1932

Abstract

There has been an increasing effort to understand the memory responses of a complex interplay among innate, adaptive, and structural cells in peripheral organs and bone marrow. Trained immunity is coined as the de facto memory of innate immune cells and their progenitors. These cells acquire epigenetic modifications and shift their metabolism to equip an imprinted signature to a persistent fast-responsive functional state. Recent studies highlight the contribution of noncoding RNAs and modulation of chromatin structures in establishing this epigenetic readiness for potential immune perturbations. In this review, we discuss recent studies that highlight trained immunity–mediated memory responses emerging intrinsically in innate immune cells and as a complex interplay with other cells at the organ level. Lastly, we survey epigenetic contributors to trained immunity phenotypes—specifically, a recently discovered regulatory circuit coordinating the regulation of a key driver of trained immunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-035114
2025-04-25
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/43/1/annurev-immunol-101721-035114.html?itemId=/content/journals/10.1146/annurev-immunol-101721-035114&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Janeway CA Jr. 1989.. Approaching the asymptote? Evolution and revolution in immunology. . Cold Spring Harb. Symp. Quant. Biol. 54:(Part 1):113
    [Crossref] [Google Scholar]
  2. 2.
    Medzhitov R, Janeway C Jr. 2000.. The Toll receptor family and microbial recognition. . Trends Microbiol. 8::45256
    [Crossref] [Google Scholar]
  3. 3.
    Medzhitov R. 2001.. Toll-like receptors and innate immunity. . Nat. Rev. Immunol. 1::13545
    [Crossref] [Google Scholar]
  4. 4.
    Han GZ. 2019.. Origin and evolution of the plant immune system. . New Phytol. 222::7083
    [Crossref] [Google Scholar]
  5. 5.
    Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006.. Host-microbe interactions: shaping the evolution of the plant immune response. . Cell 124::80314
    [Crossref] [Google Scholar]
  6. 6.
    Kurtz J, Franz K. 2003.. Innate defence: evidence for memory in invertebrate immunity. . Nature 425::3738
    [Crossref] [Google Scholar]
  7. 7.
    Faulhaber LM, Karp RD. 1992.. A diphasic immune response against bacteria in the American cockroach. . Immunology 75::37881
    [Google Scholar]
  8. 8.
    Pinaud S, Portela J, Duval D, Nowacki FC, Olive MA, et al. 2016.. A shift from cellular to humoral responses contributes to innate immune memory in the vector snail Biomphalaria glabrata. . PLOS Pathog. 12::e1005361
    [Crossref] [Google Scholar]
  9. 9.
    Bolte S, Roth O, Philipp EE, Saphörster J, Rosenstiel P, Reusch TB. 2013.. Specific immune priming in the invasive ctenophore Mnemiopsis leidyi. . Biol. Lett. 9::20130864
    [Crossref] [Google Scholar]
  10. 10.
    Ng TH, Harrison MC, Scharsack JP, Kurtz J. 2024.. Disentangling specific and unspecific components of innate immune memory in a copepod-tapeworm system. . Front. Immunol. 15::1307477
    [Crossref] [Google Scholar]
  11. 11.
    Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. 2019.. Innate and adaptive immune memory: an evolutionary continuum in the host's response to pathogens. . Cell Host Microbe 25::1326
    [Crossref] [Google Scholar]
  12. 12.
    Dubos RJ, Schaedler RW. 1957.. Effects of cellular constituents of mycobacteria on the resistance of mice to heterologous infections: I. Protective effects. . J. Exp. Med. 106::70317
    [Crossref] [Google Scholar]
  13. 13.
    Old LJ, Clarke DA, Benacerraf B. 1959.. Effect of Bacillus Calmette-Guérin infection on transplanted tumours in the mouse. . Nature 184::29192
    [Crossref] [Google Scholar]
  14. 14.
    Garly M-L, Martins CL, Balé C, Baldé MA, Hedegaard KL, et al. 2003.. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa: a non-specific beneficial effect of BCG?. Vaccine 21::278290
    [Crossref] [Google Scholar]
  15. 15.
    Kristensen I, Fine P, Aaby P, Jensen H. 2000.. Routine vaccinations and child survival: follow up study in Guinea-Bissau, West Africa. . BMJ 321::143538
    [Crossref] [Google Scholar]
  16. 16.
    Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, et al. 2011.. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period?. J. Infect. Dis. 204::24552
    [Crossref] [Google Scholar]
  17. 17.
    de Bree LCJ, Koeken VACM, Joosten LAB, Aaby P, Benn CS, et al. 2018.. Non-specific effects of vaccines: current evidence and potential implications. . Semin. Immunol. 39::3543
    [Crossref] [Google Scholar]
  18. 18.
    Namakula R, de Bree LCJ, Tvedt THA, Netea MG, Cose S, Hanevik K. 2020.. Monocytes from neonates and adults have a similar capacity to adapt their cytokine production after previous exposure to BCG and β-glucan. . PLOS ONE 15::e0229287
    [Crossref] [Google Scholar]
  19. 19.
    van Puffelen JH, Keating ST, Oosterwijk E, van der Heijden AG, Netea MG, et al. 2020.. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. . Nat. Rev. Urol. 17::51325
    [Crossref] [Google Scholar]
  20. 20.
    Lobo N, Brooks NA, Zlotta AR, Cirillo JD, Boorjian S, et al. 2021.. 100 years of Bacillus Calmette–Guérin immunotherapy: from cattle to COVID-19. . Nat. Rev. Urol. 18::61122
    [Crossref] [Google Scholar]
  21. 21.
    Curtis N, Sparrow A, Ghebreyesus TA, Netea MG. 2020.. Considering BCG vaccination to reduce the impact of COVID-19. . Lancet 395::154546
    [Crossref] [Google Scholar]
  22. 22.
    Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, et al. 2018.. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. . N. Engl. J. Med. 379::162134
    [Crossref] [Google Scholar]
  23. 23.
    Tait DR, Hatherill M, Meeren OVD, Ginsberg AM, Brakel EV, et al. 2019.. Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. . N. Engl. J. Med. 381::242939
    [Crossref] [Google Scholar]
  24. 24.
    Tricco AC, Zarin W, Cardoso R, Veroniki A-A, Khan PA, et al. 2018.. Efficacy, effectiveness, and safety of herpes zoster vaccines in adults aged 50 and older: systematic review and network meta-analysis. . BMJ 363::k4029
    [Crossref] [Google Scholar]
  25. 25.
    Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, et al. 2011.. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. . N. Engl. J. Med. 365::186375
    [Crossref] [Google Scholar]
  26. 26.
    Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N. 2017.. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. . Expert Rev. Vaccines 16::5563
    [Crossref] [Google Scholar]
  27. 27.
    Marty-Roix R, Vladimer GI, Pouliot K, Weng D, Buglione-Corbett R, et al. 2016.. Identification of QS-21 as an inflammasome-activating molecular component of saponin adjuvants. . J. Biol. Chem. 291::112336
    [Crossref] [Google Scholar]
  28. 28.
    Romero CD, Varma TK, Hobbs JB, Reyes A, Driver B, Sherwood ER. 2011.. The Toll-like receptor 4 agonist monophosphoryl lipid A augments innate host resistance to systemic bacterial infection. . Infect. Immun. 79::357687
    [Crossref] [Google Scholar]
  29. 29.
    Bruxvoort KJ, Ackerson B, Sy LS, Bhavsar A, Tseng HF, et al. 2022.. Recombinant adjuvanted zoster vaccine and reduced risk of coronavirus disease 2019 diagnosis and hospitalization in older adults. . J. Infect. Dis. 225::191522
    [Crossref] [Google Scholar]
  30. 30.
    Marakalala MJ, Williams DL, Hoving JC, Engstad R, Netea MG, Brown GD. 2013.. Dectin-1 plays a redundant role in the immunomodulatory activities of β-glucan-rich ligands in vivo. . Microbes Infect. 15::51115
    [Crossref] [Google Scholar]
  31. 31.
    Kokoshis P, Williams D, Cook J, Di Luzio N. 1978.. Increased resistance to Staphylococcus aureus infection and enhancement in serum lysozyme activity by glucan. . Science 199::134042
    [Crossref] [Google Scholar]
  32. 32.
    Moorlag S, Khan N, Novakovic B, Kaufmann E, Jansen T, et al. 2020.. β-Glucan induces protective trained immunity against Mycobacterium tuberculosis infection: a key role for IL-1. . Cell Rep. 31::107634
    [Crossref] [Google Scholar]
  33. 33.
    Stothers CL, Burelbach KR, Owen AM, Patil NK, McBride MA, et al. 2021.. β-Glucan induces distinct and protective innate immune memory in differentiated macrophages. . J. Immunol. 207::278598
    [Crossref] [Google Scholar]
  34. 34.
    Khan N, Tran KA, Chevre R, Locher V, Richter M, et al. 2025.. β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus. . Nat. Immunol. 26:17487
    [Google Scholar]
  35. 35.
    Lee A, Wimmers F, Pulendran B. 2022.. Epigenetic adjuvants: durable reprogramming of the innate immune system with adjuvants. . Curr. Opin. Immunol. 77::102189
    [Crossref] [Google Scholar]
  36. 36.
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D, et al. 2013.. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. . Immunity 38::7991
    [Crossref] [Google Scholar]
  37. 37.
    Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. 2010.. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. . Nature 465::79397
    [Crossref] [Google Scholar]
  38. 38.
    Belyaev NN, Brown DE, Diaz AI, Rae A, Jarra W, et al. 2010.. Induction of an IL7-R+c-Kithi myelolymphoid progenitor critically dependent on IFN-γ signaling during acute malaria. . Nat. Immunol. 11::47785
    [Crossref] [Google Scholar]
  39. 39.
    Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, et al. 2009.. IFNα activates dormant haematopoietic stem cells in vivo. . Nature 458::9048
    [Crossref] [Google Scholar]
  40. 40.
    Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T. 2009.. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. . Nat. Med. 15::696700
    [Crossref] [Google Scholar]
  41. 41.
    Matatall KA, Jeong M, Chen S, Sun D, Chen F, et al. 2016.. Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation. . Cell Rep. 17::258495
    [Crossref] [Google Scholar]
  42. 42.
    He R, Torres CA, Wang Y, He C, Zhong G. 2023.. Type-I interferon signaling protects against Chlamydia trachomatis infection in the female lower genital tract. . Infect. Immun. 91::e0015323
    [Crossref] [Google Scholar]
  43. 43.
    Schiavoni G, Mauri C, Carlei D, Belardelli F, Pastoris MC, Proietti E. 2004.. Type I IFN protects permissive macrophages from Legionella pneumophila infection through an IFN-γ-independent pathway. . J. Immunol. 173::126675
    [Crossref] [Google Scholar]
  44. 44.
    Gratz N, Hartweger H, Matt U, Kratochvill F, Janos M, et al. 2011.. Type I interferon production induced by Streptococcus pyogenes-derived nucleic acids is required for host protection. . PLOS Pathog. 7::e1001345
    [Crossref] [Google Scholar]
  45. 45.
    Henry T, Brotcke A, Weiss DS, Thompson LJ, Monack DM. 2007.. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. . J. Exp. Med. 204::98794
    [Crossref] [Google Scholar]
  46. 46.
