O'Donnell MA, Ting AT. 2009.. NEMO/IKKγ regulates an early NF-κB-independent cell-death checkpoint during TNF signaling. . Cell Death Differ. 16::127988
    [Crossref] [Google Scholar]
  46. 46.
    Mohideen F, Paulo JA, Ordureau A, Gygi SP, Harper JW. 2017.. Quantitative phospho-proteomic analysis of TNFα/NFκB signaling reveals a role for RIPK1 phosphorylation in suppressing necrotic cell death. . Mol. Cell. Proteom. 16::120016
    [Crossref] [Google Scholar]
  47. 47.
    Geng J, Ito Y, Shi L, Amin P, Chu J, et al. 2017.. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. . Nat. Commun. 8::359
    [Crossref] [Google Scholar]
  48. 48.
    Jaco I, Annibaldi A, Lalaoui N, Wilson R, Tenev T, et al. 2017.. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. . Mol. Cell 66::698710.e5
    [Crossref] [Google Scholar]
  49. 49.
    Dondelinger Y, Delanghe T, Bertrand MMJ. 2018.. MK2 puts an additional brake on RIPK1 cytotoxic potential. . Cell Death Differ. 25::45759
    [Crossref] [Google Scholar]
  50. 50.
    Menon MB, Gropengiesser J, Fischer J, Novikova L, Deuretzbacher A, et al. 2017.. p38MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. . Nat. Cell Biol. 19::124859
    [Crossref] [Google Scholar]
  51. 51.
    Annibaldi A, Walczak H. 2020.. Death receptors and their ligands in inflammatory disease and cancer. . Cold Spring Harb. Perspect. Biol. 12::a036384
    [Crossref] [Google Scholar]
  52. 52.
    Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, et al. 2014.. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. . Cell Rep. 9::15365
    [Crossref] [Google Scholar]
  53. 53.
    Peltzer N, Darding M, Montinaro A, Draber P, Draberova H, et al. 2018.. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. . Nature 557::11217
    [Crossref] [Google Scholar]
  54. 54.
    Vince JE, Wong WW, Khan N, Feltham R, Chau D, et al. 2007.. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. . Cell 131::68293
    [Crossref] [Google Scholar]
  55. 55.
    Lalaoui N, Vaux DL. 2018.. Recent advances in understanding inhibitor of apoptosis proteins. . F1000Research 7::1889
    [Crossref] [Google Scholar]
  56. 56.
    Meinzer U, Barreau F, Esmiol-Welterlin S, Jung C, Villard C, et al. 2012.. Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. . Cell Host Microbe 11::33751
    [Crossref] [Google Scholar]
  57. 57.
    Paquette N, Conlon J, Sweet C, Rus F, Wilson L, et al. 2012.. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. . PNAS 109::1271015
    [Crossref] [Google Scholar]
  58. 58.
    Lalaoui N, Boyden SE, Oda H, Wood GM, Stone DL, et al. 2020.. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. . Nature 577::1038
    [Crossref] [Google Scholar]
  59. 59.
    Tao P, Sun J, Wu Z, Wang S, Wang J, et al. 2020.. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. . Nature 577::10914
    [Crossref] [Google Scholar]
  60. 60.
    Zhang X, Dowling JP, Zhang J. 2019.. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development. . Cell Death Dis. 10::245
    [Crossref] [Google Scholar]
  61. 61.
    Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, et al. 2019.. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. . Nature 574::42831
    [Crossref] [Google Scholar]
  62. 62.
    Magerus A, Rensing-Ehl A, Rao VK, Teachey DT, Rieux-Laucat F, Ehl S. 2024.. Autoimmune lymphoproliferative immunodeficiencies (ALPIDs): a proposed approach to redefining ALPS and other lymphoproliferative immune disorders. . J. Allergy Clin. Immunol. 153::6776
    [Crossref] [Google Scholar]
  63. 63.
    Lambert MP. 2021.. Presentation and diagnosis of autoimmune lymphoproliferative syndrome (ALPS). . Expert Rev. Clin. Immunol. 17::116373
    [Crossref] [Google Scholar]
  64. 64.
    Magerus A, Bercher-Brayer C, Rieux-Laucat F. 2021.. The genetic landscape of the FAS pathway deficiencies. . Biomed. J. 44::38899
    [Crossref] [Google Scholar]
  65. 65.
    Rieux-Laucat F. 2017.. What's up in the ALPS. . Curr. Opin. Immunol. 49::7986
    [Crossref] [Google Scholar]
  66. 66.
    Seyrek K, Ivanisenko NV, Wohlfromm F, Espe J, Lavrik IN. 2022.. Impact of human CD95 mutations on cell death and autoimmunity: a model. . Trends Immunol. 43::2240
    [Crossref] [Google Scholar]
  67. 67.
