1932

Abstract

Regionalized immune surveillance relies on the concerted efforts of diverse memory T cell populations. Of these, tissue-resident memory T (T) cells are strategically positioned in barrier tissues, where they enable efficient frontline defense against infections and cancer. However, the long-term persistence of these cells has been implicated in a variety of immune-mediated pathologies. Consequently, modulating T cell populations represents an attractive strategy for novel vaccination and therapeutic interventions against tissue-based diseases. Here, we provide an updated overview of T cell heterogeneity and function across tissues and disease states. We discuss mechanisms of T cell–mediated immune protection and their potential contributions to autoimmune disorders. Finally, we examine how T cell responses might be durably boosted or dampened for therapeutic gain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101320-020220
2024-06-28
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-101320-020220.html?itemId=/content/journals/10.1146/annurev-immunol-101320-020220&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. 2001.. Visualizing the generation of memory CD4 T cells in the whole body. . Nature 410::1015
    [Crossref] [Google Scholar]
  2. 2.
    Marshall DR, Turner SJ, Belz GT, Wingo S, Andreansky S, et al. 2001.. Measuring the diaspora for virus-specific CD8+ T cells. . PNAS 98::631318
    [Crossref] [Google Scholar]
  3. 3.
    Masopust D, Vezys V, Marzo AL, Lefrançois L. 2001.. Preferential localization of effector memory cells in nonlymphoid tissue. . Science 291::241317
    [Crossref] [Google Scholar]
  4. 4.
    Hogan RJ, Usherwood EJ, Zhong W, Roberts AA, Dutton RW, et al. 2001.. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. . J. Immunol. 166::181322
    [Crossref] [Google Scholar]
  5. 5.
    Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, et al. 2006.. The vast majority of CLA+ T cells are resident in normal skin. . J. Immunol. 176::443139
    [Crossref] [Google Scholar]
  6. 6.
    Masopust D, Vezys V, Wherry EJ, Barber DL, Ahmed R. 2006.. Gut microenvironment promotes differentiation of a unique memory CD8 T cell population. . J. Immunol. 176::207983
    [Crossref] [Google Scholar]
  7. 7.
    Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO. 2004.. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor α. . J. Exp. Med. 199::73136
    [Crossref] [Google Scholar]
  8. 8.
    Klonowski KD, Williams KJ, Marzo AL, Blair DA, Lingenheld EG, Lefrançois L. 2004.. Dynamics of blood-borne CD8 memory T cell migration in vivo. . Immunity 20::55162
    [Crossref] [Google Scholar]
  9. 9.
    Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. 2009.. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. . Nat. Immunol. 10::52430
    [Crossref] [Google Scholar]
  10. 10.
    Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J, et al. 2010.. Dynamic T cell migration program provides resident memory within intestinal epithelium. . J. Exp. Med. 207::55364
    [Crossref] [Google Scholar]
  11. 11.
    Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR. 2008.. Dendritic cell–induced memory T cell activation in nonlymphoid tissues. . Science 319::198202
    [Crossref] [Google Scholar]
  12. 12.
    Masopust D, Soerens AG. 2019.. Tissue-resident T cells and other resident leukocytes. . Annu. Rev. Immunol. 37::52146
    [Crossref] [Google Scholar]
  13. 13.
    Anderson KG, Sung H, Skon CN, Lefrançois L, Deisinger A, et al. 2012.. Intravascular staining redefines lung CD8 T cell responses. . J. Immunol. 189::27026
    [Crossref] [Google Scholar]
  14. 14.
    Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, et al. 2015.. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. . Sci. Transl. Med. 7::279ra39
    [Crossref] [Google Scholar]
  15. 15.
    Clark RA, Watanabe R, Teague JE, Schlapbach C, Tawa MC, et al. 2012.. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. . Sci. Transl. Med. 4::117ra7
    [Crossref] [Google Scholar]
  16. 16.
    Lian CG, Bueno EM, Granter SR, Laga AC, Saavedra AP, et al. 2014.. Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. . Mod. Pathol. 27::78899
    [Crossref] [Google Scholar]
  17. 17.
    Zuber J, Shonts B, Lau SP, Obradovic A, Fu J, et al. 2016.. Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. . Sci. Immunol. 1::eaah3732
    [Crossref] [Google Scholar]
  18. 18.
    Bartolome-Casado R, Landsverk OJB, Chauhan SK, Richter L, Phung D, et al. 2019.. Resident memory CD8 T cells persist for years in human small intestine. . J. Exp. Med. 216::241226
    [Crossref] [Google Scholar]
  19. 19.
    Snyder ME, Finlayson MO, Connors TJ, Dogra P, Senda T, et al. 2019.. Generation and persistence of human tissue-resident memory T cells in lung transplantation. . Sci. Immunol. 4::eaav5581
    [Crossref] [Google Scholar]
  20. 20.
    de Leur K, Dieterich M, Hesselink DA, Corneth OBJ, Dor F, et al. 2019.. Characterization of donor and recipient CD8+ tissue-resident memory T cells in transplant nephrectomies. . Sci. Rep. 9::5984
    [Crossref] [Google Scholar]
  21. 21.
    Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, et al. 2013.. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. . Nat. Immunol. 14::1294301
    [Crossref] [Google Scholar]
  22. 22.
    Steinert EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS, et al. 2015.. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. . Cell 161::73749
    [Crossref] [Google Scholar]
  23. 23.
    Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, et al. 2013.. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. . Immunity 38::18797
    [Crossref] [Google Scholar]
  24. 24.
    Beura LK, Anderson KG, Schenkel JM, Locquiao JJ, Fraser KA, et al. 2015.. Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution. . J. Leukoc. Biol. 97::21725
    [Crossref] [Google Scholar]
  25. 25.
    Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, et al. 2012.. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. . J. Immunol. 188::486675
    [Crossref] [Google Scholar]
  26. 26.
    Beura LK, Fares-Frederickson NJ, Steinert EM, Scott MC, Thompson EA, et al. 2019.. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. . J. Exp. Med. 216::121429
    [Crossref] [Google Scholar]
  27. 27.
    Kumar BV, Ma W, Miron M, Granot T, Guyer RS, et al. 2017.. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. . Cell Rep. 20::292134
    [Crossref] [Google Scholar]
  28. 28.
    Christo SN, Evrard M, Park SL, Gandolfo LC, Burn TN, et al. 2021.. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. . Nat. Immunol. 22::114051
    [Crossref] [Google Scholar]
  29. 29.
    Mackay LK, Minnich M, Kragten NA, Liao Y, Nota B, et al. 2016.. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. . Science 352::45963
    [Crossref] [Google Scholar]
  30. 30.
    Evrard M, Becht E, Fonseca R, Obers A, Park SL, et al. 2023.. Single-cell protein expression profiling resolves circulating and resident memory T cell diversity across tissues and infection contexts. . Immunity 56::166480.e9
    [Crossref] [Google Scholar]
  31. 31.
    Park SL, Mackay LK. 2021.. Decoding tissue-residency: programming and potential of frontline memory T cells. . Cold Spring Harb. Perspect. Biol. 13::a037960
    [Crossref] [Google Scholar]
  32. 32.
