1932

Abstract

The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation. Several safeguard mechanisms acting on different levels have evolved to maintain tolerance to self DNA and ensure immune homeostasis under normal conditions. Disruption of these safeguards can lead to erroneous activation by self DNA, resulting in inflammatory conditions but also favorable antitumor immunity. Insights into structural and cellular checkpoints that control and terminate cGAS-STING signaling are essential for comprehending and manipulating DNA-triggered innate immunity in health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-032910
2025-04-25
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-101721-032910.html?itemId=/content/journals/10.1146/annurev-immunol-101721-032910&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ablasser A, Chen ZJ. 2019.. cGAS in action: expanding roles in immunity and inflammation. . Science 363::aat8657
    [Crossref] [Google Scholar]
  2. 2.
    Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013.. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. . Science 339::78691
    [Crossref] [Google Scholar]
  3. 3.
    Wu J, Sun L, Chen X, Du F, Shi H, et al. 2013.. Cyclic GMP–AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. . Science 339::82630
    [Crossref] [Google Scholar]
  4. 4.
    Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, et al. 2013.. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. . Nature 498::38084
    [Crossref] [Google Scholar]
  5. 5.
    Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, et al. 2013.. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP–AMP synthase. . Cell 153::1094107
    [Crossref] [Google Scholar]
  6. 6.
    Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, et al. 2013.. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. . Cell Rep. 3::135561
    [Crossref] [Google Scholar]
  7. 7.
    Ishikawa H, Ma Z, Barber GN. 2009.. STING regulates intracellular DNA-mediated, type I interferon–dependent innate immunity. . Nature 461::78892
    [Crossref] [Google Scholar]
  8. 8.
    Ishikawa H, Barber GN. 2008.. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. . Nature 455::67478
    [Crossref] [Google Scholar]
  9. 9.
    Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, et al. 2015.. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants. . J. Clin. Investig. 125::253246
    [Crossref] [Google Scholar]
  10. 10.
    Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. 2013.. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. . Science 341::139094
    [Crossref] [Google Scholar]
  11. 11.
    Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, et al. 2014.. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. . Immunity 41::83042
    [Crossref] [Google Scholar]
  12. 12.
    Gonugunta VK, Sakai T, Pokatayev V, Yang K, Wu J, et al. 2017.. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. . Cell Rep. 21::323442
    [Crossref] [Google Scholar]
  13. 13.
    Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, et al. 2017.. Signalling strength determines proapoptotic functions of STING. . Nat. Commun. 8::427
    [Crossref] [Google Scholar]
  14. 14.
    Jenson JM, Chen ZJ. 2024.. cGAS goes viral: a conserved immune defense system from bacteria to humans. . Mol. Cell 84::12030
    [Crossref] [Google Scholar]
  15. 15.
    Wein T, Sorek R. 2022.. Bacterial origins of human cell-autonomous innate immune mechanisms. . Nat. Rev. Immunol. 22::62938
    [Crossref] [Google Scholar]
  16. 16.
    Slavik KM, Kranzusch PJ. 2023.. CBASS to cGAS-STING: the origins and mechanisms of nucleotide second messenger immune signaling. . Annu. Rev. Virol. 10::42353
    [Crossref] [Google Scholar]
  17. 17.
    Decout A, Katz JD, Venkatraman S, Ablasser A. 2021.. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. . Nat. Rev. Immunol. 21::54869
    [Crossref] [Google Scholar]
  18. 18.
    Samson N, Ablasser A. 2022.. The cGAS-STING pathway and cancer. . Nat. Cancer 3::145263
    [Crossref] [Google Scholar]
  19. 19.
    Corrales L, McWhirter SM, Dubensky TW Jr., Gajewski TF. 2016.. The host STING pathway at the interface of cancer and immunity. . J. Clin. Investig. 126::240411
    [Crossref] [Google Scholar]
  20. 20.
    Demaria O, Cornen S, Daeron M, Morel Y, Medzhitov R, Vivier E. 2019.. Harnessing innate immunity in cancer therapy. . Nature 574::4556
    [Crossref] [Google Scholar]
  21. 21.
    Motwani M, Pesiridis S, Fitzgerald KA. 2019.. DNA sensing by the cGAS-STING pathway in health and disease. . Nat. Rev. Genet. 20::65774
    [Crossref] [Google Scholar]
  22. 22.
    Crow YJ, Stetson DB. 2022.. The type I interferonopathies: 10 years on. . Nat. Rev. Immunol. 22::47183
    [Crossref] [Google Scholar]
  23. 23.
    Kuchta K, Knizewski L, Wyrwicz LS, Rychlewski L, Ginalski K. 2009.. Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. . Nucleic Acids Res. 37::770114
    [Crossref] [Google Scholar]
  24. 24.
    Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, et al. 2013.. Structural mechanism of cytosolic DNA sensing by cGAS. . Nature 498::33237
    [Crossref] [Google Scholar]
  25. 25.
    Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, et al. 2013.. CGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. . Nature 498::38084
    [Crossref] [Google Scholar]
  26. 26.
    Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, et al. 2013.. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. . Cell Rep. 3::135561
    [Crossref] [Google Scholar]
  27. 27.
    Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, et al. 2013.. Cyclic GMP–AMP synthase is activated by double-stranded DNA-induced oligomerization. . Immunity 39::101931
    [Crossref] [Google Scholar]
  28. 28.
    Wu S, Gabelli SB, Sohn J. 2024.. The structural basis for 2′–5′/3′–5′-cGAMP synthesis by cGAS. . Nat. Commun. 15::4012
    [Crossref] [Google Scholar]
  29. 29.
    Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE. 2015.. Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling. . Mol. Cell 59::891903
    [Crossref] [Google Scholar]
  30. 30.
    Li Y, Slavik KM, Toyoda HC, Morehouse BR, de Oliveira Mann CC, et al. 2023.. cGLRs are a diverse family of pattern recognition receptors in innate immunity. . Cell 186::326176.e20
    [Crossref] [Google Scholar]
  31. 31.
    Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, et al. 2019.. Cyclic GMP–AMP signalling protects bacteria against viral infection. . Nature 574::69195
    [Crossref] [Google Scholar]
  32. 32.
    Andreeva L, Hiller B, Kostrewa D, Lassig C, de Oliveira Mann CC, et al. 2017.. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. . Nature 549::3948
    [Crossref] [Google Scholar]
  33. 33.
    Du M, Chen ZJ. 2018.. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. . Science 361::7049
    [Crossref] [Google Scholar]
  34. 34.
    Zhou W, Mohr L, Maciejowski J, Kranzusch PJ. 2021.. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. . Mol. Cell 81::73955.e7
    [Crossref] [Google Scholar]
  35. 35.
    Decout A, Ablasser A. 2018.. Human cGAS has a slightly different taste for dsDNA. . Immunity 49::2068
    [Crossref] [Google Scholar]
  36. 36.
    Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, et al. 2018.. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. . Cell 174::30011.e11
    [Crossref] [Google Scholar]
  37. 37.
    Xie W, Lama L, Adura C, Tomita D, Glickman JF, et al. 2019.. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. . PNAS 116::1194655
    [Crossref] [Google Scholar]
  38. 38.
    Guey B, Wischnewski M, Decout A, Makasheva K, Kaynak M, et al. 2020.. BAF restricts cGAS on nuclear DNA to prevent innate immune activation. . Science 369::82328
    [Crossref] [Google Scholar]
  39. 39.
    Li T, Huang T, Du M, Chen X, Du F, et al. 2021.. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. . Science 371::abc5386
    [Crossref] [Google Scholar]
  40. 40.
    Dowling QM, Volkman HE, Gray EE, Ovchinnikov S, Cambier S, et al. 2023.. Computational design of constitutively active cGAS. . Nat. Struct. Mol. Biol. 30::7280
    [Crossref] [Google Scholar]
  41. 41.
    Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, et al. 2015.. cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. . PNAS 112::E177381
    [Crossref] [Google Scholar]
  42. 42.
    Volkman HE, Cambier S, Gray EE, Stetson DB. 2019.. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. . eLife 8::e47491
    [Crossref] [Google Scholar]
  43. 43.
    Gentili M, Lahaye X, Nadalin F, Nader GPF, Lombardi EP, et al. 2019.. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. . Cell Rep. 26::3798
    [Crossref] [Google Scholar]
  44. 44.
    Wischnewski M, Ablasser A. 2021.. Interplay of cGAS with chromatin. . Trends Biochem. Sci. 46::82231
    [Crossref] [Google Scholar]
  45. 45.
    Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, et al. 2006.. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. . Nat. Genet. 38::91720
    [Crossref] [Google Scholar]
  46. 46.
    Stetson DB, Ko JS, Heidmann T, Medzhitov R. 2008.. Trex1 prevents cell-intrinsic initiation of autoimmunity. . Cell 134::58798
    [Crossref] [Google Scholar]
  47. 47.
    Crow YJ. 2013.. Aicardi-Goutières syndrome. . Handb. Clin. Neurol. 113::162935
    [Crossref] [Google Scholar]
  48. 48.
    Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, et al. 2017.. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. . Cell Stem Cell 21::31931.e8
    [Crossref] [Google Scholar]
  49. 49.
    de Silva U, Choudhury S, Bailey SL, Harvey S, Perrino FW, Hollis T. 2007.. The crystal structure of TREX1 explains the 3′ nucleotide specificity and reveals a polyproline II helix for protein partnering. . J. Biol. Chem. 282::1053743
    [Crossref] [Google Scholar]
  50. 50.
    Zhou W, Richmond-Buccola D, Wang Q, Kranzusch PJ. 2022.. Structural basis of human TREX1 DNA degradation and autoimmune disease. . Nat. Commun. 13::4277
    [Crossref] [Google Scholar]
  51. 51.
    Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, et al. 2018.. Targeting STING with covalent small-molecule inhibitors. . Nature 559::26973
    [Crossref] [Google Scholar]
  52. 52.
    Ablasser A, Hemmerling I, Schmid-Burgk JL, Behrendt R, Roers A, Hornung V. 2014.. TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner. . J. Immunol. 192::599397
    [Crossref] [Google Scholar]
  53. 53.
    Gao D, Li T, Li XD, Chen X, Li QZ, et al. 2015.. Activation of cyclic GMP–AMP synthase by self-DNA causes autoimmune diseases. . PNAS 112::E5699705
    [Google Scholar]
  54. 54.
    Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr., et al. 2012.. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. . Immunity 36::12031
    [Crossref] [Google Scholar]
  55. 55.
    Peschke K, Achleitner M, Frenzel K, Gerbaulet A, Ada SR, et al. 2016.. Loss of Trex1 in dendritic cells is sufficient to trigger systemic autoimmunity. . J. Immunol. 197::215766
    [Crossref] [Google Scholar]
  56. 56.
    Yang Y-G, Lindahl T, Barnes DE. 2007.. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. . Cell 131::87386
    [Crossref] [Google Scholar]
  57. 57.