    Iwai K, Fujita H, Sasaki Y. 2014.. Linear ubiquitin chains: NF-κB signalling, cell death and beyond. . Nat. Rev. Mol. Cell Biol. 15::5038
    [Crossref] [Google Scholar]
  68. 68.
    Peltzer N, Annibaldi A. 2022.. Cell death-related ubiquitin modifications in inflammatory syndromes: from mice to men. . Biomedicines 10::1436
    [Crossref] [Google Scholar]
  69. 69.
    Fuseya Y, Fujita H, Kim M, Ohtake F, Nishide A, et al. 2020.. The HOIL-1L ligase modulates immune signalling and cell death via monoubiquitination of LUBAC. . Nat. Cell Biol. 22::66373
    [Crossref] [Google Scholar]
  70. 70.
    Kelsall IR, McCrory EH, Xu Y, Scudamore CL, Nanda SK, et al. 2022.. HOIL-1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. . EMBO J. 41::e109700
    [Crossref] [Google Scholar]
  71. 71.
    Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, et al. 2011.. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. . Nature 471::63336
    [Crossref] [Google Scholar]
  72. 72.
    Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, et al. 2015.. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. . J. Exp. Med. 212::93951
    [Crossref] [Google Scholar]
  73. 73.
    Oda H, Beck DB, Kuehn HS, Sampaio Moura N, Hoffmann P, et al. 2019.. Second case of HOIP deficiency expands clinical features and defines inflammatory transcriptome regulated by LUBAC. . Front. Immunol. 10::479
    [Crossref] [Google Scholar]
  74. 74.
    Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E, et al. 2012.. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. . Nat. Immunol. 13::117886
    [Crossref] [Google Scholar]
  75. 75.
    Gurung P, Sharma BR, Kanneganti TD. 2016.. Distinct role of IL-1β in instigating disease in Sharpincpdm mice. . Sci. Rep. 6::36634
    [Crossref] [Google Scholar]
  76. 76.
    Douglas T, Champagne C, Morizot A, Lapointe JM, Saleh M. 2015.. The inflammatory caspases-1 and -11 mediate the pathogenesis of dermatitis in Sharpin-deficient mice. . J. Immunol. 195::236573
    [Crossref] [Google Scholar]
  77. 77.
    Seymour RE, Hasham MG, Cox GA, Shultz LD, Hogenesch H, et al. 2007.. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. . Genes Immun. 8::41621
    [Crossref] [Google Scholar]
  78. 78.
    HogenEsch H, Gijbels MJ, Offerman E, van Hooft J, van Bekkum DW, Zurcher C. 1993.. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice. . Am. J. Pathol. 143::97282
    [Google Scholar]
  79. 79.
    Berger SB, Kasparcova V, Hoffman S, Swift B, Dare L, et al. 2014.. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. . J. Immunol. 192::547680
    [Crossref] [Google Scholar]
  80. 80.
    Fujita H, Tokunaga A, Shimizu S, Whiting AL, Aguilar-Alonso F, et al. 2018.. Cooperative domain formation by homologous motifs in HOIL-1L and SHARPIN plays a crucial role in LUBAC stabilization. . Cell Rep. 23::1192204
    [Crossref] [Google Scholar]
  81. 81.
    Sasaki Y, Sano S, Nakahara M, Murata S, Kometani K, et al. 2013.. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. . EMBO J. 32::246376
    [Crossref] [Google Scholar]
  82. 82.
    Wang J, Li T, Zan H, Rivera CE, Yan H, Xu Z. 2021.. LUBAC suppresses IL-21-induced apoptosis in CD40-activated murine B cells and promotes germinal center B cell survival and the T-dependent antibody response. . Front. Immunol. 12::658048
    [Crossref] [Google Scholar]
  83. 83.
    Krenn M, Salzer E, Simonitsch-Klupp I, Rath J, Wagner M, et al. 2018.. Mutations outside the N-terminal part of RBCK1 may cause polyglucosan body myopathy with immunological dysfunction: expanding the genotype–phenotype spectrum. . J. Neurol. 265::394401
    [Crossref] [Google Scholar]
  84. 84.
    Wang K, Kim C, Bradfield J, Guo Y, Toskala E, et al. 2013.. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement. . Genome Med. 5::67
    [Crossref] [Google Scholar]
  85. 85.
    Nilsson J, Schoser B, Laforet P, Kalev O, Lindberg C, et al. 2013.. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. . Ann. Neurol. 74::91419
    [Crossref] [Google Scholar]
  86. 86.
    Fiil BK, Damgaard RB, Wagner SA, Keusekotten K, Fritsch M, et al. 2013.. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. . Mol. Cell 50::81830
    [Crossref] [Google Scholar]
  87. 87.