    Mani V, Bromley SK, Aijo T, Mora-Buch R, Carrizosa E, et al. 2019.. Migratory DCs activate TGF-β to precondition naive CD8+ T cells for tissue-resident memory fate. . Science 366::eaav5728
    [Crossref] [Google Scholar]
  33. 33.
    Iborra S, Martinez-Lopez M, Khouili SC, Enamorado M, Cueto FJ, et al. 2016.. Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells. . Immunity 45::84760
    [Crossref] [Google Scholar]
  34. 34.
    Brown FD, Sen DR, LaFleur MW, Godec J, Lukacs-Kornek V, et al. 2019.. Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling. . Nat. Immunol. 20::166880
    [Crossref] [Google Scholar]
  35. 35.
    Solouki S, Huang W, Elmore J, Limper C, Huang F, August A. 2020.. TCR signal strength and antigen affinity regulate CD8+ memory T cells. . J. Immunol. 205::121727
    [Crossref] [Google Scholar]
  36. 36.
    Fiege JK, Stone IA, Fay EJ, Markman MW, Wijeyesinghe S, et al. 2019.. The impact of TCR signal strength on resident memory T cell formation during influenza virus infection. . J. Immunol. 203::93645
    [Crossref] [Google Scholar]
  37. 37.
    Frost EL, Kersh AE, Evavold BD, Lukacher AE. 2015.. Resident memory CD8 T cells express high-affinity TCRs. . J. Immunol. 195::352024
    [Crossref] [Google Scholar]
  38. 38.
    Kok L, Dijkgraaf FE, Urbanus J, Bresser K, Vredevoogd DW, et al. 2020.. A committed tissue-resident memory T cell precursor within the circulating CD8+ effector T cell pool. . J. Exp. Med. 217::e20191711
    [Crossref] [Google Scholar]
  39. 39.
    Gaide O, Emerson RO, Jiang X, Gulati N, Nizza S, et al. 2015.. Common clonal origin of central and resident memory T cells following skin immunization. . Nat. Med. 21::64753
    [Crossref] [Google Scholar]
  40. 40.
    Osborn JF, Hobbs SJ, Mooster JL, Khan TN, Kilgore AM, et al. 2019.. Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. . PLOS Pathog. 15::e1007633
    [Crossref] [Google Scholar]
  41. 41.
    Enamorado M, Iborra S, Priego E, Cueto FJ, Quintana JA, et al. 2017.. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. . Nat. Commun. 8::16073
    [Crossref] [Google Scholar]
  42. 42.
    Matos TR, Gehad A, Teague JE, Dyring-Andersen B, Benezeder T, et al. 2022.. Central memory T cells are the most effective precursors of resident memory T cells in human skin. . Sci. Immunol. 7::eabn1889
    [Crossref] [Google Scholar]
  43. 43.
    Kok L, Masopust D, Schumacher TN. 2022.. The precursors of CD8+ tissue resident memory T cells: from lymphoid organs to infected tissues. . Nat. Rev. Immunol. 22::28393
    [Crossref] [Google Scholar]
  44. 44.
    Qiu Z, Khairallah C, Chu TH, Imperato JN, Lei X, et al. 2023.. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. . J. Exp. Med. 220::e20210923
    [Crossref] [Google Scholar]
  45. 45.
    Zaid A, Hor JL, Christo SN, Groom JR, Heath WR, et al. 2017.. Chemokine receptor–dependent control of skin tissue–resident memory T cell formation. . J. Immunol. 199::245159
    [Crossref] [Google Scholar]
  46. 46.
    Slutter B, Pewe LL, Kaech SM, Harty JT. 2013.. Lung airway–surveilling CXCR3hi memory CD8+ T cells are critical for protection against influenza A virus. . Immunity 39::93948
    [Crossref] [Google Scholar]
  47. 47.
    Lefebvre MN, Surette FA, Anthony SM, Vijay R, Jensen IJ, et al. 2021.. Expeditious recruitment of circulating memory CD8 T cells to the liver facilitates control of malaria. . Cell Rep. 37::109956
    [Crossref] [Google Scholar]
  48. 48.
    Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. 2004.. Retinoic acid imprints gut-homing specificity on T cells. . Immunity 21::52738
    [Crossref] [Google Scholar]
  49. 49.
    Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, et al. 2003.. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. . Nature 424::8893
    [Crossref] [Google Scholar]
  50. 50.
    Buggert M, Vella LA, Nguyen S, Wu VH, Chen Z, et al. 2020.. The identity of human tissue-emigrant CD8+ T cells. . Cell 183::194661.e15
    [Crossref] [Google Scholar]
  51. 51.
    McCully ML, Ladell K, Andrews R, Jones RE, Miners KL, et al. 2018.. CCR8 expression defines tissue-resident memory T cells in human skin. . J. Immunol. 200::163950
    [Crossref] [Google Scholar]
  52. 52.
    Hombrink P, Helbig C, Backer RA, Piet B, Oja AE, et al. 2016.. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. . Nat. Immunol. 17::146778
    [Crossref] [Google Scholar]
  53. 53.
    Mueller SN, Mackay LK. 2016.. Tissue-resident memory T cells: local specialists in immune defence. . Nat. Rev. Immunol. 16::7989
    [Crossref] [Google Scholar]
  54. 54.
    Mackay LK, Kallies A. 2017.. Transcriptional regulation of tissue-resident lymphocytes. . Trends Immunol. 38::94103
    [Crossref] [Google Scholar]
  55. 55.
    Evrard M, Wynne-Jones E, Peng C, Kato Y, Christo SN, et al. 2022.. Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. . J. Exp. Med. 219::e20210116
    [Crossref] [Google Scholar]
  56. 56.
    Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC. 2013.. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. . Nat. Immunol. 14::128593
    [Crossref] [Google Scholar]
  57. 57.
    Mackay LK, Wynne-Jones E, Freestone D, Pellicci DG, Mielke LA, et al. 2015.. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. . Immunity 43::110111
    [Crossref] [Google Scholar]
  58. 58.
    Mackay LK, Braun A, Macleod BL, Collins N, Tebartz C, et al. 2015.. CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. . J. Immunol. 194::205963
    [Crossref] [Google Scholar]
  59. 59.
    Walsh DA, Borges da Silva H, Beura LK, Peng C, Hamilton SE, et al. 2019.. The functional requirement for CD69 in establishment of resident memory CD8+ T cells varies with tissue location. . J. Immunol. 203::94655
    [Crossref] [Google Scholar]
  60. 60.
    Bromley SK, Akbaba H, Mani V, Mora-Buch R, Chasse AY, et al. 2020.. CD49a regulates cutaneous resident memory CD8+ T cell persistence and response. . Cell Rep. 32::108085
    [Crossref] [Google Scholar]
  61. 61.
    Ray SJ, Franki SN, Pierce RH, Dimitrova S, Koteliansky V, et al. 2004.. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell–mediated immune protection against heterologous influenza infection. . Immunity 20::16779
    [Crossref] [Google Scholar]
  62. 62.
    McNamara HA, Cai Y, Wagle MV, Sontani Y, Roots CM, et al. 2017.. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. . Sci. Immunol. 2::eaaj1996
    [Crossref] [Google Scholar]
  63. 63.