    Mohr L, Toufektchan E, von Morgen P, Chu K, Kapoor A, Maciejowski J. 2021.. ER-directed TREX1 limits cGAS activation at micronuclei. . Mol. Cell 81::72438.e9
    [Crossref] [Google Scholar]
  58. 58.
    Rego SL, Harvey S, Simpson SR, Hemphill WO, McIver ZA, et al. 2018.. TREX1 D18N mice fail to process erythroblast DNA resulting in inflammation and dysfunctional erythropoiesis. . Autoimmunity 51::33344
    [Crossref] [Google Scholar]
  59. 59.
    Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, et al. 2017.. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. . Nat. Commun. 8::15618
    [Crossref] [Google Scholar]
  60. 60.
    Lim J, Rodriguez R, Williams K, Silva J, Gutierrez AG, et al. 2024.. The exonuclease TREX1 constitutes an innate immune checkpoint limiting cGAS/STING-mediated antitumor immunity. . Cancer Immunol. Res. 12::66372
    [Crossref] [Google Scholar]
  61. 61.
    Toufektchan E, Dananberg A, Striepen J, Hickling JH, Shim A, et al. 2024.. Intratumoral TREX1 induction promotes immune evasion by limiting type I IFN. . Cancer Immunol. Res. 12::67386
    [Crossref] [Google Scholar]
  62. 62.
    Coquel F, Silva MJ, Techer H, Zadorozhny K, Sharma S, et al. 2018.. SAMHD1 acts at stalled replication forks to prevent interferon induction. . Nature 557::5761
    [Crossref] [Google Scholar]
  63. 63.
    Mackenzie KJ, Carroll P, Lettice L, Tarnauskaite Z, Reddy K, et al. 2016.. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. . EMBO J. 35::83144
    [Crossref] [Google Scholar]
  64. 64.
    Kawane K, Ohtani M, Miwa K, Kizawa T, Kanbara Y, et al. 2006.. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. . Nature 443::9981002
    [Crossref] [Google Scholar]
  65. 65.
    Ahn J, Gutman D, Saijo S, Barber GN. 2012.. STING manifests self DNA-dependent inflammatory disease. . PNAS 109::1938691
    [Crossref] [Google Scholar]
  66. 66.
    Lan YY, Londono D, Bouley R, Rooney MS, Hacohen N. 2014.. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. . Cell Rep. 9::18092
    [Crossref] [Google Scholar]
  67. 67.
    Skowyra ML, Schlesinger PH, Naismith TV, Hanson PI. 2018.. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. . Science 360::aar5078
    [Crossref] [Google Scholar]
  68. 68.
    Rodríguez-Silvestre P, Laub M, Krawczyk PA, Davies AK, Schessner JP, et al. 2023.. Perforin-2 is a pore-forming effector of endocytic escape in cross-presenting dendritic cells. . Science 380::125865
    [Crossref] [Google Scholar]
  69. 69.
    Newman LE, Shadel GS. 2023.. Mitochondrial DNA release in innate immune signaling. . Annu. Rev. Biochem. 92::299332
    [Crossref] [Google Scholar]
  70. 70.
    Youle RJ. 2019.. Mitochondria—striking a balance between host and endosymbiont. . Science 365::eaaw9855
    [Crossref] [Google Scholar]
  71. 71.
    McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, et al. 2018.. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. . Science 359::eaao6047
    [Crossref] [Google Scholar]
  72. 72.
    Riley JS, Quarato G, Cloix C, Lopez J, O'Prey J, et al. 2018.. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. . EMBO J. 37::e99238
    [Crossref] [Google Scholar]
  73. 73.
    Kim J, Gupta R, Blanco LP, Yang S, Shteinfer-Kuzmine A, et al. 2019.. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. . Science 366::153136
    [Crossref] [Google Scholar]
  74. 74.
    Zecchini V, Paupe V, Herranz-Montoya I, Janssen J, Wortel IMN, et al. 2023.. Fumarate induces vesicular release of mtDNA to drive innate immunity. . Nature 615::499506
    [Crossref] [Google Scholar]
  75. 75.
    Newman LE, Weiser Novak S, Rojas GR, Tadepalle N, Schiavon CR, et al. 2024.. Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. . Nat. Cell Biol. 26::194206
    [Crossref] [Google Scholar]
  76. 76.
    Lei Y, VanPortfliet JJ, Chen YF, Bryant JD, Li Y, et al. 2023.. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. . Cell 186::301332.e22
    [Crossref] [Google Scholar]
  77. 77.
    Wu Z, Oeck S, West AP, Mangalhara KC, Sainz AG, et al. 2019.. Mitochondrial DNA stress signalling protects the nuclear genome. . Nat. Metab. 1::120918
    [Crossref] [Google Scholar]
  78. 78.
    Tigano M, Vargas DC, Tremblay-Belzile S, Fu Y, Sfeir A. 2021.. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. . Nature 591::47781
    [Crossref] [Google Scholar]
  79. 79.
    Hooftman A, Peace CG, Ryan DG, Day EA, Yang M, et al. 2023.. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. . Nature 615::49098
    [Crossref] [Google Scholar]
  80. 80.
    Reijns MA, Rabe B, Rigby RE, Mill P, Astell KR, et al. 2012.. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. . Cell 149::100822
    [Crossref] [Google Scholar]
  81. 81.