    Tao P, Wang S, Ozen S, Lee PY, Zhang J, et al. 2021.. Deubiquitination of proteasome subunits by OTULIN regulates type I IFN production. . Sci. Adv. 7::eabi6794
    [Crossref] [Google Scholar]
  88. 88.
    Doglio MG, Verboom L, Ruilova Sosoranga E, Frising UC, Asaoka T, et al. 2023.. Myeloid OTULIN deficiency couples RIPK3-dependent cell death to Nlrp3 inflammasome activation and IL-1β secretion. . Sci. Immunol. 8::eadf4404
    [Crossref] [Google Scholar]
  89. 89.
    Quoc QL, Kim Y, Park G, Cao TBT, Choi Y, . 2024.. Downregulation of otulin induces inflammasome activation in neutrophilic asthma. . J. Allergy Clin. Immunol. 154::55770
    [Crossref] [Google Scholar]
  90. 90.
    Damgaard RB, Walker JA, Marco-Casanova P, Morgan NV, Titheradge HL, et al. 2016.. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. . Cell 166::121530.e20
    [Crossref] [Google Scholar]
  91. 91.
    Damgaard RB, Elliott PR, Swatek KN, Maher ER, Stepensky P, et al. 2019.. OTULIN deficiency in ORAS causes cell type-specific LUBAC degradation, dysregulated TNF signalling and cell death. . EMBO Mol. Med. 11::e9324
    [Crossref] [Google Scholar]
  92. 92.
    Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, et al. 2016.. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. . PNAS 113::1012732
    [Crossref] [Google Scholar]
  93. 93.
    Zinngrebe J, Moepps B, Monecke T, Gierschik P, Schlichtig F, et al. 2022.. Compound heterozygous variants in OTULIN are associated with fulminant atypical late-onset ORAS. . EMBO Mol. Med. 14::e14901
    [Crossref] [Google Scholar]
  94. 94.
    Davidson S, Shibata Y, Collard S, Zheng H, Kong K, et al. 2024.. Dominant negative OTULIN-related autoinflammatory syndrome. . J. Exp. Med. 221::e20222171
    [Crossref] [Google Scholar]
  95. 95.
    Takeda Y, Ueki M, Matsuhiro J, Walinda E, Tanaka T, et al. 2024.. A de novo dominant-negative variant is associated with OTULIN-related autoinflammatory syndrome. . J. Exp. Med. 221:e20231941
    [Google Scholar]
  96. 96.
    Spaan AN, Neehus AL, Laplantine E, Staels F, Ogishi M, et al. 2022.. Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. . Science 376::eabm6380
    [Crossref] [Google Scholar]
  97. 97.
    Arts RJW, van der Linden TJ, van der Made CI, Hendriks MMC, van der Heijden WA, et al. 2023. OTULIN haploinsufficiency-related fasciitis and skin necrosis treated by TNF inhibition. . J. Clin. Immunol. 44::10
    [Crossref] [Google Scholar]
  98. 98.
    Lee EG, Boone DL, Chai S, Libby SL, Chien M, et al. 2000.. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. . Science 289::235054
    [Crossref] [Google Scholar]
  99. 99.
    Lu TT, Onizawa M, Hammer GE, Turer EE, Yin Q, et al. 2013.. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. . Immunity 38::896905
    [Crossref] [Google Scholar]
  100. 100.
    De A, Dainichi T, Rathinam CV, Ghosh S. 2014.. The deubiquitinase activity of A20 is dispensable for NF-κB signaling. . EMBO Rep. 15::77583
    [Crossref] [Google Scholar]
  101. 101.
    Wertz IE, Newton K, Seshasayee D, Kusam S, Lam C, et al. 2015.. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. . Nature 528::37075
    [Crossref] [Google Scholar]
  102. 102.
    Polykratis A, Martens A, Eren RO, Shirasaki Y, Yamagishi M, et al. 2019.. A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. . Nat. Cell Biol. 21::73142
    [Crossref] [Google Scholar]
  103. 103.
    Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, et al. 2011.. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. . Nat. Genet. 43::90812
    [Crossref] [Google Scholar]
  104. 104.
    Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, et al. 2014.. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. . Nature 512::6973
    [Crossref] [Google Scholar]
  105. 105.
    Yu J, Li H, Wu Y, Luo M, Chen S, et al. 2024.. Inhibition of NLRP3 inflammasome activation by A20 through modulation of NEK7. . PNAS 121::e2316551121
    [Crossref] [Google Scholar]
  106. 105a.
    Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH, . 2016.. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. . Nat. Genet. 48::6773
    [Crossref] [Google Scholar]
  107. 106.