    Wein AN, McMaster SR, Takamura S, Dunbar PR, Cartwright EK, et al. 2019.. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. . J. Exp. Med. 216::274862
    [Crossref] [Google Scholar]
  64. 64.
    Milner JJ, Toma C, Yu B, Zhang K, Omilusik K, et al. 2017.. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. . Nature 552::25357
    [Crossref] [Google Scholar]
  65. 65.
    Fonseca R, Burn TN, Gandolfo LC, Devi S, Park SL, et al. 2022.. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells. . Nat. Immunol. 23::123645
    [Crossref] [Google Scholar]
  66. 66.
    Milner JJ, Goldrath AW. 2018.. Transcriptional programming of tissue-resident memory CD8+ T cells. . Curr. Opin. Immunol. 51::16269
    [Crossref] [Google Scholar]
  67. 67.
    Laidlaw BJ, Zhang N, Marshall HD, Staron MM, Guan T, et al. 2014.. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. . Immunity 41::63345
    [Crossref] [Google Scholar]
  68. 68.
    Boddupalli CS, Nair S, Gray SM, Nowyhed HN, Verma R, et al. 2016.. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. . J. Clin. Investig. 126::390516
    [Crossref] [Google Scholar]
  69. 69.
    Li C, Zhu B, Son YM, Wang Z, Jiang L, et al. 2019.. The transcription factor Bhlhe40 programs mitochondrial regulation of resident CD8+ T cell fitness and functionality. . Immunity 51::491507.e7
    [Crossref] [Google Scholar]
  70. 70.
    Poon MML, Caron DP, Wang Z, Wells SB, Chen D, et al. 2023.. Tissue adaptation and clonal segregation of human memory T cells in barrier sites. . Nat. Immunol. 24::30919
    [Crossref] [Google Scholar]
  71. 71.
    Reilly EC, Lambert-Emo K, Topham DJ. 2016.. The effects of acute neutrophil depletion on resolution of acute influenza infection, establishment of tissue resident memory (TRM), and heterosubtypic immunity. . PLOS ONE 11::e0164247
    [Crossref] [Google Scholar]
  72. 72.
    Thompson EA, Darrah PA, Foulds KE, Hoffer E, Caffrey-Carr A, et al. 2019.. Monocytes acquire the ability to prime tissue-resident T cells via IL-10-mediated TGF-β release. . Cell Rep. 28::112735.e4
    [Crossref] [Google Scholar]
  73. 73.
    Dunbar PR, Cartwright EK, Wein AN, Tsukamoto T, Tiger Li ZR, et al. 2020.. Pulmonary monocytes interact with effector T cells in the lung tissue to drive TRM differentiation following viral infection. . Mucosal Immunol. 13::16171
    [Crossref] [Google Scholar]
  74. 74.
    Lobby JL, Uddbäck I, Scharer CD, Mi T, Boss JM, et al. 2022.. Persistent antigen harbored by alveolar macrophages enhances the maintenance of lung-resident memory CD8+ T cells. . J. Immunol. 209::177887
    [Crossref] [Google Scholar]
  75. 75.
    Low JS, Farsakoglu Y, Amezcua Vesely MC, Sefik E, Kelly JB, et al. 2020.. Tissue-resident memory T cell reactivation by diverse antigen-presenting cells imparts distinct functional responses. . J. Exp. Med. 217::e20192291
    [Crossref] [Google Scholar]
  76. 76.
    Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, et al. 2011.. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. . Nature 477::21619
    [Crossref] [Google Scholar]
  77. 77.
    Zaid A, Mackay LK, Rahimpour A, Braun A, Veldhoen M, et al. 2014.. Persistence of skin-resident memory T cells within an epidermal niche. . PNAS 111::530712
    [Crossref] [Google Scholar]
  78. 78.
    Fernandez-Ruiz D, Ng WY, Holz LE, Ma JZ, Zaid A, et al. 2016.. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. . Immunity 45::889902
    [Crossref] [Google Scholar]
  79. 79.
    Loi JK, Alexandre YO, Senthil K, Schienstock D, Sandford S, et al. 2022.. Corneal tissue–resident memory T cells form a unique immune compartment at the ocular surface. . Cell Rep. 39::110852
    [Crossref] [Google Scholar]
  80. 80.
    Stolp B, Thelen F, Ficht X, Altenburger LM, Ruef N, et al. 2020.. Salivary gland macrophages and tissue-resident CD8+ T cells cooperate for homeostatic organ surveillance. . Sci. Immunol. 5::eaaz4371
    [Crossref] [Google Scholar]
  81. 81.
    Ghazanfari N, Gregory JL, Devi S, Fernandez-Ruiz D, Beattie L, et al. 2021.. CD8+ and CD4+ T cells infiltrate into the brain during Plasmodium berghei ANKA infection and form long-term resident memory. . J. Immunol. 207::157890
    [Crossref] [Google Scholar]
  82. 82.
    Dijkgraaf FE, Matos TR, Hoogenboezem M, Toebes M, Vredevoogd DW, et al. 2019.. Tissue patrol by resident memory CD8+ T cells in human skin. . Nat. Immunol. 20::75664
    [Crossref] [Google Scholar]
  83. 83.
    Collins N, Jiang X, Zaid A, Macleod BL, Li J, et al. 2016.. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. . Nat. Commun. 7::11514
    [Crossref] [Google Scholar]
  84. 84.
    Iijima N, Iwasaki A. 2014.. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. . Science 346::9398
    [Crossref] [Google Scholar]
  85. 85.
    Weisberg SP, Carpenter DJ, Chait M, Dogra P, Gartrell-Corrado RD, et al. 2019.. Tissue-resident memory T cells mediate immune homeostasis in the human pancreas through the PD-1/PD-L1 pathway. . Cell Rep. 29::391632.e5
    [Crossref] [Google Scholar]
  86. 86.
    Goplen NP, Huang S, Zhu B, Cheon IS, Son YM, et al. 2019.. Tissue-resident macrophages limit pulmonary CD8 resident memory T cell establishment. . Front. Immunol. 10::2332
    [Crossref] [Google Scholar]
  87. 87.
    Wijeyesinghe S, Beura LK, Pierson MJ, Stolley JM, Adam OA, et al. 2021.. Expansible residence decentralizes immune homeostasis. . Nature 592::45762
    [Crossref] [Google Scholar]
  88. 88.
    Park SL, Zaid A, Hor JL, Christo SN, Prier JE, et al. 2018.. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. . Nat. Immunol. 19::18391
    [Crossref] [Google Scholar]
  89. 89.
    Beura LK, Mitchell JS, Thompson EA, Schenkel JM, Mohammed J, et al. 2018.. Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. . Nat. Immunol. 19::17382
    [Crossref] [Google Scholar]
  90. 90.
    Stolley JM, Johnston TS, Soerens AG, Beura LK, Rosato PC, et al. 2020.. Retrograde migration supplies resident memory T cells to lung-draining LN after influenza infection. . J. Exp. Med. 217::e20192197
    [Crossref] [Google Scholar]
  91. 91.
    Beura LK, Wijeyesinghe S, Thompson EA, Macchietto MG, Rosato PC, et al. 2018.. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. . Immunity 48::32738.e5
    [Crossref] [Google Scholar]
  92. 92.