    Pokatayev V, Hasin N, Chon H, Cerritelli SM, Sakhuja K, et al. 2016.. RNase H2 catalytic core Aicardi-Goutières syndrome–related mutant invokes cGAS-STING innate immune-sensing pathway in mice. . J. Exp. Med. 213::32936
    [Crossref] [Google Scholar]
  82. 82.
    Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, et al. 2017.. cGAS surveillance of micronuclei links genome instability to innate immunity. . Nature 548::46165
    [Crossref] [Google Scholar]
  83. 83.
    Krupina K, Goginashvili A, Cleveland DW. 2021.. Causes and consequences of micronuclei. . Curr. Opin. Cell Biol. 70::9199
    [Crossref] [Google Scholar]
  84. 84.
    Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. 2017.. Mitotic progression following DNA damage enables pattern recognition within micronuclei. . Nature 548::46670
    [Crossref] [Google Scholar]
  85. 85.
    Gratia M, Rodero MP, Conrad C, Bou Samra E, Maurin M, et al. 2019.. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. . J. Exp. Med. 216::1199213
    [Crossref] [Google Scholar]
  86. 86.
    Chabanon RM, Muirhead G, Krastev DB, Adam J, Morel D, et al. 2019.. PARP inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer. . J. Clin. Investig. 129::121128
    [Crossref] [Google Scholar]
  87. 87.
    Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, et al. 2018.. Chromosomal instability drives metastasis through a cytosolic DNA response. . Nature 553::46772
    [Crossref] [Google Scholar]
  88. 88.
    Hartlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U, et al. 2015.. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. . Immunity 42::33243
    [Crossref] [Google Scholar]
  89. 89.
    Yang H, Wang H, Ren J, Chen Q, Chen ZJ. 2017.. cGAS is essential for cellular senescence. . PNAS 114::E461220
    [Google Scholar]
  90. 90.
    Gluck S, Guey B, Gulen MF, Wolter K, Kang TW, et al. 2017.. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. . Nat. Cell Biol. 19::106170
    [Crossref] [Google Scholar]
  91. 91.
    Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, et al. 2017.. Cytoplasmic chromatin triggers inflammation in senescence and cancer. . Nature 550::4026
    [Crossref] [Google Scholar]
  92. 92.
    Victorelli S, Salmonowicz H, Chapman J, Martini H, Vizioli MG, et al. 2023.. Apoptotic stress causes mtDNA release during senescence and drives the SASP. . Nature 622::62736
    [Crossref] [Google Scholar]
  93. 93.
    De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, et al. 2019.. L1 drives IFN in senescent cells and promotes age-associated inflammation. . Nature 566::7378
    [Crossref] [Google Scholar]
  94. 94.
    MacDonald KM, Nicholson-Puthenveedu S, Tageldein MM, Khasnis S, Arrowsmith CH, Harding SM. 2023.. Antecedent chromatin organization determines cGAS recruitment to ruptured micronuclei. . Nat. Commun. 14::556
    [Crossref] [Google Scholar]
  95. 95.
    Sato Y, Hayashi MT. 2024.. Micronucleus is not a potent inducer of the cGAS/STING pathway. . Life Sci. Alliance 7::e202302424
    [Crossref] [Google Scholar]
  96. 96.
    Lebrec V, Afshar N, Davies LR, Kujirai T, Kanellou A, et al. 2024.. A microscopy reporter for cGAMP reveals rare cGAS activation following DNA damage, and a lack of correlation with micronuclear cGAS enrichment. . bioRxiv 2024.05.13.593978. https://doi.org/10.1101/2024.05.13.593978
  97. 97.
    Crossley MP, Bocek M, Cimprich KA. 2019.. R-loops as cellular regulators and genomic threats. . Mol. Cell 73::398411
    [Crossref] [Google Scholar]
  98. 98.
    Crossley MP, Song C, Bocek MJ, Choi J-H, Kousorous J, et al. 2023.. R-loop-derived cytoplasmic RNA–DNA hybrids activate an immune response. . Nature 613::18794
    [Crossref] [Google Scholar]
  99. 99.
    Maxwell MB, Hom-Tedla MS, Yi J, Li S, Rivera SA, et al. 2024.. ARID1A suppresses R-loop-mediated STING–type I interferon pathway activation of anti-tumor immunity. . Cell 187::3390408.e19
    [Crossref] [Google Scholar]
  100. 100.
    Cristini A, Tellier M, Constantinescu F, Accalai C, Albulescu LO, et al. 2022.. RNase H2, mutated in Aicardi-Goutières syndrome, resolves co-transcriptional R-loops to prevent DNA breaks and inflammation. . Nat. Commun. 13::2961
    [Crossref] [Google Scholar]
  101. 101.
    Zierhut C, Yamaguchi N, Paredes M, Luo JD, Carroll T, Funabiki H. 2019.. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. . Cell 178::30215.e23
    [Crossref] [Google Scholar]
  102. 102.
    Jiang H, Xue X, Panda S, Kawale A, Hooy RM, et al. 2019.. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. . EMBO J. 38::e102718
    [Crossref] [Google Scholar]
  103. 103.
    Xu P, Liu Y, Liu C, Guey B, Li L, et al. 2024.. The CRL5-SPSB3 ubiquitin ligase targets nuclear cGAS for degradation. . Nature 627::87379
    [Crossref] [Google Scholar]
  104. 104.
    Pathare GR, Decout A, Glück S, Cavadini S, Makasheva K, et al. 2020.. Structural mechanism of cGAS inhibition by the nucleosome. . Nature 587::66872
    [Crossref] [Google Scholar]
  105. 105.