    Osborne SE, Sit B, Shaker A, Currie E, Tan JM, et al. 2017.. Type I interferon promotes cell-to-cell spread of Listeria monocytogenes. . Cell Microbiol. 19::e12660
    [Crossref] [Google Scholar]
  47. 47.
    Ji DX, Yamashiro LH, Chen KJ, Mukaida N, Kramnik I, et al. 2019.. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. . Nat. Microbiol. 4::212835
    [Crossref] [Google Scholar]
  48. 48.
    Desvignes L, Wolf AJ, Ernst JD. 2012.. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. . J. Immunol. 188::620515
    [Crossref] [Google Scholar]
  49. 49.
    Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, et al. 2015.. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. . Cell Host Microbe 17::81119
    [Crossref] [Google Scholar]
  50. 50.
    O'Connell RM, Saha SK, Vaidya SA, Bruhn KW, Miranda GA, et al. 2004.. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. . J. Exp. Med. 200::43745
    [Crossref] [Google Scholar]
  51. 51.
    Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. 2012.. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. . Cell Host Microbe 11::46980
    [Crossref] [Google Scholar]
  52. 52.
    Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, et al. 2009.. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. . PLOS Pathog. 5::e1000500
    [Crossref] [Google Scholar]
  53. 53.
    Stetson DB, Medzhitov R. 2006.. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. . Immunity 24::93103
    [Crossref] [Google Scholar]
  54. 54.
    Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonça LE, et al. 2018.. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. . Cell 172::17690.e19
    [Crossref] [Google Scholar]
  55. 55.
    Barclay WR, Anacker RL, Brehmer W, Leif W, Ribi E. 1970.. Aerosol-induced tuberculosis in subhuman primates and the course of the disease after intravenous BCG vaccination. . Infect. Immun. 2::57482
    [Crossref] [Google Scholar]
  56. 56.
    Sharpe S, White A, Sarfas C, Sibley L, Gleeson F, et al. 2016.. Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations. . Tuberculosis 101::17490
    [Crossref] [Google Scholar]
  57. 57.
    Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH II, et al. 2020.. Prevention of tuberculosis in macaques after intravenous BCG immunization. . Nature 577::95102
    [Crossref] [Google Scholar]
  58. 58.
    Sun SJ, Aguirre-Gamboa R, de Bree LCJ, Sanz J, Dumaine A, et al. 2024.. BCG vaccination alters the epigenetic landscape of progenitor cells in human bone marrow to influence innate immune responses. . Immunity 57::2095107.e8
    [Crossref] [Google Scholar]
  59. 59.
    Thamthitiwat S, Marin N, Baggett HC, Peruski LF, Kiatkulwiwat W, et al. 2011.. Mycobacterium bovis (Bacille Calmette-Guérin) bacteremia in immunocompetent neonates following vaccination. . Vaccine 29::172730
    [Crossref] [Google Scholar]
  60. 60.
    Telofski LS, Morello AP III, Mack Correa MC, Stamatas GN. 2012.. The infant skin barrier: Can we preserve, protect, and enhance the barrier?. Dermatol. Res. Pract. 2012::198789
    [Crossref] [Google Scholar]
  61. 61.
    Visscher M, Narendran V. 2014.. The ontogeny of skin. . Adv. Wound Care 3::291303
    [Crossref] [Google Scholar]
  62. 62.
    Khan N, Downey J, Sanz J, Kaufmann E, Blankenhaus B, et al. 2020.. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. . Cell 183::75270.e22
    [Crossref] [Google Scholar]
  63. 63.
    Das B, Kashino SS, Pulu I, Kalita D, Swami V, et al. 2013.. CD271+ bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. . Sci. Transl. Med. 5::170ra13
    [Google Scholar]
  64. 64.
    Mayito J, Andia I, Belay M, Jolliffe DA, Kateete DP, et al. 2019.. Anatomic and cellular niches for Mycobacterium tuberculosis in latent tuberculosis infection. . J. Infect. Dis. 219::68594
    [Crossref] [Google Scholar]
  65. 65.
    Repele F, Alonzi T, Navarra A, Farroni C, Salmi A, et al. 2024.. Detection of Mycobacterium tuberculosis DNA in CD34+ peripheral blood mononuclear cells of adults with tuberculosis infection and disease. . Int. J. Infect. Dis. 141::106999
    [Crossref] [Google Scholar]
  66. 66.
    Tornack J, Reece ST, Bauer WM, Vogelzang A, Bandermann S, et al. 2017.. Human and mouse hematopoietic stem cells are a depot for dormant Mycobacterium tuberculosis. . PLOS ONE 12::e0169119
    [Crossref] [Google Scholar]
  67. 67.
    Daman AW, Antonelli AC, Redelman-Sidi G, Paddock L, Cheong JG, et al. 2024.. Microbial cancer immunotherapy reprograms hematopoietic stem cells to enhance anti-tumor immunity. . bioRxiv 2024.03.21.586166. https://doi.org/10.1101/2024.03.21.586166
  68. 68.
    Divangahi M, Mostowy S, Coulombe F, Kozak R, Guillot L, et al. 2008.. NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. . J. Immunol. 181::715765
    [Crossref] [Google Scholar]
  69. 69.
    Coulombe F, Divangahi M, Veyrier F, de Léséleuc L, Gleason JL, et al. 2009.. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. . J. Exp. Med. 206::170916
    [Crossref] [Google Scholar]
  70. 70.
    Behr MA, Divangahi M. 2015.. Freund's adjuvant, NOD2 and mycobacteria. . Curr. Opin. Microbiol. 23::12632
    [Crossref] [Google Scholar]
  71. 71.