    Zammit NW, Siggs OM, Gray PE, Horikawa K, Langley DB, et al. 2019.. Denisovan, modern human and mouse TNFAIP3 alleles tune A20 phosphorylation and immunity. . Nat. Immunol. 20::1299310
    [Crossref] [Google Scholar]
  108. 107.
    Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. 2001.. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. . Cell 104::78190
    [Google Scholar]
  109. 108.
    Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, et al. 2006.. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. . Nature 444::11014
    [Crossref] [Google Scholar]
  110. 109.
    Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, et al. 2010.. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. . Blood 116::107982
    [Crossref] [Google Scholar]
  111. 110.
    Speckmann C, Lehmberg K, Albert MH, Damgaard RB, Fritsch M, et al. 2013.. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. . Clin. Immunol. 149::13341
    [Crossref] [Google Scholar]
  112. 111.
    Gyrd-Hansen M, Darding M, Miasari M, Santoro MM, Zender L, et al. 2008.. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-κB as well as cell survival and oncogenesis. . Nat. Cell Biol. 10::130917
    [Crossref] [Google Scholar]
  113. 112.
    Damgaard RB, Nachbur U, Yabal M, Wong WW, Fiil BK, et al. 2012.. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. . Mol. Cell 46::74658
    [Crossref] [Google Scholar]
  114. 113.
    Goncharov T, Hedayati S, Mulvihill MM, Izrael-Tomasevic A, Zobel K, et al. 2018.. Disruption of XIAP-RIP2 association blocks NOD2-mediated inflammatory signaling. . Mol. Cell 69::55165.e7
    [Crossref] [Google Scholar]
  115. 114.
    Witt A, Goncharov T, Lee YM, Kist M, Dohse M, et al. 2023.. XIAP deletion sensitizes mice to TNF-induced and RIP1-mediated death. . Cell Death Dis. 14::262
    [Crossref] [Google Scholar]
  116. 115.
    Yabal M, Muller N, Adler H, Knies N, Gross CJ, et al. 2014.. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. . Cell Rep. 7::1796808
    [Crossref] [Google Scholar]
  117. 116.
    Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, et al. 2015.. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. . Nat. Commun. 6::6282
    [Crossref] [Google Scholar]
  118. 117.
    Wicki S, Gurzeler U, Wong WW, Jost PJ, Bachmann D, Kaufmann T. 2016.. Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. . Cell Death Dis. 7::e2422
    [Crossref] [Google Scholar]
  119. 118.
    Wong WW, Vince JE, Lalaoui N, Lawlor KE, Chau D, et al. 2014. cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. . Blood 123::256272
    [Crossref] [Google Scholar]
  120. 119.
    Lawlor KE, Feltham R, Yabal M, Conos SA, Chen KW, et al. 2017.. XIAP loss triggers RIPK3- and caspase-8-driven IL-1β activation and cell death as a consequence of TLR-MyD88-induced cIAP1-TRAF2 degradation. . Cell Rep. 20::66882
    [Crossref] [Google Scholar]
  121. 120.
    Knop J, Spilgies LM, Rufli S, Reinhart R, Vasilikos L, et al. 2019.. TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP. . Cell Death Dis. 10::700
    [Crossref] [Google Scholar]
  122. 121.
    Mudde ACA, Booth C, Marsh RA. 2021.. Evolution of our understanding of XIAP deficiency. . Front. Pediatr. 9::660520
    [Crossref] [Google Scholar]
  123. 122.
    Gérart S, Sibéril S, Martin E, Lenoir C, Aguilar C, et al. 2013.. Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. . Blood 121::61423
    [Crossref] [Google Scholar]
  124. 123.
    Zeissig Y, Petersen BS, Milutinovic S, Bosse E, Mayr G, et al. 2015.. XIAP variants in male Crohn's disease. . Gut 64::6676
    [Crossref] [Google Scholar]
  125. 124.
    Strober W, Asano N, Fuss I, Kitani A, Watanabe T. 2014.. Cellular and molecular mechanisms underlying NOD2 risk-associated polymorphisms in Crohn's disease. . Immunol. Rev. 260::24960
    [Crossref] [Google Scholar]
  126. 125.
    Wahida A, Müller M, Hiergeist A, Popper B, Steiger K, et al. 2021.. XIAP restrains TNF-driven intestinal inflammation and dysbiosis by promoting innate immune responses of Paneth and dendritic cells. . Sci. Immunol. 6::eabf7235
    [Crossref] [Google Scholar]
  127. 126.
    Strigli A, Gopalakrishnan S, Zeissig Y, Basic M, Wang J, et al. 2021.. Deficiency in X-linked inhibitor of apoptosis protein promotes susceptibility to microbial triggers of intestinal inflammation. . Sci. Immunol. 6::eabf7473
    [Crossref] [Google Scholar]
  128. 127.