    Fonseca R, Beura LK, Quarnstrom CF, Ghoneim HE, Fan Y, et al. 2020.. Developmental plasticity allows outside-in immune responses by resident memory T cells. . Nat. Immunol. 21::41221
    [Crossref] [Google Scholar]
  93. 93.
    Behr FM, Parga-Vidal L, Kragten NAM, van Dam TJP, Wesselink TH, et al. 2020.. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. . Nat. Immunol. 21::107081
    [Crossref] [Google Scholar]
  94. 94.
    Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, et al. 2016.. Normalizing the environment recapitulates adult human immune traits in laboratory mice. . Nature 532::51216
    [Crossref] [Google Scholar]
  95. 95.
    Szabo PA, Miron M, Farber DL. 2019.. Location, location, location: tissue resident memory T cells in mice and humans. . Sci. Immunol. 4::eaas9673
    [Crossref] [Google Scholar]
  96. 96.
    Thom JT, Weber TC, Walton SM, Torti N, Oxenius A. 2015.. The salivary gland acts as a sink for tissue-resident memory CD8+ T cells, facilitating protection from local cytomegalovirus infection. . Cell Rep. 13::112536
    [Crossref] [Google Scholar]
  97. 97.
    El-Asady R, Yuan R, Liu K, Wang D, Gress RE, et al. 2005.. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. . J. Exp. Med. 201::164757
    [Crossref] [Google Scholar]
  98. 98.
    Sheridan BS, Pham QM, Lee YT, Cauley LS, Puddington L, Lefrançois L. 2014.. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. . Immunity 40::74757
    [Crossref] [Google Scholar]
  99. 99.
    Zhang N, Bevan MJ. 2013.. Transforming growth factor β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. . Immunity 39::68796
    [Crossref] [Google Scholar]
  100. 100.
    Bergsbaken T, Bevan MJ. 2015.. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection. . Nat. Immunol. 16::40614
    [Crossref] [Google Scholar]
  101. 101.
    Wakim LM, Woodward-Davis A, Bevan MJ. 2010.. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. . PNAS 107::1787279
    [Crossref] [Google Scholar]
  102. 102.
    Lee YT, Suarez-Ramirez JE, Wu T, Redman JM, Bouchard K, et al. 2011.. Environmental and antigen receptor–derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. . J. Virol. 85::408594
    [Crossref] [Google Scholar]
  103. 103.
    Hofmann M, Pircher H. 2011.. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. . PNAS 108::1674146
    [Crossref] [Google Scholar]
  104. 104.
    Meharra EJ, Schon M, Hassett D, Parker C, Havran W, Gardner H. 2000.. Reduced gut intraepithelial lymphocytes in VLA1 null mice. . Cell Immunol. 201::15
    [Crossref] [Google Scholar]
  105. 105.
    Conrad C, Boyman O, Tonel G, Tun-Kyi A, Laggner U, et al. 2007.. α1β1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. . Nat. Med. 13::83642
    [Crossref] [Google Scholar]
  106. 106.
    Borges da Silva H, Beura LK, Wang H, Hanse EA, Gore R, et al. 2018.. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. . Nature 559::26468
    [Crossref] [Google Scholar]
  107. 107.
    Stark R, Wesselink TH, Behr FM, Kragten NAM, Arens R, et al. 2018.. TRM maintenance is regulated by tissue damage via P2RX7. . Sci. Immunol. 3::eaau1022
    [Crossref] [Google Scholar]
  108. 108.
    Borges da Silva H, Peng C, Wang H, Wanhainen KM, Ma C, et al. 2020.. Sensing of ATP via the purinergic receptor P2RX7 promotes CD8+ Trm cell generation by enhancing their sensitivity to the cytokine TGF-β. . Immunity 53::15871.e6
    [Crossref] [Google Scholar]
  109. 109.
    Schenkel JM, Fraser KA, Casey KA, Beura LK, Pauken KE, et al. 2016.. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells. . J. Immunol. 196::392026
    [Crossref] [Google Scholar]
  110. 110.
    Herndler-Brandstetter D, Ishigame H, Shinnakasu R, Plajer V, Stecher C, et al. 2018.. KLRG1+ effector CD8+ T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity. . Immunity 48::71629.e8
    [Crossref] [Google Scholar]
  111. 111.
    Mohammed J, Beura LK, Bobr A, Astry B, Chicoine B, et al. 2016.. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. . Nat. Immunol. 17::41421
    [Crossref] [Google Scholar]
  112. 112.
    Pan Y, Tian T, Park CO, Lofftus SY, Mei S, et al. 2017.. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. . Nature 543::25256
    [Crossref] [Google Scholar]
  113. 113.
    Frizzell H, Fonseca R, Christo SN, Evrard M, Cruz-Gomez S, et al. 2020.. Organ-specific isoform selection of fatty acid–binding proteins in tissue-resident lymphocytes. . Sci. Immunol. 5::eaay9283
    [Crossref] [Google Scholar]
  114. 114.
    Cheuk S, Schlums H, Gallais Serezal I, Martini E, Chiang SC, et al. 2017.. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. . Immunity 46::287300
    [Crossref] [Google Scholar]
  115. 115.
    Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, et al. 2015.. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. . Nature 520::1048
    [Crossref] [Google Scholar]
  116. 116.
    Park SL, Christo SN, Wells AC, Gandolfo LC, Zaid A, et al. 2023.. Divergent molecular networks program functionally distinct CD8+ skin-resident memory T cells. . Science 382::107379
    [Crossref] [Google Scholar]
  117. 117.
    Harrison OJ, Linehan JL, Shih HY, Bouladoux N, Han SJ, et al. 2019.. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. . Science 363::eaat6280
    [Crossref] [Google Scholar]
  118. 118.
    Linehan JL, Harrison OJ, Han SJ, Byrd AL, Vujkovic-Cvijin I, et al. 2018.. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. . Cell 172::78496.e18
    [Crossref] [Google Scholar]
  119. 119.
    Zitti B, Hoffer E, Zheng W, Pandey RV, Schlums H, et al. 2023.. Human skin-resident CD8+ T cells require RUNX2 and RUNX3 for induction of cytotoxicity and expression of the integrin CD49a. . Immunity 56::1285302.e7
    [Crossref] [Google Scholar]
  120. 120.
    Milner JJ, Toma C, He Z, Kurd NS, Nguyen QP, et al. 2020.. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. . Immunity 52::80824.e7
    [Crossref] [Google Scholar]
  121. 121.
    Kurd NS, He Z, Louis TL, Milner JJ, Omilusik KD, et al. 2020.. Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. . Sci. Immunol. 5::eaaz6894
    [Crossref] [Google Scholar]
  122. 122.
    Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J, et al. 2012.. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. . J. Immunol. 189::346271
    [Crossref] [Google Scholar]
  123. 123.