    Priem B, van Leent MMT, Teunissen AJP, Sofias AM, Mourits VP, et al. 2020.. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. . Cell 183::786801.e19
    [Crossref] [Google Scholar]
  72. 72.
    Li D, Li W, Zheng P, Yang Y, Liu Q, et al. 2023.. A “trained immunity” inducer-adjuvanted nanovaccine reverses the growth of established tumors in mice. . J. Nanobiotechnol. 21::74
    [Crossref] [Google Scholar]
  73. 73.
    Jentho E, Ruiz-Moreno C, Novakovic B, Kourtzelis I, Megchelenbrink WL, et al. 2021.. Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. . PNAS 118::e2102698118
    [Crossref] [Google Scholar]
  74. 74.
    Mitroulis I, Ruppova K, Wang B, Chen LS, Grzybek M, et al. 2018.. Modulation of myelopoiesis progenitors is an integral component of trained immunity. . Cell 172::14761.e12
    [Crossref] [Google Scholar]
  75. 75.
    Kalafati L, Kourtzelis I, Schulte-Schrepping J, Li X, Hatzioannou A, et al. 2020.. Innate immune training of granulopoiesis promotes anti-tumor activity. . Cell 183::77185.e12
    [Crossref] [Google Scholar]
  76. 76.
    Batbayar S, Lee DH, Kim HW. 2012.. Immunomodulation of fungal β-glucan in host defense signaling by dectin-1. . Biomol. Ther. 20::43345
    [Crossref] [Google Scholar]
  77. 77.
    Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F. 1970.. Antitumor polysaccharide derived chemically from natural glucan (pachyman). . Nature 225::94344
    [Crossref] [Google Scholar]
  78. 78.
    Tang C, Sun H, Kadoki M, Han W, Ye X, et al. 2023.. Blocking Dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. . Nat. Commun. 14::1493
    [Crossref] [Google Scholar]
  79. 79.
    Evrard M, Kwok IWH, Chong SZ, Teng KWW, Becht E, et al. 2018.. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. . Immunity 48::36479.e8
    [Crossref] [Google Scholar]
  80. 80.
    Kwok I, Becht E, Xia Y, Ng M, Teh YC, et al. 2020.. Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. . Immunity 53::30318.e5
    [Crossref] [Google Scholar]
  81. 81.
    Liu G, Ma N, Cheng K, Feng Q, Ma X, et al. 2024.. Bacteria-derived nanovesicles enhance tumour vaccination by trained immunity. . Nat. Nanotechnol. 19::38798
    [Crossref] [Google Scholar]
  82. 82.
    Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, et al. 2016.. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. . Cell 165::110619
    [Crossref] [Google Scholar]
  83. 83.
    Christ A, Günther P, Lauterbach MAR, Duewell P, Biswas D, et al. 2018.. Western diet triggers NLRP3-dependent innate immune reprogramming. . Cell 172::16275.e14
    [Crossref] [Google Scholar]
  84. 84.
    Serafini N, Jarade A, Surace L, Goncalves P, Sismeiro O, et al. 2022.. Trained ILC3 responses promote intestinal defense. . Science 375::85963
    [Crossref] [Google Scholar]
  85. 85.
    Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Jacobs C, et al. 2014.. BCG-induced trained immunity in NK cells: role for non-specific protection to infection. . Clin. Immunol. 155::21319
    [Crossref] [Google Scholar]
  86. 86.
    Ng J, Marneth AE, Griffith A, Younger D, Ghanta S, et al. 2023.. Mesenchymal stromal cells facilitate neutrophil-trained immunity by reprogramming hematopoietic stem cells. . J. Innate Immun. 15::76581
    [Crossref] [Google Scholar]
  87. 87.
    Lee H-G, Rone JM, Li Z, Akl CF, Shin SW, et al. 2024.. Disease-associated astrocyte epigenetic memory promotes CNS pathology. . Nature 627::86572
    [Crossref] [Google Scholar]
  88. 88.
    Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A, et al. 2017.. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. . Nature 550::47580
    [Crossref] [Google Scholar]
  89. 89.
    Krausgruber T, Fortelny N, Fife-Gernedl V, Senekowitsch M, Schuster LC, et al. 2020.. Structural cells are key regulators of organ-specific immune responses. . Nature 583::296302
    [Crossref] [Google Scholar]
  90. 90.
    Machiels B, Dourcy M, Xiao X, Javaux J, Mesnil C, et al. 2017.. A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. . Nat. Immunol. 18::131020
    [Crossref] [Google Scholar]
  91. 91.
    Yao Y, Jeyanathan M, Haddadi S, Barra NG, Vaseghi-Shanjani M, et al. 2018.. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. . Cell 175::163450.e17
    [Crossref] [Google Scholar]
  92. 92.
    Tran KA, Pernet E, Sadeghi M, Downey J, Chronopoulos J, et al. 2024.. BCG immunization induces CX3CR1hi effector memory T cells to provide cross-protection via IFN-γ-mediated trained immunity. . Nat. Immunol. 25::41831
    [Crossref] [Google Scholar]
  93. 93.
    Lee A, Floyd K, Wu S, Fang Z, Tan TK, et al. 2024.. BCG vaccination stimulates integrated organ immunity by feedback of the adaptive immune response to imprint prolonged innate antiviral resistance. . Nat. Immunol. 25::4153
    [Crossref] [Google Scholar]
  94. 94.
    Broquet A, Gourain V, Goronflot T, Le Mabecque V, Sinha D, et al. 2024.. Sepsis-trained macrophages promote antitumoral tissue-resident T cells. . Nat. Immunol. 25::80219
    [Crossref] [Google Scholar]
  95. 95.
    Ziogas A, Netea MG. 2022.. Trained immunity-related vaccines: innate immune memory and heterologous protection against infections. . Trends Mol. Med. 28::497512
    [Crossref] [Google Scholar]
  96. 96.