    Ono S, Takeshita K, Kiridoshi Y, Kato M, Kamiya T, et al. 2021.. Hematopoietic cell transplantation rescues inflammatory bowel disease and dysbiosis of gut microbiota in XIAP deficiency. . J. Allergy Clin. Immunol. Pract. 9::376780
    [Crossref] [Google Scholar]
  129. 128.
    Yang L, Booth C, Speckmann C, Seidel MG, Worth AJJ, et al. 2022.. Phenotype, genotype, treatment, and survival outcomes in patients with X-linked inhibitor of apoptosis deficiency. . J. Allergy Clin. Immunol. 150::45666
    [Crossref] [Google Scholar]
  130. 129.
    Geerlinks AV, Dvorak AM. 2022.. A case of XIAP deficiency successfully managed with tadekinig alfa (rhIL-18BP). . J. Clin. Immunol. 42::9013
    [Crossref] [Google Scholar]
  131. 130.
    Dissanayake D, Firouzabady A, Massumi M, de Paz Linares GA, Marshall C, et al. 2024.. Interleukin-1 mediated hyperinflammation in XIAP-deficiency is associated with defective autophagy. . Blood 144::118392
    [Crossref] [Google Scholar]
  132. 131.
    Rickard JA, O'Donnell JA, Evans JM, Lalaoui N, Poh AR, et al. 2014.. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. . Cell 157::117588
    [Crossref] [Google Scholar]
  133. 132.
    Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, et al. 2014.. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. . Cell 157::1189202
    [Crossref] [Google Scholar]
  134. 133.
    Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, et al. 2016.. RIPK1 inhibits ZBP1-driven necroptosis during development. . Nature 540::12933
    [Crossref] [Google Scholar]
  135. 134.
    Lin J, Kumari S, Kim C, Van TM, Wachsmuth L, et al. 2016.. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. . Nature 540::12428
    [Crossref] [Google Scholar]
  136. 135.
    Cuchet-Lourenco D, Eletto D, Wu C, Plagnol V, Papapietro O, et al. 2018.. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. . Science 361::81013
    [Crossref] [Google Scholar]
  137. 136.
    Li Y, Fuhrer M, Bahrami E, Socha P, Klaudel-Dreszler M, et al. 2019.. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. . PNAS 116::97075
    [Crossref] [Google Scholar]
  138. 137.
    Uchiyama Y, Kim CA, Pastorino AC, Ceroni J, Lima PP, et al. 2019.. Primary immunodeficiency with chronic enteropathy and developmental delay in a boy arising from a novel homozygous RIPK1 variant. . J. Hum. Genet. 64::95560
    [Crossref] [Google Scholar]
  139. 138.
    Walsh RB, McNaughton P, Nademi Z, Laberko A, Balashov D, et. al. 2025.. Outcomes of hematopoietic stem cell transplantation in 5 patients with autosomal recessive RIPK1deficiency. . J. Clin. Immunol. 45::65
    [Crossref] [Google Scholar]
  140. 139.
    Tapiz i Reula AJ, Cochino AV, Martins AL, Angosto-Bazarra D, de Landazuri IO, et al. 2022.. Characterization of novel pathogenic variants leading to caspase-8 cleavage-resistant RIPK1-induced autoinflammatory syndrome. . J. Clin. Immunol. 42::142132
    [Crossref] [Google Scholar]
  141. 140.
    Dai J, Jin T, Su G, Han X, Wang J, et al. 2024.. RIPK1 biallelic activating variants lead to autoinflammatory disease driven by T cell death. . medRxiv 24304774. https://doi.org/10.1101/2024.03.28.24304774
  142. 141.
    Tang Y, Tu H, Zhang J, Zhao X, Wang Y, et al. 2019.. K63-linked ubiquitination regulates RIPK1 kinase activity to prevent cell death during embryogenesis and inflammation. . Nat. Commun. 10::4157
    [Crossref] [Google Scholar]
  143. 142.
    Larabi A, Devos JM, Ng SL, Nanao MH, Round A, et al. 2013.. Crystal structure and mechanism of activation of TANK-binding kinase 1. . Cell Rep. 3::73446
    [Crossref] [Google Scholar]
  144. 143.
    Fang R, Jiang Q, Zhou X, Wang C, Guan Y, et al. 2017.. MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner. . PLOS Pathog. 13::e1006720
    [Crossref] [Google Scholar]
  145. 144.
    Marchlik E, Thakker P, Carlson T, Jiang Z, Ryan M, et al. 2010.. Mice lacking Tbk1 activity exhibit immune cell infiltrates in multiple tissues and increased susceptibility to LPS-induced lethality. . J. Leukoc. Biol. 88::117180
    [Crossref] [Google Scholar]
  146. 145.