    Fung HY, Teryek M, Lemenze AD, Bergsbaken T. 2022.. CD103 fate mapping reveals that intestinal CD103 tissue-resident memory T cells are the primary responders to secondary infection. . Sci. Immunol. 7::eabl9925
    [Crossref] [Google Scholar]
  124. 124.
    von Hoesslin M, Kuhlmann M, de Almeida GP, Kanev K, Wurmser C, et al. 2022.. Secondary infections rejuvenate the intestinal CD103+ tissue-resident memory T cell pool. . Sci. Immunol. 7::eabp9553
    [Crossref] [Google Scholar]
  125. 125.
    FitzPatrick MEB, Provine NM, Garner LC, Powell K, Amini A, et al. 2021.. Human intestinal tissue–resident memory T cells comprise transcriptionally and functionally distinct subsets. . Cell Rep. 34::108661
    [Crossref] [Google Scholar]
  126. 126.
    Crowl JT, Heeg M, Ferry A, Milner JJ, Omilusik KD, et al. 2022.. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. . Nat. Immunol. 23::112131
    [Crossref] [Google Scholar]
  127. 127.
    Park SL, Buzzai A, Rautela J, Hor JL, Hochheiser K, et al. 2019.. Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. . Nature 565::36671
    [Crossref] [Google Scholar]
  128. 128.
    Stolley JM, Scott MC, Joag V, Dale AJ, Johnston TS, et al. 2023.. Depleting CD103+ resident memory T cells in vivo reveals immunostimulatory functions in oral mucosa. . J. Exp. Med. 220::e20221853
    [Crossref] [Google Scholar]
  129. 129.
    Schenkel JM, Fraser KA, Vezys V, Masopust D. 2013.. Sensing and alarm function of resident memory CD8+ T cells. . Nat. Immunol. 14::50913
    [Crossref] [Google Scholar]
  130. 130.
    Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D. 2014.. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. . Science 346::98101
    [Crossref] [Google Scholar]
  131. 131.
    Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, et al. 2014.. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. . Science 346::1015
    [Crossref] [Google Scholar]
  132. 132.
    Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. 2012.. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. . Nature 483::22731
    [Crossref] [Google Scholar]
  133. 133.
    Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, et al. 2012.. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. . PNAS 109::703742
    [Crossref] [Google Scholar]
  134. 134.
    Park CO, Fu X, Jiang X, Pan Y, Teague JE, et al. 2018.. Staged development of long-lived T-cell receptor αβ TH17 resident memory T-cell population to Candida albicans after skin infection. . J. Allergy Clin. Immunol. 142::64762
    [Crossref] [Google Scholar]
  135. 135.
    Wu T, Hu YH, Lee YT, Bouchard KR, Benechet A, et al. 2014.. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal crossprotection against pulmonary virus infection. . J. Leukoc. Biol. 95::21524
    [Crossref] [Google Scholar]
  136. 136.
    Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrançois L, Farber DL. 2011.. Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. . J. Immunol. 187::551014
    [Crossref] [Google Scholar]
  137. 137.
    Wilk MM, Misiak A, McManus RM, Allen AC, Lynch MA, Mills KHG. 2017.. Lung CD4 tissue-resident memory T cells mediate adaptive immunity induced by previous infection of mice with Bordetella pertussis. . J. Immunol. 199::23343
    [Crossref] [Google Scholar]
  138. 138.
    Shin H, Iwasaki A. 2012.. A vaccine strategy that protects against genital herpes by establishing local memory T cells. . Nature 491::46367
    [Crossref] [Google Scholar]
  139. 139.
    Steinbach K, Vincenti I, Kreutzfeldt M, Page N, Muschaweckh A, et al. 2016.. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. . J. Exp. Med. 213::157187
    [Crossref] [Google Scholar]
  140. 140.
    McMaster SR, Wilson JJ, Wang H, Kohlmeier JE. 2015.. Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-γ production. . J. Immunol. 195::2039
    [Crossref] [Google Scholar]
  141. 141.
    Ge C, Monk IR, Pizzolla A, Wang N, Bedford JG, et al. 2019.. Bystander activation of pulmonary Trm cells attenuates the severity of bacterial pneumonia by enhancing neutrophil recruitment. . Cell Rep. 29::423644.e3
    [Crossref] [Google Scholar]
  142. 142.
    Liao W, Liu Y, Ma C, Wang L, Li G, et al. 2021.. The downregulation of IL-18R defines bona fide kidney-resident CD8+ T cells. . iScience 24::101975
    [Crossref] [Google Scholar]
  143. 143.
    Rotrosen E, Kupper TS. 2023.. Assessing the generation of tissue resident memory T cells by vaccines. . Nat. Rev. Immunol. 23::65565
    [Crossref] [Google Scholar]
  144. 144.
    Hassert M, Harty JT. 2022.. Tissue resident memory T cells—a new benchmark for the induction of vaccine-induced mucosal immunity. . Front. Immunol. 13::1039194
    [Crossref] [Google Scholar]
  145. 145.
    Liu L, Zhong Q, Tian T, Dubin K, Athale SK, Kupper TS. 2010.. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell–mediated immunity. . Nat. Med. 16::22427
    [Crossref] [Google Scholar]
  146. 146.
    Liu L, Fuhlbrigge RC, Karibian K, Tian T, Kupper TS. 2006.. Dynamic programming of CD8+ T cell trafficking after live viral immunization. . Immunity 25::51120
    [Crossref] [Google Scholar]
  147. 147.
    McClain DJ, Harrison S, Yeager CL, Cruz J, Ennis FA, et al. 1997.. Immunologic responses to vaccinia vaccines administered by different parenteral routes. . J. Infect. Dis. 175::75663
    [Crossref] [Google Scholar]
  148. 148.
    Pittman PR, Hahn M, Lee HS, Koca C, Samy N, et al. 2019.. Phase 3 efficacy trial of modified vaccinia Ankara as a vaccine against smallpox. . N. Engl. J. Med. 381::1897908
    [Crossref] [Google Scholar]
  149. 149.
    Pan Y, Liu L, Tian T, Zhao J, Park CO, et al. 2021.. Epicutaneous immunization with modified vaccinia Ankara viral vectors generates superior T cell immunity against a respiratory viral challenge. . npj Vaccines 6::1
    [Crossref] [Google Scholar]
  150. 150.
    Zens KD, Chen JK, Farber DL. 2016.. Vaccine-generated lung tissue–resident memory T cells provide heterosubtypic protection to influenza infection. . JCI Insight 1::e85832
    [Crossref] [Google Scholar]
  151. 151.
    Zheng MZM, Wakim LM. 2022.. Tissue resident memory T cells in the respiratory tract. . Mucosal Immunol. 15::37988
    [Crossref] [Google Scholar]
  152. 152.
    Poon MML, Rybkina K, Kato Y, Kubota M, Matsumoto R, et al. 2021.. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. . Sci. Immunol. 6::eabl9105
    [Crossref] [Google Scholar]
  153. 153.
    Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, et al. 2020.. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. . Cell 183::16984.e13
    [Crossref] [Google Scholar]
  154. 154.
    Kunzli M, O'Flanagan SD, LaRue M, Talukder P, Dileepan T, et al. 2022.. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. . Sci. Immunol. 7::eadd3075
    [Crossref] [Google Scholar]
  155. 155.