    Divangahi M, Aaby P, Khader SA, Barreiro LB, Bekkering S, et al. 2021.. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. . Nat. Immunol. 22::26
    [Crossref] [Google Scholar]
  97. 97.
    Cirovic B, de Bree LCJ, Groh L, Blok BA, Chan J, et al. 2020.. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. . Cell Host Microbe 28::32234.e5
    [Crossref] [Google Scholar]
  98. 98.
    Deleted in proof
  99. 99.
    Arts RJW, Moorlag S, Novakovic B, Li Y, Wang SY, et al. 2018.. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. . Cell Host Microbe 23::89100.e5
    [Crossref] [Google Scholar]
  100. 100.
    Walk J, de Bree LCJ, Graumans W, Stoter R, van Gemert GJ, et al. 2019.. Outcomes of controlled human malaria infection after BCG vaccination. . Nat. Commun. 10::874
    [Crossref] [Google Scholar]
  101. 101.
    Gillard J, Blok BA, Garza DR, Venkatasubramanian PB, Simonetti E, et al. 2022.. BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial. . NPJ Vaccines 7::21
    [Crossref] [Google Scholar]
  102. 102.
    Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, Antonakos N, Kotsaki A, et al. 2020.. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. . Cell 183::31523.e9
    [Crossref] [Google Scholar]
  103. 103.
    Moorlag SJCFM, Folkman L, ter Horst R, Krausgruber T, Barreca D, et al. 2024.. Multi-omics analysis of innate and adaptive responses to BCG vaccination reveals epigenetic cell states that predict trained immunity. . Immunity 57::17187.e14
    [Crossref] [Google Scholar]
  104. 104.
    Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, et al. 2014.. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. . Science 345::1251086
    [Crossref] [Google Scholar]
  105. 105.
    Bhattarai S, Li Q, Ding J, Liang F, Gusev E, et al. 2022.. TLR4 is a regulator of trained immunity in a murine model of Duchenne muscular dystrophy. . Nat. Commun. 13::879
    [Crossref] [Google Scholar]
  106. 106.
    Sun S, Barreiro LB. 2020.. The epigenetically-encoded memory of the innate immune system. . Curr. Opin. Immunol. 65::713
    [Crossref] [Google Scholar]
  107. 107.
    Keating ST, Groh L, van der Heijden CDCC, Rodriguez H, dos Santos JC, et al. 2020.. The Set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by β-glucan. . Cell Rep. 31::107548
    [Crossref] [Google Scholar]
  108. 108.
    Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, et al. 2020.. Defining trained immunity and its role in health and disease. . Nat. Rev. Immunol. 20::37588
    [Crossref] [Google Scholar]
  109. 109.
    Domínguez-Andrés J, Ferreira AV, Jansen T, Smithers N, Prinjha RK, et al. 2019.. Bromodomain inhibitor I-BET151 suppresses immune responses during fungal–immune interaction. . Eur. J. Immunol. 49::204450
    [Crossref] [Google Scholar]
  110. 110.
    Ferreira AV, Domiguéz-Andrés J, Netea MG. 2022.. The role of cell metabolism in innate immune memory. . J. Innate Immun. 14::4250
    [Crossref] [Google Scholar]
  111. 111.
    Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S, et al. 2014.. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. . Science 345::1250684
    [Crossref] [Google Scholar]
  112. 112.
    Arts RJW, Novakovic B, ter Horst R, Carvalho A, Bekkering S, et al. 2016.. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. . Cell Metab. 24::80719
    [Crossref] [Google Scholar]
  113. 113.
    Arts RJW, Carvalho A, La Rocca C, Palma C, Rodrigues F, et al. 2016.. Immunometabolic pathways in BCG-induced trained immunity. . Cell Rep. 17::256271
    [Crossref] [Google Scholar]
  114. 114.
    Caslin HL, Abebayehu D, Pinette JA, Ryan JJ. 2021.. Lactate is a metabolic mediator that shapes immune cell fate and function. . Front. Physiol. 12::688485
    [Crossref] [Google Scholar]
  115. 115.
    Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, et al. 2014.. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. . Nature 513::55963
    [Crossref] [Google Scholar]
  116. 116.
    Zhang D, Tang Z, Huang H, Zhou G, Cui C, et al. 2019.. Metabolic regulation of gene expression by histone lactylation. . Nature 574::57580
    [Crossref] [Google Scholar]
  117. 117.
    Galle E, Wong C-W, Ghosh A, Desgeorges T, Melrose K, et al. 2022.. H3K18 lactylation marks tissue-specific active enhancers. . Genome Biol. 23::207
    [Crossref] [Google Scholar]
  118. 118.
    Shi W, Cassmann TJ, Bhagwate AV, Hitosugi T, Ip WKE. 2024.. Lactic acid induces transcriptional repression of macrophage inflammatory response via histone acetylation. . Cell Rep. 43::113746
    [Crossref] [Google Scholar]
  119. 119.
    Martínez-Reyes I, Chandel NS. 2020.. Mitochondrial TCA cycle metabolites control physiology and disease. . Nat. Commun. 11::102
    [Crossref] [Google Scholar]
  120. 120.
    Liu PS, Wang H, Li X, Chao T, Teav T, et al. 2017.. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. . Nat. Immunol. 18::98594
    [Crossref] [Google Scholar]
  121. 121.
    Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, et al. 2013.. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. . Nature 496::23842
    [Crossref] [Google Scholar]
  122. 122.
    Domínguez-Andrés J, Novakovic B, Li Y, Scicluna BP, Gresnigt MS, et al. 2019.. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. . Cell Metab. 29::21120.e5
    [Crossref] [Google Scholar]
  123. 123.