    Zhao B, Xu P, Rowlett CM, Jing T, Shinde O, et al. 2020.. The molecular basis of tight nuclear tethering and inactivation of cGAS. . Nature 587::67377
    [Crossref] [Google Scholar]
  106. 106.
    Michalski S, de Oliveira Mann CC, Stafford CA, Witte G, Bartho J, et al. 2020.. Structural basis for sequestration and autoinhibition of cGAS by chromatin. . Nature 587::67882
    [Crossref] [Google Scholar]
  107. 107.
    Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, et al. 2020.. Structural basis for the inhibition of cGAS by nucleosomes. . Science 370::45558
    [Crossref] [Google Scholar]
  108. 108.
    Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P, et al. 2020.. Structural basis of nucleosome-dependent cGAS inhibition. . Science 370::45054
    [Crossref] [Google Scholar]
  109. 109.
    Cao D, Han X, Fan X, Xu RM, Zhang X. 2020.. Structural basis for nucleosome-mediated inhibition of cGAS activity. . Cell Res. 30::108897
    [Crossref] [Google Scholar]
  110. 110.
    McGinty RK, Tan S. 2016.. Recognition of the nucleosome by chromatin factors and enzymes. . Curr. Opin. Struct. Biol. 37::5461
    [Crossref] [Google Scholar]
  111. 111.
    Uggenti C, Lepelley A, Depp M, Badrock AP, Rodero MP, et al. 2020.. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. . Nat. Genet. 52::136472
    [Crossref] [Google Scholar]
  112. 112.
    Kono Y, Adam SA, Sato Y, Reddy KL, Zheng Y, et al. 2022.. Nucleoplasmic lamin C rapidly accumulates at sites of nuclear envelope rupture with BAF and cGAS. . J. Cell Biol. 221::e202201024
    [Crossref] [Google Scholar]
  113. 113.
    Xu P, Liu Y, Liu C, Guey B, Li L, et al. 2024.. The CRL5–SPSB3 ubiquitin ligase targets nuclear cGAS for degradation. . Nature 627::87379
    [Crossref] [Google Scholar]
  114. 114.
    Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, et al. 2013.. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. . Nature 503::53034
    [Crossref] [Google Scholar]
  115. 115.
    Li L, Yin Q, Kuss P, Maliga Z, Millán JL, et al. 2014.. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. . Nat. Chem. Biol. 10::104348
    [Crossref] [Google Scholar]
  116. 116.
    Carozza JA, Cordova AF, Brown JA, AlSaif Y, Böhnert V, et al. 2022.. ENPP1’s regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating STING signaling. . PNAS 119::e2119189119
    [Crossref] [Google Scholar]
  117. 117.
    Kato K, Nishimasu H, Oikawa D, Hirano S, Hirano H, et al. 2018.. Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1. . Nat. Commun. 9::4424
    [Crossref] [Google Scholar]
  118. 118.
    Mardjuki R, Wang S, Carozza J, Zirak B, Subramanyam V, et al. 2024.. Identification of the extracellular membrane protein ENPP3 as a major cGAMP hydrolase and innate immune checkpoint. . Cell Rep. 43::114209
    [Crossref] [Google Scholar]
  119. 119.
    Hou Y, Wang Z, Liu P, Wei X, Zhang Z, et al. 2023.. SMPDL3A is a cGAMP-degrading enzyme induced by LXR-mediated lipid metabolism to restrict cGAS-STING DNA sensing. . Immunity 56::2492507.e10
    [Crossref] [Google Scholar]
  120. 120.
    Luteijn RD, Zaver SA, Gowen BG, Wyman SK, Garelis NE, et al. 2019.. SLC19A1 transports immunoreactive cyclic dinucleotides. . Nature 573::43438
    [Crossref] [Google Scholar]
  121. 121.
    Ritchie C, Cordova AF, Hess GT, Bassik MC, Li L. 2019.. SLC19A1 is an importer of the immunotransmitter cGAMP. . Mol. Cell 75::37281.e5
    [Crossref] [Google Scholar]
  122. 122.
    Cordova AF, Ritchie C, Böhnert V, Li L. 2021.. Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP-sensing macrophages and monocytes. . ACS Cent. Sci. 7::107388
    [Crossref] [Google Scholar]
  123. 123.
    Zhang Q, Zhang X, Zhu Y, Sun P, Zhang L, et al. 2022.. Recognition of cyclic dinucleotides and folates by human SLC19A1. . Nature 612::17076
    [Crossref] [Google Scholar]
  124. 124.
    Zhou Y, Fei M, Zhang G, Liang WC, Lin W, et al. 2020.. Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP. . Immunity 52::35773.e9
    [Crossref] [Google Scholar]
  125. 125.
    Blest HTW, Redmond A, Avissar J, Barker J, Bridgeman A, et al. 2024.. HSV-1 employs UL56 to antagonize expression and function of cGAMP channels. . Cell Rep. 43::114122
    [Crossref] [Google Scholar]
  126. 126.
    Lahey LJ, Mardjuki RE, Wen X, Hess GT, Ritchie C, et al. 2020.. LRRC8A:C/E heteromeric channels are ubiquitous transporters of cGAMP. . Mol. Cell 80::57891.e5
    [Crossref] [Google Scholar]
  127. 127.
    Zhou C, Chen X, Planells-Cases R, Chu J, Wang L, et al. 2020.. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity. . Immunity 52::76781.e6
    [Crossref] [Google Scholar]
  128. 128.