    Bonnard M, Mirtsos C, Suzuki S, Graham K, Huang J, et al. 2000.. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription. . EMBO J. 19::497685
    [Crossref] [Google Scholar]
  147. 146.
    Matsui K, Kumagai Y, Kato H, Sato S, Kawagoe T, et al. 2006.. Cutting edge: role of TANK-binding kinase 1 and inducible IκB kinase in IFN responses against viruses in innate immune cells. . J. Immunol. 177::578589
    [Crossref] [Google Scholar]
  148. 147.
    Herman M, Ciancanelli M, Ou YH, Lorenzo L, Klaudel-Dreszler M, et al. 2012.. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. . J. Exp. Med. 209::156782
    [Crossref] [Google Scholar]
  149. 148.
    Weinreich M, Shepheard SR, Verber N, Wyles M, Heath PR, et al. 2020.. Neuropathological characterization of a novel TANK binding kinase (TBK1) gene loss of function mutation associated with amyotrophic lateral sclerosis. . Neuropathol. Appl. Neurobiol. 46::27991
    [Crossref] [Google Scholar]
  150. 149.
    Taft J, Markson M, Legarda D, Patel R, Chan M, et al. 2021.. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. . Cell 184::444763.e20
    [Crossref] [Google Scholar]
  151. 150.
    Zhang J, Clark K, Lawrence T, Peggie MW, Cohen P. 2014.. An unexpected twist to the activation of IKKβ: TAK1 primes IKKβ for activation by autophosphorylation. . Biochem. J. 461::53137
    [Crossref] [Google Scholar]
  152. 151.
    Du M, Ea CK, Fang Y, Chen ZJ. 2022.. Liquid phase separation of NEMO induced by polyubiquitin chains activates NF-κB. . Mol. Cell 82::241526.e5
    [Crossref] [Google Scholar]
  153. 152.
    Dondelinger Y, Delanghe T, Priem D, Wynosky-Dolfi MA, Sorobetea D, et al. 2019.. Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. . Nat. Commun. 10::1729
    [Crossref] [Google Scholar]
  154. 153.
    Blanchett S, Dondelinger Y, Barbarulo A, Bertrand MJM, Seddon B. 2022.. Phosphorylation of RIPK1 serine 25 mediates IKK dependent control of extrinsic cell death in T cells. . Front. Immunol. 13::1067164
    [Crossref] [Google Scholar]
  155. 154.
    How KN, Leong HJY, Pramono ZAD, Leong KF, Lai ZW, Yap WH. 2022.. Uncovering incontinentia pigmenti: from DNA sequence to pathophysiology. . Front. Pediatr. 10::900606
    [Crossref] [Google Scholar]
  156. 155.
    Greene-Roethke C. 2017.. Incontinentia pigmenti: a summary review of this rare ectodermal dysplasia with neurologic manifestations, including treatment protocols. . J. Pediatr. Health Care 31::e4552
    [Crossref] [Google Scholar]
  157. 156.
    Boisson B, Puel A, Picard C, Casanova JL. 2017.. Human IκBα gain of function: a severe and syndromic immunodeficiency. . J. Clin. Immunol. 37::397412
    [Crossref] [Google Scholar]
  158. 157.
    Nishikomori R, Akutagawa H, Maruyama K, Nakata-Hizume M, Ohmori K, et al. 2004.. X-linked ectodermal dysplasia and immunodeficiency caused by reversion mosaicism of NEMO reveals a critical role for NEMO in human T-cell development and/or survival. . Blood 103::456572
    [Crossref] [Google Scholar]
  159. 158.
    Kawai T, Nishikomori R, Izawa K, Murata Y, Tanaka N, et al. 2012.. Frequent somatic mosaicism of NEMO in T cells of patients with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. . Blood 119::545866
    [Crossref] [Google Scholar]
  160. 159.
    Hanson EP, Monaco-Shawver L, Solt LA, Madge LA, Banerjee PP, et al. 2008.. Hypomorphic nuclear factor-κB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. . J. Allergy Clin. Immunol. 122::116977.e16
    [Crossref] [Google Scholar]
  161. 160.
    Miot C, Imai K, Imai C, Mancini AJ, Kucuk ZY, et al. 2017.. Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. . Blood 130::145667
    [Crossref] [Google Scholar]
  162. 161.
    Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, et al. 2007.. Epithelial NEMO links innate immunity to chronic intestinal inflammation. . Nature 446::55761
    [Crossref] [Google Scholar]
  163. 162.