    Bekkering S, Arts RJW, Novakovic B, Kourtzelis I, van der Heijden C, et al. 2018.. Metabolic induction of trained immunity through the mevalonate pathway. . Cell 172::13546.e9
    [Crossref] [Google Scholar]
  124. 124.
    Dinarello CA. 2018.. Overview of the IL-1 family in innate inflammation and acquired immunity. . Immunol. Rev. 281::827
    [Crossref] [Google Scholar]
  125. 125.
    Brikos C, Wait R, Begum S, O'Neill LA, Saklatvala J. 2007.. Mass spectrometric analysis of the endogenous type I interleukin-1 (IL-1) receptor signaling complex formed after IL-1 binding identifies IL-1RAcP, MyD88, and IRAK-4 as the stable components. . Mol. Cell. Proteom. 6::155159
    [Crossref] [Google Scholar]
  126. 126.
    Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, et al. 2008.. Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2. . Nat. Immunol. 9::68491
    [Crossref] [Google Scholar]
  127. 127.
    Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. 1996.. TRAF6 is a signal transducer for interleukin-1. . Nature 383::44346
    [Crossref] [Google Scholar]
  128. 128.
    Mantovani A, Dinarello CA, Molgora M, Garlanda C. 2019.. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. . Immunity 50::77895
    [Crossref] [Google Scholar]
  129. 129.
    van der Meer JW, Barza M, Wolff SM, Dinarello CA. 1988.. A low dose of recombinant interleukin 1 protects granulocytopenic mice from lethal gram-negative infection. . PNAS 85::162023
    [Crossref] [Google Scholar]
  130. 130.
    Ciarlo E, Heinonen T, Théroude C, Asgari F, Le Roy D, et al. 2020.. Trained immunity confers broad-spectrum protection against bacterial infections. . J. Infect. Dis. 222::186981
    [Crossref] [Google Scholar]
  131. 131.
    Vonk AG, Netea MG, van Krieken JH, Iwakura Y, van der Meer JWM, Kullberg BJ. 2006.. Endogenous interleukin (IL)–1α and IL-1β are crucial for host defense against disseminated candidiasis. . J. Infect. Dis. 193::141926
    [Crossref] [Google Scholar]
  132. 132.
    Hultgren OH, Svensson L, Tarkowski A. 2002.. Critical role of signaling through IL-1 receptor for development of arthritis and sepsis during Staphylococcus aureus infection. . J. Immunol. 168::520712
    [Crossref] [Google Scholar]
  133. 133.
    Dos Santos JC, Barroso de Figueiredo AM, Teodoro Silva MV, Cirovic B, de Bree LCJ, et al. 2019.. β-Glucan-induced trained immunity protects against Leishmania braziliensis infection: a crucial role for IL-32. . Cell Rep. 28::265972.e6
    [Crossref] [Google Scholar]
  134. 134.
    Curfs JH, van der Meer JW, Sauerwein RW, Eling WM. 1990.. Low dosages of interleukin 1 protect mice against lethal cerebral malaria. . J. Exp. Med. 172::128791
    [Crossref] [Google Scholar]
  135. 135.
    Cavalli G, Tengesdal IW, Gresnigt M, Nemkov T, Arts RJW, et al. 2021.. The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity. . Cell Rep. 35::108955
    [Crossref] [Google Scholar]
  136. 136.
    Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. 2010.. IL-37 is a fundamental inhibitor of innate immunity. . Nat. Immunol. 11::101422
    [Crossref] [Google Scholar]
  137. 137.
    Sharma S, Kulk N, Nold MF, Gräf R, Kim SH, et al. 2008.. The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. . J. Immunol. 180::547782
    [Crossref] [Google Scholar]
  138. 138.
    Bulau A-M, Nold M-F, Li S, Nold-Petry CA, Fink M, et al. 2014.. Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses. . PNAS 111::265055
    [Crossref] [Google Scholar]
  139. 139.
    Li S, Neff CP, Barber K, Hong J, Luo Y, et al. 2015.. Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. . PNAS 112::2497502
    [Crossref] [Google Scholar]
  140. 140.
    Cavalli G, Dinarello CA. 2018.. Suppression of inflammation and acquired immunity by IL-37. . Immunol. Rev. 281::17990
    [Crossref] [Google Scholar]
  141. 141.
    Cavalli G, Justice JN, Boyle KE, D'Alessandro A, Eisenmesser EZ, et al. 2017.. Interleukin 37 reverses the metabolic cost of inflammation, increases oxidative respiration, and improves exercise tolerance. . PNAS 114::231318
    [Crossref] [Google Scholar]
  142. 142.
    Cui L, Qin X, Fu T, Li C, Wang D, et al. 2023.. Attenuated airways inflammation and remodeling in IL-37a and IL-37b transgenic mice with an ovalbumin-induced chronic asthma. . Cell. Immunol. 391–392::104759
    [Crossref] [Google Scholar]
  143. 143.
    Arts RJW, Joosten LAB, Netea MG. 2016.. Immunometabolic circuits in trained immunity. . Semin. Immunol. 28::42530
    [Crossref] [Google Scholar]
  144. 144.
    Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, et al. 2015.. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. . Immunity 42::41930
    [Crossref] [Google Scholar]
  145. 145.
    Su Z, Tao X. 2021.. Current understanding of IL-37 in human health and disease. . Front. Immunol. 12::696605
    [Crossref] [Google Scholar]
  146. 146.
    Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, et al. 2015.. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. . Nat. Immunol. 16::35465
    [Crossref] [Google Scholar]
  147. 147.
    Ballak DB, van Diepen JA, Moschen AR, Jansen HJ, Hijmans A, et al. 2014.. IL-37 protects against obesity-induced inflammation and insulin resistance. . Nat. Commun. 5::4711
    [Crossref] [Google Scholar]
  148. 148.