    Maltbaek JH, Cambier S, Snyder JM, Stetson DB. 2022.. ABCC1 transporter exports the immunostimulatory cyclic dinucleotide cGAMP. . Immunity 55::1799812.e4
    [Crossref] [Google Scholar]
  129. 129.
    Tkach M, Thalmensi J, Timperi E, Gueguen P, Névo N, et al. 2022.. Extracellular vesicles from triple negative breast cancer promote pro-inflammatory macrophages associated with better clinical outcome. . PNAS 119::e2107394119
    [Crossref] [Google Scholar]
  130. 130.
    Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X, et al. 2015.. Transmission of innate immune signaling by packaging of cGAMP in viral particles. . Science 349::123236
    [Crossref] [Google Scholar]
  131. 131.
    Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y, et al. 2015.. Viruses transfer the antiviral second messenger cGAMP between cells. . Science 349::122832
    [Crossref] [Google Scholar]
  132. 132.
    Chauveau L, Bridgeman A, Tan TK, Beveridge R, Frost JN, et al. 2021.. Inclusion of cGAMP within virus-like particle vaccines enhances their immunogenicity. . EMBO Rep. 22::e52447
    [Crossref] [Google Scholar]
  133. 133.
    Jneid B, Bochnakian A, Hoffman C, Delisle F, Djacoto E, et al. 2023.. Selective STING stimulation in dendritic cells primes antitumor T cell responses. . Sci. Immunol. 8::eabn6612
    [Crossref] [Google Scholar]
  134. 134.
    Wei X, Zhang L, Yang Y, Hou Y, Xu Y, et al. 2022.. LL-37 transports immunoreactive cGAMP to activate STING signaling and enhance interferon-mediated host antiviral immunity. . Cell Rep. 39::110880
    [Crossref] [Google Scholar]
  135. 135.
    Eaglesham JB, McCarty KL, Kranzusch PJ. 2020.. Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host–pathogen conflict. . eLife 9::e59753
    [Crossref] [Google Scholar]
  136. 136.
    Huiting E, Cao X, Ren J, Athukoralage JS, Luo Z, et al. 2023.. Bacteriophages inhibit and evade cGAS-like immune function in bacteria. . Cell 186::86476.e21
    [Crossref] [Google Scholar]
  137. 137.
    Jenson JM, Li T, Du F, Ea CK, Chen ZJ. 2023.. Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence. . Nature 616::32631
    [Crossref] [Google Scholar]
  138. 138.
    Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D, et al. 2012.. Cyclic di-GMP sensing via the innate immune signaling protein STING. . Mol. Cell 46::73545
    [Crossref] [Google Scholar]
  139. 139.
    Shang G, Zhang C, Chen ZJ, Bai X-C, Zhang X. 2019.. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. . Nature 567::38993
    [Crossref] [Google Scholar]
  140. 140.
    Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. 2019.. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. . Nature 567::38993
    [Crossref] [Google Scholar]
  141. 141.
    Gao P, Ascano M, Zillinger T, Wang W, Dai P, et al. 2013.. Structure–function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. . Cell 154::74862
    [Crossref] [Google Scholar]
  142. 142.
    Zhang X, Shi H, Wu J, Zhang X, Sun L, et al. 2013.. Cyclic GMP–AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. . Mol. Cell 51::22635
    [Crossref] [Google Scholar]
  143. 143.
    Liu S, Yang B, Hou Y, Cui K, Yang X, et al. 2023.. The mechanism of STING autoinhibition and activation. . Mol. Cell 83::150218.e10
    [Crossref] [Google Scholar]
  144. 144.
    Zhao B, Du F, Xu P, Shu C, Sankaran B, et al. 2019.. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. . Nature 569::71822
    [Crossref] [Google Scholar]
  145. 145.
    Zhang C, Shang G, Gui X, Zhang X, Bai X-C, Chen ZJ. 2019.. Structural basis of STING binding with and phosphorylation by TBK1. . Nature 567::39498
    [Crossref] [Google Scholar]
  146. 146.
    Tanaka Y, Chen ZJ. 2012.. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. . Sci. Signal. 5::214ra20
    [Crossref] [Google Scholar]
  147. 147.
    Liu S, Cai X, Wu J, Cong Q, Chen X, et al. 2015.. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. . Science 347::aaa2630
    [Crossref] [Google Scholar]
  148. 148.
    Zhao B, Shu C, Gao X, Sankaran B, Du F, et al. 2016.. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. . PNAS 113::E340312
    [Google Scholar]
  149. 149.
    Jing T, Zhao B, Xu P, Gao X, Chi L, et al. 2020.. The structural basis of IRF-3 activation upon phosphorylation. . J. Immunol. 205::188696
    [Crossref] [Google Scholar]
  150. 150.
    Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto Neal M, Yan N. 2015.. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. . Cell Host Microbe 18::15768
    [Crossref] [Google Scholar]
  151. 151.
    Zhong B, Yang Y, Li S, Wang Y-Y, Li Y, et al. 2008.. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. . Immunity 29::53850
    [Crossref] [Google Scholar]
  152. 152.
    Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D, et al. 2012.. Cyclic di-GMP sensing via the innate immune signaling protein STING. . Mol. Cell 46::73545
    [Crossref] [Google Scholar]
  153. 153.
    Shu C, Yi G, Watts T, Kao CC, Li P. 2012.. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. . Nat. Struct. Mol. Biol. 19::72224
    [Crossref] [Google Scholar]
  154. 154.