    Davies B, Prier JE, Jones CM, Gebhardt T, Carbone FR, Mackay LK. 2017.. Tissue-resident memory T cells generated by multiple immunizations or localized deposition provide enhanced immunity. . J. Immunol. 198::223337
    [Crossref] [Google Scholar]
  156. 156.
    Gopinath S, Lu P, Iwasaki A. 2020.. The use of topical aminoglycosides as an effective pull in “prime and pull” vaccine strategy. . J. Immunol. 204::17037
    [Crossref] [Google Scholar]
  157. 157.
    Valencia-Hernandez AM, Ng WY, Ghazanfari N, Ghilas S, de Menezes MN, et al. 2020.. A natural peptide antigen within the Plasmodium ribosomal protein RPL6 confers liver TRM cell–mediated immunity against malaria in mice. . Cell Host Microbe 27::95062.e7
    [Crossref] [Google Scholar]
  158. 158.
    Valencia-Hernandez AM, Zillinger T, Ge Z, Tan PS, Cozijnsen A, et al. 2023.. Complexing CpG adjuvants with cationic liposomes enhances vaccine-induced formation of liver TRM cells. . Vaccine 41::1094107
    [Crossref] [Google Scholar]
  159. 159.
    Marinaik CB, Kingstad-Bakke B, Lee W, Hatta M, Sonsalla M, et al. 2020.. Programming multifaceted pulmonary T cell immunity by combination adjuvants. . Cell Rep. Med. 1::100095
    [Crossref] [Google Scholar]
  160. 160.
    Caminschi I, Lahoud MH, Pizzolla A, Wakim LM. 2019.. Zymosan by-passes the requirement for pulmonary antigen encounter in lung tissue–resident memory CD8+ T cell development. . Mucosal Immunol. 12::40312
    [Crossref] [Google Scholar]
  161. 161.
    Schenkel JM, Pauken KE. 2023.. Localization, tissue biology and T cell state—implications for cancer immunotherapy. . Nat. Rev. Immunol. 23::80723
    [Crossref] [Google Scholar]
  162. 162.
    Gavil NV, Scott MC, Weyu E, Smith OC, O'Flanagan SD, et al. 2023.. Chronic antigen in solid tumors drives a distinct program of T cell residence. . Sci. Immunol. 8::eadd5976
    [Crossref] [Google Scholar]
  163. 163.
    Malik BT, Byrne KT, Vella JL, Zhang P, Shabaneh TB, et al. 2017.. Resident memory T cells in the skin mediate durable immunity to melanoma. . Sci. Immunol. 2::eaam6346
    [Crossref] [Google Scholar]
  164. 164.
    Nizard M, Roussel H, Diniz MO, Karaki S, Tran T, et al. 2017.. Induction of resident memory T cells enhances the efficacy of cancer vaccine. . Nat. Commun. 8::15221
    [Crossref] [Google Scholar]
  165. 165.
    Murray T, Fuertes Marraco SA, Baumgaertner P, Bordry N, Cagnon L, et al. 2016.. Very late antigen-1 marks functional tumor-resident CD8 T cells and correlates with survival of melanoma patients. . Front. Immunol. 7::573
    [Crossref] [Google Scholar]
  166. 166.
    Sandoval F, Terme M, Nizard M, Badoual C, Bureau MF, et al. 2013.. Mucosal imprinting of vaccine-induced CD8+ T cells is crucial to inhibit the growth of mucosal tumors. . Sci. Transl. Med. 5::172ra20
    [Crossref] [Google Scholar]
  167. 167.
    Gálvez-Cancino F, López E, Menares E, Díaz X, Flores C, et al. 2018.. Vaccination-induced skin-resident memory CD8+ T cells mediate strong protection against cutaneous melanoma. . Oncoimmunology 7::e1442163
    [Crossref] [Google Scholar]
  168. 168.
    Virassamy B, Caramia F, Savas P, Sant S, Wang J, et al. 2023.. Intratumoral CD8+ T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer. . Cancer Cell 41::585601.e8
    [Crossref] [Google Scholar]
  169. 169.
    Terhorst D, Radke C, Trefzer U. 2010.. Ultra-late recurrence of malignant melanoma after a disease-free interval of 41 years. . Clin. Exp. Dermatol. 35::e2021
    [Crossref] [Google Scholar]
  170. 170.
    Saleh D, Peach AH. 2011.. Ultra-late recurrence of malignant melanoma after 40 years of quiescent disease. . J. Surg. Oncol. 103::29091
    [Crossref] [Google Scholar]
  171. 171.
    Miller JJ, Lofgren KA, Hughes SR, Cash SE, Kenny PA. 2017.. Genomic analysis of melanoma evolution following a 30-year disease-free interval. . J. Cutan. Pathol. 44::8058
    [Crossref] [Google Scholar]
  172. 172.
    MacKie RM, Reid R, Junor B. 2003.. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. . N. Engl. J. Med. 348::56768
    [Crossref] [Google Scholar]
  173. 173.
    Han J, Zhao Y, Shirai K, Molodtsov A, Kolling FW, et al. 2021.. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. . Nat. Cancer 2::30011
    [Crossref] [Google Scholar]
  174. 174.
    Caushi JX, Zhang J, Ji Z, Vaghasia A, Zhang B, et al. 2021.. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. . Nature 596::12632
    [Crossref] [Google Scholar]
  175. 175.
    Luoma AM, Suo S, Wang Y, Gunasti L, Porter CBM, et al. 2022.. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. . Cell 185::291835.e29
    [Crossref] [Google Scholar]
  176. 176.
    Anadon CM, Yu X, Hänggi K, Biswas S, Chaurio RA, et al. 2022.. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. . Cancer Cell 40::54557.e13
    [Crossref] [Google Scholar]
  177. 177.
    Molodtsov AK, Khatwani N, Vella JL, Lewis KA, Zhao Y, et al. 2021.. Resident memory CD8+ T cells in regional lymph nodes mediate immunity to metastatic melanoma. . Immunity 54::211732.e7
    [Crossref] [Google Scholar]
  178. 178.
    Cheng H, Ma K, Zhang L, Li G. 2021.. The tumor microenvironment shapes the molecular characteristics of exhausted CD8+ T cells. . Cancer Lett. 506::5566
    [Crossref] [Google Scholar]
  179. 179.
    Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, et al. 2018.. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. . Nature 557::57579
    [Crossref] [Google Scholar]
  180. 180.
    Duhen T, Duhen R, Montler R, Moses J, Moudgil T, et al. 2018.. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. . Nat. Commun. 9::2724
    [Crossref] [Google Scholar]
  181. 181.
    Medler TR, Kramer G, Bambina S, Gunderson AJ, Alice A, et al. 2023.. Tumor resident memory CD8 T cells and concomitant tumor immunity develop independently of CD4 help. . Sci. Rep. 13::6277
    [Crossref] [Google Scholar]
  182. 182.
    Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, et al. 2019.. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. . Nat. Immunol. 20::32636
    [Crossref] [Google Scholar]
  183. 183.
    Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, et al. 2016.. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. . Nature 537::41721
    [Crossref] [Google Scholar]
  184. 184.
    Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G, et al. 2015.. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. . J. Immunol. 194::347586
    [Crossref] [Google Scholar]
  185. 185.