    Zhao M, Li Y, Guo C, Wang L, Chu H, et al. 2018.. IL-37 isoform D downregulates pro-inflammatory cytokines expression in a Smad3-dependent manner. . Cell Death Dis. 9::582
    [Crossref] [Google Scholar]
  149. 149.
    Yoshimura A, Wakabayashi Y, Mori T. 2010.. Cellular and molecular basis for the regulation of inflammation by TGF-β. . J. Biochem. 147::78192
    [Crossref] [Google Scholar]
  150. 150.
    Qi F, Liu M, Li F, Lv Q, Wang G, et al. 2019.. Interleukin-37 ameliorates influenza pneumonia by attenuating macrophage cytokine production in a MAPK-dependent manner. . Front. Microbiol. 10::2482
    [Crossref] [Google Scholar]
  151. 151.
    Li S, Amo-Aparicio J, Neff CP, Tengesdal IW, Azam T, et al. 2019.. Role for nuclear interleukin-37 in the suppression of innate immunity. . PNAS 116::445661
    [Crossref] [Google Scholar]
  152. 152.
    Chen Y, Hong J, Zhong H, Zhao Y, Li J, et al. 2023.. IL-37 attenuates platelet activation and thrombosis through IL-1R8 pathway. . Circ. Res. 132::e13450
    [Google Scholar]
  153. 153.
    Wu C, Ma J, Yang H, Zhang J, Sun C, et al. 2021.. Interleukin-37 as a biomarker of mortality risk in patients with sepsis. . J. Infect. 82::34654
    [Crossref] [Google Scholar]
  154. 154.
    Brunt VE, Ikoba AP, Ziemba BP, Ballak DB, Hoischen A, et al. 2023.. Circulating interleukin-37 declines with aging in healthy humans: relations to healthspan indicators and IL37 gene SNPs. . GeroScience 45::6584
    [Crossref] [Google Scholar]
  155. 155.
    Bosnić Z, Babič F, Anderková V, Štefanić M, Wittlinger T, Majnarić LT. 2023.. A critical appraisal of the diagnostic and prognostic utility of the anti-inflammatory marker IL-37 in a clinical setting: a case study of patients with diabetes type 2. . Int. J. Environ. Res. Public Health 20::3695
    [Crossref] [Google Scholar]
  156. 156.
    van de Veerdonk FL, Gresnigt MS, Oosting M, van der Meer JW, Joosten LA, et al. 2014.. Protective host defense against disseminated candidiasis is impaired in mice expressing human interleukin-37. . Front. Microbiol. 5::762
    [Google Scholar]
  157. 157.
    Fok ET, Moorlag SJCFM, Negishi Y, Groh LA, dos Santos JC, et al. 2024.. A chromatin-regulated biphasic circuit coordinates IL-1β-mediated inflammation. . Nat. Genet. 56::8599
    [Crossref] [Google Scholar]
  158. 158.
    Offenbacher S, Jiao Y, Kim SJ, Marchesan J, Moss KL, et al. 2018.. GWAS for interleukin-1β levels in gingival crevicular fluid identifies IL37 variants in periodontal inflammation. . Nat. Commun. 9::3686
    [Crossref] [Google Scholar]
  159. 159.
    Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, et al. 2021.. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. . Nature 590::29099
    [Crossref] [Google Scholar]
  160. 160.
    Elowitz MB, Leibler S. 2000.. A synthetic oscillatory network of transcriptional regulators. . Nature 403::33538
    [Crossref] [Google Scholar]
  161. 161.
    Moretto F, Wood NE, Kelly G, Doncic A, van Werven FJ. 2018.. A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast. . Nat. Commun. 9::780
    [Crossref] [Google Scholar]
  162. 162.
    Cho W-K, Spille J-H, Hecht M, Lee C, Li C, et al. 2018.. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. . Science 361::41215
    [Crossref] [Google Scholar]
  163. 163.
    Shin Y, Chang YC, Lee DSW, Berry J, Sanders DW, et al. 2018.. Liquid nuclear condensates mechanically sense and restructure the genome. . Cell 175::148191.e13
    [Crossref] [Google Scholar]
  164. 164.
    Fanucchi S, Domínguez-Andrés J, Joosten LA, Netea MG, Mhlanga MM. 2021.. The intersection of epigenetics and metabolism in trained immunity. . Immunity 54::3243
    [Crossref] [Google Scholar]
  165. 165.
    Fanucchi S, Fok ET, Dalla E, Shibayama Y, Börner K, et al. 2019.. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. . Nat. Genet. 51::13850
    [Crossref] [Google Scholar]
  166. 166.
    Molgora M, Bonavita E, Ponzetta A, Riva F, Barbagallo M, et al. 2017.. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. . Nature 551::11014
    [Crossref] [Google Scholar]
  167. 167.
    Mariotti FR, Supino D, Landolina N, Garlanda C, Mantovani A, et al. 2023.. IL-1R8: a molecular brake of anti-tumor and anti-viral activity of NK cells and ILC. . Semin. Immunol. 66::101712
    [Crossref] [Google Scholar]
  168. 168.
    Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, et al. 2015.. N6-methyladenosine modulates messenger RNA translation efficiency. . Cell 161::138899
    [Crossref] [Google Scholar]
  169. 169.
    Macveigh-Fierro D, Cicerchia A, Cadorette A, Sharma V, Muller M. 2022.. The m6A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay. . PNAS 119::e2116662119
    [Crossref] [Google Scholar]
  170. 170.