    Shang G, Zhu D, Li N, Zhang J, Zhu C, et al. 2012.. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. . Nat. Struct. Mol. Biol. 19::72527
    [Crossref] [Google Scholar]
  155. 155.
    Ouyang S, Song X, Wang Y, Ru H, Shaw N, et al. 2012.. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. . Immunity 36::107386
    [Crossref] [Google Scholar]
  156. 156.
    Xie Z, Wang Z, Fan F, Zhou J, Hu Z, et al. 2022.. Structural insights into a shared mechanism of human STING activation by a potent agonist and an autoimmune disease–associated mutation. . Cell Discov. 8::133
    [Crossref] [Google Scholar]
  157. 157.
    Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, et al. 2018.. Design of amidobenzimidazole STING receptor agonists with systemic activity. . Nature 564::43943
    [Crossref] [Google Scholar]
  158. 158.
    Srikanth S, Woo JS, Wu B, El-Sherbiny YM, Leung J, et al. 2019.. The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. . Nat. Immunol. 20::15262
    [Crossref] [Google Scholar]
  159. 159.
    Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, et al. 2014.. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. . J. Clin. Investig. 124::551620
    [Crossref] [Google Scholar]
  160. 160.
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, et al. 2014.. Activated STING in a vascular and pulmonary syndrome. . N. Engl. J. Med. 371::50718
    [Crossref] [Google Scholar]
  161. 161.
    Fremond ML, Crow YJ. 2021.. STING-mediated lung inflammation and beyond. . J. Clin. Immunol. 41::50114
    [Crossref] [Google Scholar]
  162. 162.
    Konno H, Chinn IK, Hong D, Orange JS, Lupski JR, et al. 2018.. Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING. . Cell Rep. 23::111223
    [Crossref] [Google Scholar]
  163. 163.
    Landau LM, Chaudhary N, Tien YC, Rogozinska M, Joshi S, et al. 2024. pLxIS-containing domains are biochemically flexible regulators of interferons and metabolism. . Mol. Cell 84::243654.e10
    [Crossref] [Google Scholar]
  164. 164.
    Wang Y, Li S, Hu M, Yang Y, McCabe E, et al. 2024.. Universal STING mimic boosts antitumour immunity via preferential activation of tumour control signalling pathways. . Nat. Nanotechnol. 19::85666
    [Crossref] [Google Scholar]
  165. 165.
    Tan Y, Kagan JC. 2019.. Innate immune signaling organelles display natural and programmable signaling flexibility. . Cell 177::38498.e11
    [Crossref] [Google Scholar]
  166. 166.
    Lu D, Shang G, Li J, Lu Y, Bai X-C, Zhang X. 2022.. Activation of STING by targeting a pocket in the transmembrane domain. . Nature 604::55762
    [Crossref] [Google Scholar]
  167. 167.
    Li J, Canham SM, Wu H, Henault M, Chen L, et al. 2024.. Activation of human STING by a molecular glue–like compound. . Nat. Chem. Biol. 20::36572
    [Crossref] [Google Scholar]
  168. 168.
    Gui X, Yang H, Li T, Tan X, Shi P, et al. 2019.. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. . Nature 567::26266
    [Crossref] [Google Scholar]
  169. 169.
    Ji Y, Luo Y, Wu Y, Sun Y, Zhao L, et al. 2023.. SEL1L–HRD1 endoplasmic reticulum–associated degradation controls STING-mediated innate immunity by limiting the size of the activable STING pool. . Nat. Cell Biol. 25::72639
    [Crossref] [Google Scholar]
  170. 170.
    Triantafilou M, Ramanjulu J, Booty LM, Jimenez-Duran G, Keles H, et al. 2022.. Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication. . Nat. Commun. 13::1406
    [Crossref] [Google Scholar]
  171. 171.
    Prabakaran T, Troldborg A, Kumpunya S, Alee I, Marinković E, et al. 2021.. A STING antagonist modulating the interaction with STIM1 blocks ER-to-Golgi trafficking and inhibits lupus pathology. . eBioMedicine 66::103314
    [Crossref] [Google Scholar]
  172. 172.
    Mukai K, Konno H, Akiba T, Uemura T, Waguri S, et al. 2016.. Activation of STING requires palmitoylation at the Golgi. . Nat. Commun. 7::11932
    [Crossref] [Google Scholar]
  173. 173.
    Hansen AL, Buchan GJ, Rühl M, Mukai K, Salvatore SR, et al. 2018.. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. . PNAS 115::E776875
    [Google Scholar]
  174. 174.
    Li W, Li Y, Kang J, Jiang H, Gong W, et al. 2023.. 4-Octyl itaconate as a metabolite derivative inhibits inflammation via alkylation of STING. . Cell Rep. 42:: 112145
    [Crossref] [Google Scholar]
  175. 175.
    Liu Y, Xu P, Rivara S, Liu C, Ricci J, et al. 2022.. Clathrin-associated AP-1 controls termination of STING signalling. . Nature 610::76167
    [Crossref] [Google Scholar]
  176. 176.
    Deng Z, Chong Z, Law CS, Mukai K, Ho FO, et al. 2020.. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. . J. Exp. Med. 217::e20201045
    [Crossref] [Google Scholar]
  177. 177.
    Lepelley A, Martin-Niclós MJ, Le Bihan M, Marsh JA, Uggenti C, et al. 2020.. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. . J. Exp. Med. 217::e20200600
    [Crossref] [Google Scholar]
  178. 178.