    Ganesan AP, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, et al. 2017.. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. . Nat. Immunol. 18::94050
    [Crossref] [Google Scholar]
  186. 186.
    Park SL, Zaid A, Hor JL, Christo SN, Prier JE, et al. 2018.. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. . Nat. Immunol. 19::18391
    [Crossref] [Google Scholar]
  187. 187.
    Clarke J, Panwar B, Madrigal A, Singh D, Gujar R, et al. 2019.. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. . J. Exp. Med. 216::212849
    [Crossref] [Google Scholar]
  188. 188.
    Corgnac S, Malenica I, Mezquita L, Auclin E, Voilin E, et al. 2020.. CD103+CD8+ TRM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with Tc17. . Cell Rep. Med. 1::100127
    [Crossref] [Google Scholar]
  189. 189.
    Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, et al. 2018.. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. . Nat. Med. 24::98693
    [Crossref] [Google Scholar]
  190. 190.
    Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, et al. 2018.. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. . Clin. Cancer Res. 24::303645
    [Crossref] [Google Scholar]
  191. 191.
    Jaiswal A, Verma A, Dannenfelser R, Melssen M, Tirosh I, et al. 2022.. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. . Cancer Cell 40::52444.e5
    [Crossref] [Google Scholar]
  192. 192.
    Pizzolla A, Keam SP, Vergara IA, Caramia F, Thio N, et al. 2022.. Tissue-resident memory T cells from a metastatic vaginal melanoma patient are tumor-responsive T cells and increase after anti-PD-1 treatment. . J. Immunother. Cancer 10::e004574
    [Crossref] [Google Scholar]
  193. 193.
    Wang B, Wu S, Zeng H, Liu Z, Dong W, et al. 2015.. CD103+ tumor infiltrating lymphocytes predict a favorable prognosis in urothelial cell carcinoma of the bladder. . J. Urol. 194::55662
    [Crossref] [Google Scholar]
  194. 194.
    Han L, Gao QL, Zhou XM, Shi C, Chen GY, et al. 2020.. Characterization of CD103+ CD8+ tissue-resident T cells in esophageal squamous cell carcinoma: may be tumor reactive and resurrected by anti-PD-1 blockade. . Cancer Immunol. Immunother. 69::1493504
    [Crossref] [Google Scholar]
  195. 195.
    Lin R, Zhang H, Yuan Y, He Q, Zhou J, et al. 2020.. Fatty acid oxidation controls CD8+ tissue-resident memory T-cell survival in gastric adenocarcinoma. . Cancer Immunol. Res. 8::47992
    [Crossref] [Google Scholar]
  196. 196.
    Park SL, Gebhardt T, Mackay LK. 2019.. Tissue-resident memory T cells in cancer immunosurveillance. . Trends Immunol. 40::73547
    [Crossref] [Google Scholar]
  197. 197.
    Pai JA, Hellmann MD, Sauter JL, Mattar M, Rizvi H, et al. 2023.. Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade. . Cancer Cell 41::77690.e7
    [Crossref] [Google Scholar]
  198. 198.
    Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, et al. 2019.. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. . Immunity 50::195211.e10
    [Crossref] [Google Scholar]
  199. 199.
    Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, et al. 2020.. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. . Nat. Commun. 11::4835
    [Crossref] [Google Scholar]
  200. 200.
    Connolly KA, Kuchroo M, Venkat A, Khatun A, Wang J, et al. 2021.. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. . Sci. Immunol. 6::eabg7836
    [Crossref] [Google Scholar]
  201. 201.
    Nagasaki J, Inozume T, Sax N, Ariyasu R, Ishikawa M, et al. 2022.. PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes. . Cell Rep. 38::110331
    [Crossref] [Google Scholar]
  202. 202.
    Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, et al. 2019.. Cytokines in clinical cancer immunotherapy. . Br. J. Cancer 120::615
    [Crossref] [Google Scholar]
  203. 203.
    Zarour HM. 2016.. Reversing T-cell dysfunction and exhaustion in cancer. . Clin. Cancer Res. 22::185664
    [Crossref] [Google Scholar]
  204. 204.
    Guo Y, Xie YQ, Gao M, Zhao Y, Franco F, et al. 2021.. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. . Nat. Immunol. 22::74656
    [Crossref] [Google Scholar]
  205. 205.
    Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. 2022.. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. . J. Hematol. Oncol. 15::28
    [Crossref] [Google Scholar]
  206. 206.
    Vishweshwaraiah YL, Dokholyan NV. 2022.. mRNA vaccines for cancer immunotherapy. . Front. Immunol. 13::1029069
    [Crossref] [Google Scholar]
  207. 207.
    Deng Z, Tian Y, Song J, An G, Yang P. 2022.. mRNA vaccines: the dawn of a new era of cancer immunotherapy. . Front. Immunol. 13::887125
    [Crossref] [Google Scholar]
  208. 208.
    Dumauthioz N, Labiano S, Romero P. 2018.. Tumor resident memory T cells: new players in immune surveillance and therapy. . Front. Immunol. 9::2076
    [Crossref] [Google Scholar]
  209. 209.
    Mami-Chouaib F, Blanc C, Corgnac S, Hans S, Malenica I, et al. 2018.. Resident memory T cells, critical components in tumor immunology. . J. Immunother. Cancer 6::87
    [Crossref] [Google Scholar]
  210. 210.
    Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. 2022.. The evolving role of tissue-resident memory T cells in infections and cancer. . Sci. Adv. 8::eabo5871
    [Crossref] [Google Scholar]
  211. 211.
    Morotti M, Albukhari A, Alsaadi A, Artibani M, Brenton JD, et al. 2021.. Promises and challenges of adoptive T-cell therapies for solid tumours. . Br. J. Cancer 124::175976
    [Crossref] [Google Scholar]
  212. 212.
    Srour SA, Akin S. 2023.. Chimeric antigen receptor T-cell therapy for solid tumors: the past and the future. . J. Immunother. Precis. Oncol. 6::1930
    [Crossref] [Google Scholar]
  213. 213.
    Lancet Oncol. eds. 2021.. CAR T-cell therapy for solid tumours. . Lancet Oncol. 22::893
    [Crossref] [Google Scholar]
  214. 214.
    Jung IY, Noguera-Ortega E, Bartoszek R, Collins SM, Williams E, et al. 2023.. Tissue-resident memory CAR T cells with stem-like characteristics display enhanced efficacy against solid and liquid tumors. . Cell Rep. Med. 4::101053
    [Crossref] [Google Scholar]
  215. 215.
    Liikanen I, Lauhan C, Quon S, Omilusik K, Phan AT, et al. 2021.. Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8+ T cells. . J. Clin. Investig. 131::e143729
    [Crossref] [Google Scholar]
  216. 216.
    McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. 2015.. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. . Nature 523::61216
    [Crossref] [Google Scholar]
  217. 217.
    Mills KHG. 2023.. IL-17 and IL-17-producing cells in protection versus pathology. . Nat. Rev. Immunol. 23::3854
    [Crossref] [Google Scholar]
  218. 218.
    Baccala R, Kono DH, Theofilopoulos AN. 2005.. Interferons as pathogenic effectors in autoimmunity. . Immunol. Rev. 204::926
    [Crossref] [Google Scholar]
  219. 219.