    Xie S-J, Lei H, Yang B, Diao L-T, Liao J-Y, et al. 2021.. Dynamic m6A mRNA methylation reveals the role of METTL3/14-m6A-MNK2-ERK signaling axis in skeletal muscle differentiation and regeneration. . Front. Cell Dev. Biol. 9::744171
    [Crossref] [Google Scholar]
  171. 171.
    Zhou T, Shen N, Yang L, Abe N, Horton J, et al. 2015.. Quantitative modeling of transcription factor binding specificities using DNA shape. . PNAS 112::465459
    [Crossref] [Google Scholar]
  172. 172.
    Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. 2019.. Revealing lncRNA structures and interactions by sequencing-based approaches. . Trends Biochem. Sci. 44::3352
    [Crossref] [Google Scholar]
  173. 173.
    Castellanos-Rubio A, Ghosh S. 2019.. Disease-associated SNPs in inflammation-related lncRNAs. . Front. Immunol. 10::427157
    [Crossref] [Google Scholar]
  174. 174.
    Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA. 2009.. The sepsis seesaw: tilting toward immunosuppression. . Nat. Med. 15::49697
    [Crossref] [Google Scholar]
  175. 175.
    Shalova IN, Lim JY, Chittezhath M, Zinkernagel AS, Beasley F, et al. 2015.. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α. . Immunity 42::48498
    [Crossref] [Google Scholar]
  176. 176.
    Cheng S-C, Scicluna BP, Arts RJW, Gresnigt MS, Lachmandas E, et al. 2016.. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. . Nat. Immunol. 17::40613
    [Crossref] [Google Scholar]
  177. 177.
    Jiménez-Sousa , Medrano LM, Liu P, Almansa R, Fernández-Rodríguez A, et al. 2017.. IL-1B rs16944 polymorphism is related to septic shock and death. . Eur. J. Clin. Investig. 47::5362
    [Crossref] [Google Scholar]
  178. 178.
    Wang Y-C, Weng G-P, Liu J-P, Li L, Cheng Q-H. 2019.. Elevated serum IL-37 concentrations in patients with sepsis. . Medicine 98::e14756
    [Crossref] [Google Scholar]
  179. 179.
    Garly M-L, Martins CL, Balé C, Baldé MA, Hedegaard KL, et al. 2003.. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa: a non-specific beneficial effect of BCG?. Vaccine 21::278290
    [Crossref] [Google Scholar]
  180. 180.
    Novakovic B, Habibi E, Wang S-Y, Arts RJ, Davar R, et al. 2016.. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. . Cell 167::135468.e14
    [Crossref] [Google Scholar]
  181. 181.
    Lorenzi L, Chiu H-S, Avila Cobos F, Gross S, Volders P-J, et al. 2021.. The RNA Atlas expands the catalog of human non-coding RNAs. . Nat. Biotechnol. 39::145365
    [Crossref] [Google Scholar]
  182. 182.
    Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, et al. 2023.. Long non-coding RNAs: definitions, functions, challenges and recommendations. . Nat. Rev. Mol. Cell Biol. 24::43047
    [Crossref] [Google Scholar]
  183. 183.
    Ferrer J, Dimitrova N. 2024.. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. . Nat. Rev. Mol. Cell Biol. 25::396415
    [Crossref] [Google Scholar]
  184. 184.
    Ilott NE, Heward JA, Roux B, Tsitsiou E, Fenwick PS, et al. 2014.. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. . Nat. Commun. 5::3979
    [Crossref] [Google Scholar]
  185. 185.
    Cavalheiro GR, Pollex T, Furlong EEM. 2021.. To loop or not to loop: What is the role of TADs in enhancer function and gene regulation?. Curr. Opin. Genet. Dev. 67::11929
    [Crossref] [Google Scholar]
  186. 186.
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, et al. 2012.. Topological domains in mammalian genomes identified by analysis of chromatin interactions. . Nature 485::37680
    [Crossref] [Google Scholar]
  187. 187.
    Herman AB, Tsitsipatis D, Gorospe M. 2022.. Integrated lncRNA function upon genomic and epigenomic regulation. . Mol. Cell 82::225266
    [Crossref] [Google Scholar]
  188. 188.
    Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM. 2013.. Chromosomal contact permits transcription between coregulated genes. . Cell 155::60620
    [Crossref] [Google Scholar]
  189. 189.
    Olan I, Parry AJ, Schoenfelder S, Narita M, Ito Y, et al. 2020.. Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence. . Nat. Commun. 11::6049
    [Crossref] [Google Scholar]
  190. 190.
    Spurlock CF III, Tossberg JT, Guo Y, Collier SP, Crooke PS III, Aune TM. 2015.. Expression and functions of long noncoding RNAs during human T helper cell differentiation. . Nat. Commun. 6::6932
    [Crossref] [Google Scholar]
  191. 191.
    Chen J, Jamaiyar A, Wu W, Hu Y, Zhuang R, et al. 2024.. Deficiency of lncRNA MERRICAL abrogates macrophage chemotaxis and diabetes-associated atherosclerosis. . Cell Rep. 43::113815
    [Crossref] [Google Scholar]
  192. 192.
    Fanucchi S, Mhlanga MM. 2019.. Lnc-ing trained immunity to chromatin architecture. . Front. Cell Dev. Biol. 7::2
    [Crossref] [Google Scholar]
  193. 193.
    Winkle M, El-Daly SM, Fabbri M, Calin GA. 2021.. Noncoding RNA therapeutics—challenges and potential solutions. . Nat. Rev. Drug Discov. 20::62951
    [Crossref] [Google Scholar]
  194. 194.
    Lennox KA, Behlke MA. 2015.. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. . Nucleic Acids Res. 44::86377
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-035114
Loading
/content/journals/10.1146/annurev-immunol-101721-035114
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error