    Mukai K, Ogawa E, Uematsu R, Kuchitsu Y, Kiku F, et al. 2021.. Homeostatic regulation of STING by retrograde membrane traffic to the ER. . Nat. Commun. 12::61
    [Crossref] [Google Scholar]
  179. 179.
    Steiner A, Hrovat-Schaale K, Prigione I, Yu C-H, Laohamonthonkul P, et al. 2022.. Deficiency in coatomer complex I causes aberrant activation of STING signalling. . Nat. Commun. 13::2321
    [Crossref] [Google Scholar]
  180. 180.
    Hirschenberger M, Lepelley A, Rupp U, Klute S, Hunszinger V, et al. 2023.. ARF1 prevents aberrant type I interferon induction by regulating STING activation and recycling. . Nat. Commun. 14::6770
    [Crossref] [Google Scholar]
  181. 181.
    Iannuzzo A, Delafontaine S, Masri RE, Tacine R, Prencipe G, et al. 2024.. Autoinflammatory patients with Golgi-trapped CDC42 exhibit intracellular trafficking defects leading to STING hyperactivation. . Nat. Commun. 15::9940
    [Crossref] [Google Scholar]
  182. 182.
    Kuchitsu Y, Mukai K, Uematsu R, Takaada Y, Shinojima A, et al. 2023.. STING signalling is terminated through ESCRT-dependent microautophagy of vesicles originating from recycling endosomes. . Nat. Cell Biol. 25::45366
    [Crossref] [Google Scholar]
  183. 183.
    Balka KR, Venkatraman R, Saunders TL, Shoppee A, Pang ES, et al. 2023.. Termination of STING responses is mediated via ESCRT-dependent degradation. . EMBO J. 42::e112712
    [Crossref] [Google Scholar]
  184. 184.
    Gentili M, Liu B, Papanastasiou M, Dele-Oni D, Schwartz MA, et al. 2023.. ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. . Nat. Commun. 14::611
    [Crossref] [Google Scholar]
  185. 185.
    Chu T-T, Tu X, Yang K, Wu J, Repa JJ, Yan N. 2021.. Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. . Nature 596::57075
    [Crossref] [Google Scholar]
  186. 186.
    Abe T, Barber GN. 2014.. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. . J. Virol. 88::532841
    [Crossref] [Google Scholar]
  187. 187.
    Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ, et al. 2020.. TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells. . Cell Rep. 31::107492
    [Crossref] [Google Scholar]
  188. 188.
    Fischer TD, Bunker EN, Zhu P-P, Le Guerroué F, Dominguez-Martin E, et al. 2025.. STING induces HOIP-mediated synthesis of M1 ubiquitin chains to stimulate NF-κB signaling. . EMBO J. 44::14165
    [Crossref] [Google Scholar]
  189. 189.
    de Oliveira Mann CC, Orzalli MH, King DS, Kagan JC, Lee ASY, Kranzusch PJ. 2019.. Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation. . Cell Rep. 27::116575.e5
    [Crossref] [Google Scholar]
  190. 190.
    Hou Y, Liang H, Rao E, Zheng W, Huang X, et al. 2018.. Non-canonical NF-κB antagonizes STING sensor–mediated DNA sensing in radiotherapy. . Immunity 49::490503.e4
    [Crossref] [Google Scholar]
  191. 191.
    Wu J, Chen Y-J, Dobbs N, Sakai T, Liou J, et al. 2019.. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. . J. Exp. Med. 216::86783
    [Crossref] [Google Scholar]
  192. 192.
    Fischer TD, Wang C, Padman BS, Lazarou M, Youle RJ. 2020.. STING induces LC3B lipidation onto single-membrane vesicles via the V-ATPase and ATG16L1-WD40 domain. . J. Cell Biol. 219::e202009128
    [Crossref] [Google Scholar]
  193. 193.
    Xu Y, Zhou P, Cheng S, Lu Q, Nowak K, et al. 2019.. A bacterial effector reveals the V-ATPase–ATG16L1 axis that initiates xenophagy. . Cell 178::55266.e20
    [Crossref] [Google Scholar]
  194. 194.
    Hooper KM, Jacquin E, Li T, Goodwin JM, Brumell JH, et al. 2022.. V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy. . J. Cell Biol. 221::e202105112
    [Crossref] [Google Scholar]
  195. 195.
    Liu B, Carlson RJ, Pires IS, Gentili M, Feng E, et al. 2023.. Human STING is a proton channel. . Science 381::50814
    [Crossref] [Google Scholar]
  196. 196.
    Xun J, Zhang Z, Lv B, Lu D, Yang H, et al. 2024.. A conserved ion channel function of STING mediates noncanonical autophagy and cell death. . EMBO Rep. 25::54469
    [Crossref] [Google Scholar]
  197. 197.
    Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J, et al. 2017.. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. . Nat. Microbiol. 2::17037
    [Crossref] [Google Scholar]
  198. 198.
    Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, et al. 2014.. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. . Nature 505::69195
    [Crossref] [Google Scholar]
  199. 199.
    Tse SW, McKinney K, Walker W, Nguyen M, Iacovelli J, et al. 2021.. mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8+ T cell response. . Mol. Ther. 29::222738
    [Crossref] [Google Scholar]
  200. 200.
    Zhivaki D, Gosselin EA, Sengupta D, Concepcion H, Arinze C, et al. 2023.. mRNAs encoding self-DNA reactive cGAS enhance the immunogenicity of lipid nanoparticle vaccines. . mBio 14::e0250623
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-032910
Loading
/content/journals/10.1146/annurev-immunol-101721-032910
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error