    Vlantis K, Wullaert A, Polykratis A, Kondylis V, Dannappel M, et al. 2016.. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-κB-dependent and -independent functions. . Immunity 44::55367
    [Crossref] [Google Scholar]
  164. 163.
    Patel S, Webster JD, Varfolomeev E, Kwon YC, Cheng JH, et al. 2020.. RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases. . Cell Death Differ. 27::16175
    [Crossref] [Google Scholar]
  165. 164.
    Lee Y, Wessel AW, Xu J, Reinke JG, Lee E, et al. 2022.. Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype. . J. Clin. Investig. 132::e128808
    [Crossref] [Google Scholar]
  166. 165.
    Smale ST. 2012.. Dimer-specific regulatory mechanisms within the NF-κB family of transcription factors. . Immunol. Rev. 246::193204
    [Crossref] [Google Scholar]
  167. 166.
    Hayden MS, Ghosh S. 2012.. NF-κB, the first quarter-century: remarkable progress and outstanding questions. . Genes Dev. 26::20334
    [Crossref] [Google Scholar]
  168. 167.
    Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. 1995.. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. . Nature 376::16770
    [Crossref] [Google Scholar]
  169. 168.
    Badran YR, Dedeoglu F, Leyva Castillo JM, Bainter W, Ohsumi TK, et al. 2017.. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. . J. Exp. Med. 214::193747
    [Crossref] [Google Scholar]
  170. 169.
    Adeeb F, Dorris ER, Morgan NE, Lawless D, Maqsood A, et al. 2021.. A novel RELA truncating mutation in a familial Behҫet's disease–like mucocutaneous ulcerative condition. Arthritis Rheumatol. . 73:49097
  171. 170.
    An JW, Pimpale-Chavan P, Stone DL, Bandeira M, Dedeoglu F, et al. 2023.. Case report: novel variants in RELA associated with familial Behcet's-like disease. . Front. Immunol. 14::1127085
    [Crossref] [Google Scholar]
  172. 171.
    Lecerf K, Koboldt DC, Kuehn HS, Jayaraman V, Lee K, et al. 2022.. Case report and review of the literature: immune dysregulation in a large familial cohort due to a novel pathogenic RELA variant. . Rheumatology 62::34759
    [Crossref] [Google Scholar]
  173. 172.
    Comrie WA, Faruqi AJ, Price S, Zhang Y, Rao VK, et al. 2018.. RELA haploinsufficiency in CD4 lymphoproliferative disease with autoimmune cytopenias. . J. Allergy Clin. Immunol. 141::150710.e8
    [Crossref] [Google Scholar]
  174. 173.
    Moriya K, Nakano T, Honda Y, Tsumura M, Ogishi M, et al. 2023.. Human RELA dominant-negative mutations underlie type I interferonopathy with autoinflammation and autoimmunity. . J. Exp. Med. 220::e20212276
    [Crossref] [Google Scholar]
  175. 174.
    Horne CR, Samson AL, Murphy JM. 2023.. The web of death: the expanding complexity of necroptotic signaling. . Trends Cell Biol. 33::16274
    [Crossref] [Google Scholar]
  176. 175.
    Upton JW, Shubina M, Balachandran S. 2017.. RIPK3-driven cell death during virus infections. . Immunol. Rev. 277::90101
    [Crossref] [Google Scholar]
  177. 176.
    Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, et al. 2014.. RIP3 induces apoptosis independent of pronecrotic kinase activity. . Mol. Cell 56::48195
    [Crossref] [Google Scholar]
  178. 177.
    Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, et al. 2014.. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. . Science 343::135760
    [Crossref] [Google Scholar]
  179. 178.
    Liu Z, Garcia Reino EJ, Harschnitz O, Guo H, Chan YH, et al. 2023.. Encephalitis and poor neuronal death–mediated control of herpes simplex virus in human inherited RIPK3 deficiency. . Sci. Immunol. 8::eade2860
    [Crossref] [Google Scholar]
  180. 179.
    Najafov A, Mookhtiar AK, Luu HS, Ordureau A, Pan H, et al. 2019.. TAM kinases promote necroptosis by regulating oligomerization of MLKL. . Mol. Cell 75::45768.e4
    [Crossref] [Google Scholar]
  181. 180.
    Arnež KH, Kindlova M, Bokil NJ, Murphy JM, Sweet MJ, Gunčar G. 2015.. Analysis of the N-terminal region of human MLKL, as well as two distinct MLKL isoforms, reveals new insights into necroptotic cell death. . Biosci. Rep. 36::e00291
    [Crossref] [Google Scholar]
  182. 181.
    Zhu X, Yang N, Yang Y, Yuan F, Yu D, et al. 2022.. Spontaneous necroptosis and autoinflammation are blocked by an inhibitory phosphorylation on MLKL during neonatal development. . Cell Res. 32::40710
    [Crossref] [Google Scholar]
  183. 182.