    Cheuk S, Wikén M, Blomqvist L, Nylén S, Talme T, et al. 2014.. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. . J. Immunol. 192::311120
    [Crossref] [Google Scholar]
  220. 220.
    Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. 2012.. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. . J. Investig. Dermatol. 132::186976
    [Crossref] [Google Scholar]
  221. 221.
    Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, et al. 2014.. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. . Nat. Med. 20::104349
    [Crossref] [Google Scholar]
  222. 222.
    Trubiano JA, Gordon CL, Castellucci C, Christo SN, Park SL, et al. 2020.. Analysis of skin-resident memory T cells following drug hypersensitivity reactions. . J. Investig. Dermatol. 140::144245.e4
    [Crossref] [Google Scholar]
  223. 223.
    Komatsu T, Moriya N, Shiohara T. 1996.. T cell receptor (TCR) repertoire and function of human epidermal T cells: Restricted TCR Vα-Vβ genes are utilized by T cells residing in the lesional epidermis in fixed drug eruption. . Clin. Exp. Immunol. 104::34350
    [Crossref] [Google Scholar]
  224. 224.
    Teraki Y, Shiohara T. 2003.. IFN-γ-producing effector CD8+ T cells and IL-10-producing regulatory CD4+ T cells in fixed drug eruption. . J. Allergy Clin. Immunol. 112::60915
    [Crossref] [Google Scholar]
  225. 225.
    Mizukawa Y, Yamazaki Y, Teraki Y, Hayakawa J, Hayakawa K, et al. 2002.. Direct evidence for interferon-γ production by effector-memory-type intraepidermal T cells residing at an effector site of immunopathology in fixed drug eruption. . Am. J. Pathol. 161::133747
    [Crossref] [Google Scholar]
  226. 226.
    Boland BS, He Z, Tsai MS, Olvera JG, Omilusik KD, et al. 2020.. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. . Sci. Immunol. 5::eabb4432
    [Crossref] [Google Scholar]
  227. 227.
    Bishu S, El Zaatari M, Hayashi A, Hou G, Bowers N, et al. 2019.. CD4+ tissue-resident memory T cells expand and are a major source of mucosal tumour necrosis factor α in active Crohn's disease. . J. Crohn's Colitis 13::90515
    [Crossref] [Google Scholar]
  228. 228.
    Povoleri GAM, Durham LE, Gray EH, Lalnunhlimi S, Kannambath S, et al. 2023.. Psoriatic and rheumatoid arthritis joints differ in the composition of CD8+ tissue-resident memory T cell subsets. . Cell Rep. 42::112514
    [Crossref] [Google Scholar]
  229. 229.
    Koda Y, Teratani T, Chu PS, Hagihara Y, Mikami Y, et al. 2021.. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. . Nat. Commun. 12::4474
    [Crossref] [Google Scholar]
  230. 230.
    Dudek M, Pfister D, Donakonda S, Filpe P, Schneider A, et al. 2021.. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. . Nature 592::44449
    [Crossref] [Google Scholar]
  231. 231.
    Richmond JM, Strassner JP, Zapata L Jr., Garg M, Riding RL, et al. 2018.. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. . Sci. Transl. Med. 10::eaaam7710
    [Crossref] [Google Scholar]
  232. 232.
    Vincenti I, Page N, Steinbach K, Yermanos A, Lemeille S, et al. 2022.. Tissue-resident memory CD8+ T cells cooperate with CD4+ T cells to drive compartmentalized immunopathology in the CNS. . Sci. Transl. Med. 14::eabl6058
    [Crossref] [Google Scholar]
  233. 233.
    Frieser D, Pignata A, Khajavi L, Shlesinger D, Gonzalez-Fierro C, et al. 2022.. Tissue-resident CD8+ T cells drive compartmentalized and chronic autoimmune damage against CNS neurons. . Sci. Transl. Med. 14::eabl6157
    [Crossref] [Google Scholar]
  234. 234.
    Gamradt P, Laoubi L, Nosbaum A, Mutez V, Lenief V, et al. 2019.. Inhibitory checkpoint receptors control CD8+ resident memory T cells to prevent skin allergy. . J. Allergy Clin. Immunol. 143::214757.e9
    [Crossref] [Google Scholar]
  235. 235.
    Chen X, Guo W, Chang Y, Chen J, Kang P, et al. 2019.. Oxidative stress–induced IL-15 trans-presentation in keratinocytes contributes to CD8+ T cells activation via JAK-STAT pathway in vitiligo. . Free Radic. Biol. Med. 139::8091
    [Crossref] [Google Scholar]
  236. 236.
    Ryan GE, Harris JE, Richmond JM. 2021.. Resident memory T cells in autoimmune skin diseases. . Front. Immunol. 12::652191
    [Crossref] [Google Scholar]
  237. 237.
    Strobl J, Haniffa M. 2023.. Functional heterogeneity of human skin–resident memory T cells in health and disease. . Immunol. Rev. 316::10419
    [Crossref] [Google Scholar]
  238. 238.
    Apostolidis SA, Kakara M, Painter MM, Goel RR, Mathew D, et al. 2021.. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. . Nat. Med. 27::19902001
    [Crossref] [Google Scholar]
  239. 239.
    Tallantyre EC, Vickaryous N, Anderson V, Asardag AN, Baker D, et al. 2022.. COVID-19 vaccine response in people with multiple sclerosis. . Ann. Neurol. 91::89100
    [Crossref] [Google Scholar]
  240. 240.
    Alexander JL, Kennedy NA, Ibraheim H, Anandabaskaran S, Saifuddin A, et al. 2022.. COVID-19 vaccine–induced antibody responses in immunosuppressed patients with inflammatory bowel disease (VIP): a multicentre, prospective, case-control study. . Lancet Gastroenterol. Hepatol. 7::34252
    [Crossref] [Google Scholar]
  241. 241.
    Kennedy NA, Goodhand JR, Bewshea C, Nice R, Chee D, et al. 2021.. Anti-SARS-CoV-2 antibody responses are attenuated in patients with IBD treated with infliximab. . Gut 70::86575
    [Crossref] [Google Scholar]
  242. 242.
    Pratt PK Jr., David N, Weber HC, Little FF, Kourkoumpetis T, et al. 2018.. Antibody response to hepatitis B virus vaccine is impaired in patients with inflammatory bowel disease on infliximab therapy. . Inflamm. Bowel Dis. 24::38086
    [Crossref] [Google Scholar]
  243. 243.
    Chen YE, Bousbaine D, Veinbachs A, Atabakhsh K, Dimas A, et al. 2023.. Engineered skin bacteria induce antitumor T cell responses against melanoma. . Science 380::20310
    [Crossref] [Google Scholar]
  244. 244.
    Melmed GY, Agarwal N, Frenck RW, Ippoliti AF, Ibanez P, et al. 2010.. Immunosuppression impairs response to pneumococcal polysaccharide vaccination in patients with inflammatory bowel disease. . Am. J. Gastroenterol. 105::14854
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-101320-020220
Loading
/content/journals/10.1146/annurev-immunol-101320-020220
Loading

Data & Media loading...

  • Article Type: Review Article