    Hildebrand JM, Kauppi M, Majewski IJ, Liu Z, Cox AJ, et al. 2020.. A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. . Nat. Commun. 11::3150
    [Crossref] [Google Scholar]
  184. 183.
    Garnish SE, Martin KR, Kauppi M, Jackson VE, Ambrose R, et al. 2023.. A common human MLKL polymorphism confers resistance to negative regulation by phosphorylation. . Nat. Commun. 14::6046
    [Crossref] [Google Scholar]
  185. 184.
    Faergeman SL, Evans H, Attfield KE, Desel C, Kuttikkatte SB, et al. 2020.. A novel neurodegenerative spectrum disorder in patients with MLKL deficiency. . Cell Death Dis. 11::303
    [Crossref] [Google Scholar]
  186. 185.
    Wang B, Bao S, Zhang Z, Zhou X, Wang J, et al. 2018.. A rare variant in MLKL confers susceptibility to ApoE ɛ4-negative Alzheimer's disease in Hong Kong Chinese population. . Neurobiol. Aging 68::160.e17
    [Crossref] [Google Scholar]
  187. 186.
    Polykratis A, Hermance N, Zelic M, Roderick J, Kim C, et al. 2014.. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. . J. Immunol. 193::153943
    [Crossref] [Google Scholar]
  188. 187.
    Gardner CR, Davies KA, Zhang Y, Brzozowski M, Czabotar PE, et al. 2023.. From (tool)bench to bedside: the potential of necroptosis inhibitors. . J. Med. Chem. 66::236185
    [Crossref] [Google Scholar]
  189. 188.
    Martens S, Hofmans S, Declercq W, Augustyns K, Vandenabeele P. 2020.. Inhibitors targeting RIPK1/RIPK3: old and new drugs. . Trends Pharmacol. Sci. 41::20924
    [Crossref] [Google Scholar]
  190. 189.
    Weisel K, Berger S, Thorn K, Taylor PC, Peterfy C, et al. 2021.. A randomized, placebo-controlled experimental medicine study of RIPK1 inhibitor GSK2982772 in patients with moderate to severe rheumatoid arthritis. . Arthritis Res. Ther. 23::85
    [Crossref] [Google Scholar]
  191. 190.
    Weisel K, Scott N, Berger S, Wang S, Brown K, et al. 2021.. A randomised, placebo-controlled study of RIPK1 inhibitor GSK2982772 in patients with active ulcerative colitis. . BMJ Open. Gastroenterol. 8::e000680
    [Crossref] [Google Scholar]
  192. 191.
    Weisel K, Berger S, Papp K, Maari C, Krueger JG, et al. 2020.. Response to inhibition of receptor-interacting protein kinase 1 (RIPK1) in active plaque psoriasis: a randomized placebo-controlled study. . Clin. Pharmacol. Ther. 108::80816
    [Crossref] [Google Scholar]
  193. 192.
    Chiou S, Al-Ani AH, Pan Y, Patel KM, Kong IY, et al. 2024.. An immunohistochemical atlas of necroptotic pathway expression. . EMBO Mol. Med. 16::171749
    [Crossref] [Google Scholar]
  194. 193.
    Chen W, Zhou Z, Li L, Zhong CQ, Zheng X, et al. 2013.. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. . J. Biol. Chem. 288::1624761
    [Crossref] [Google Scholar]
  195. 194.
    Davies KA, Fitzgibbon C, Young SN, Garnish SE, Yeung W, et al. 2020.. Distinct pseudokinase domain conformations underlie divergent activation mechanisms among vertebrate MLKL orthologues. . Nat. Commun. 11::3060
    [Crossref] [Google Scholar]
  196. 195.
    Gullett JM, Tweedell RE, Kanneganti TD. 2022.. It's all in the PAN: crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by PANoptosis underlying the totality of cell death-associated biological effects. . Cells 11::1495
    [Crossref] [Google Scholar]
  197. 196.
    Wei C, Jiang W, Wang R, Zhong H, He H, et al. 2024.. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. . Nature 629::893900
    [Crossref] [Google Scholar]
  198. 197.
    Ridder DA, Wenzel J, Muller K, Tollner K, Tong XK, et al. 2015.. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. . J. Exp. Med. 212::152949
    [Crossref] [Google Scholar]
  199. 198.
    Naito H, Iba T, Wakabayashi T, Tai-Nagara I, Suehiro JI, et al. 2019.. TAK1 prevents endothelial apoptosis and maintains vascular integrity. . Dev. Cell 48::15166.e7
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-090222-105848
Loading
/content/journals/10.1146/annurev-immunol-090222-105848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error