1932

Abstract

Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101819-024752
2024-06-28
2025-03-24
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-101819-024752.html?itemId=/content/journals/10.1146/annurev-immunol-101819-024752&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Topalian SL, Drake CG, Pardoll DM. 2015.. Immune checkpoint blockade: a common denominator approach to cancer therapy. . Cancer Cell 27:(4):45061
    [Crossref] [Google Scholar]
  2. 2.
    Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. 2017.. Primary, adaptive, and acquired resistance to cancer immunotherapy. . Cell 168:(4):70723
    [Crossref] [Google Scholar]
  3. 3.
    Zou W, Wolchok JD, Chen L. 2016.. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. . Sci. Transl. Med. 8:(328):328rv4
    [Crossref] [Google Scholar]
  4. 4.
    Sanmamed MF, Chen L. 2018.. A paradigm shift in cancer immunotherapy: from enhancement to normalization. . Cell 175:(2):31326
    [Crossref] [Google Scholar]
  5. 5.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. 2008.. PD-1 and its ligands in tolerance and immunity. . Annu. Rev. Immunol. 26::677704
    [Crossref] [Google Scholar]
  6. 6.
    Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, et al. 2021.. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. . Nature 591:(7851):65258
    [Crossref] [Google Scholar]
  7. 7.
    Sharpe AH, Pauken KE. 2018.. The diverse functions of the PD1 inhibitory pathway. . Nat. Rev. Immunol. 18:(3):15367
    [Crossref] [Google Scholar]
  8. 8.
    Haslam A, Prasad V. 2019.. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. . JAMA Netw. Open 2:(5):e192535
    [Crossref] [Google Scholar]
  9. 9.
    Zhao X, Subramanian S. 2017.. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. . Cancer Res. 77:(4):81722
    [Crossref] [Google Scholar]
  10. 10.
    Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, et al. 2013.. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. . Immunity 39:(4):78295
    [Crossref] [Google Scholar]
  11. 11.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, et al. 2006.. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. . Science 313:(5795):196064
    [Crossref] [Google Scholar]
  12. 12.
    Li X, Gruosso T, Zuo D, Omeroglu A, Meterissian S, et al. 2019.. Infiltration of CD8+ T cells into tumor cell clusters in triple-negative breast cancer. . PNAS 116:(9):367887
    [Crossref] [Google Scholar]
  13. 13.
    Zou W. 2005.. Immunosuppressive networks in the tumour environment and their therapeutic relevance. . Nat. Rev. Cancer 5:(4):26374
    [Crossref] [Google Scholar]
  14. 14.
    Brunet J-F, Denizot F, Luciani M-F, Roux-Dosseto M, Suzan M, et al. 1987.. A new member of the immunoglobulin superfamily—CTLA-4. . Nature 328:(6127):26770
    [Crossref] [Google Scholar]
  15. 15.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, et al. 2010.. Improved survival with ipilimumab in patients with metastatic melanoma. . N. Engl. J. Med. 363:(8):71123
    [Crossref] [Google Scholar]
  16. 16.
    Carbone DP, Socinski MA, Chen AC, Bhagavatheeswaran P, Reck M, Paz-Ares L. 2014.. A phase III, randomized, open-label trial of nivolumab (anti-PD-1; BMS-936558, ONO-4538) versus investigator's choice chemotherapy (ICC) as first-line therapy for stage IV or recurrent PD-L1+ non-small cell lung cancer (NSCLC). . J. Clin. Oncol. 32:(15_suppl):TPS8128
    [Crossref] [Google Scholar]
  17. 17.
    Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, et al. 2017.. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. . Cell Rep. 19:(6):1189201
    [Crossref] [Google Scholar]
  18. 18.
    Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, et al. 2003.. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. . Nat. Med. 9:(5):56267
    [Crossref] [Google Scholar]
  19. 19.
    Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz H-J, et al. 2017.. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. . Lancet Oncol. 18:(9):118291
    [Crossref] [Google Scholar]
  20. 20.
    Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, et al. 2016.. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. . N. Engl. J. Med. 375:(19):182333
    [Crossref] [Google Scholar]
  21. 21.
    Mok TSK, Wu Y-L, Kudaba I, Kowalski DM, Cho BC, et al. 2019.. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. . Lancet 393:(10183):181930
    [Crossref] [Google Scholar]
  22. 22.
    Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, et al. 2016.. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. . Lancet 387:(10031):190920
    [Crossref] [Google Scholar]
  23. 23.
    Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, et al. 2017.. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. . Lancet 389:(10064):6776
    [Crossref] [Google Scholar]
  24. 24.
    Powles T, Park SH, Voog E, Caserta C, Valderrama BP, et al. 2020.. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. . N. Engl. J. Med. 383:(13):121830
    [Crossref] [Google Scholar]
  25. 25.
    Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, et al. 2017.. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. . N. Engl. J. Med. 377:(20):191929
    [Crossref] [Google Scholar]
  26. 26.
    Paz-Ares L, Dvorkin M, Chen Y, Reinmuth N, Hotta K, et al. 2019.. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. . Lancet 394:(10212):192939
    [Crossref] [Google Scholar]
  27. 27.
    Ribas A, Wolchok JD. 2018.. Cancer immunotherapy using checkpoint blockade. . Science 359:(6382):135055
    [Crossref] [Google Scholar]
  28. 28.
    Chan IS, Bhatia S, Kaufman HL, Lipson EJ. 2018.. Immunotherapy for Merkel cell carcinoma: a turning point in patient care. . J. Immunother. Cancer 6:(1):23
    [Crossref] [Google Scholar]
  29. 29.
    Upadhaya S, Neftelinov ST, Hodge J, Campbell J. 2022.. Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape. . Nat. Rev. Drug Discov. 21:(7):48283
    [Crossref] [Google Scholar]
  30. 30.
    Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, et al. 2017.. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. . Clin. Cancer Res. 23:(1):12436
    [Crossref] [Google Scholar]
  31. 31.
    Huang R-Y, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. 2015.. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. . Oncotarget 6:(29):2735977
    [Crossref] [Google Scholar]
  32. 32.
    Robert C. 2021.. LAG-3 and PD-1 blockade raises the bar for melanoma. . Nat. Cancer 2:(12):125153
    [Crossref] [Google Scholar]
  33. 33.
    Harjunpää H, Guillerey C. 2020.. TIGIT as an emerging immune checkpoint. . Clin. Exp. Immunol. 200:(2):10819
    [Crossref] [Google Scholar]
  34. 34.
    Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D, et al. 2018.. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. . Oncoimmunology 7:(8):e1466769
    [Crossref] [Google Scholar]
  35. 35.
    Banta KL, Xu X, Chitre AS, Au-Yeung A, Takahashi C, et al. 2022.. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ T cell responses. . Immunity 55:(3):51226.e9
    [Crossref] [Google Scholar]
  36. 36.
    Chaudhry A, Johnson M, Colburn D, Gilbert H, Garofalo A, et al. 2020.. ARC-7: a phase II study to evaluate the safety and efficacy of zimberelimab alone, AB154 in combination with zimberelimab, and AB154 in combination with zimberelimab and AB928 in front-line, PD-L1 expressing, non-small cell lung cancer (NSCLC). . Ann. Oncol. 31::S897
    [Crossref] [Google Scholar]
  37. 37.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, et al. 2009.. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). . Eur. J. Cancer 45:(2):22847
    [Crossref] [Google Scholar]
  38. 38.
    Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, et al. 2017.. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. . Lancet Oncol. 18:(3):e14352
    [Crossref] [Google Scholar]
  39. 39.
    Cohen JV, Alomari AK, Vortmeyer AO, Jilaveanu LB, Goldberg SB, et al. 2016.. Melanoma brain metastasis pseudoprogression after pembrolizumab treatment. . Cancer Immunol. Res. 4:(3):17982
    [Crossref] [Google Scholar]
  40. 40.
    Katz SI, Hammer M, Bagley SJ, Aggarwal C, Bauml JM, et al. 2018.. Radiologic pseudoprogression during anti-PD-1 therapy for advanced non-small cell lung cancer. . J. Thorac. Oncol. 13:(7):97886
    [Crossref] [Google Scholar]
  41. 41.
    Danielli R, Ridolfi R, Chiarion-Sileni V, Queirolo P, Testori A, et al. 2012.. Ipilimumab in pretreated patients with metastatic uveal melanoma: safety and clinical efficacy. . Cancer Immunol. Immunother. 61:(1):4148
    [Crossref] [Google Scholar]
  42. 42.
    Jia W, Gao Q, Han A, Zhu H, Yu J. 2019.. The potential mechanism, recognition and clinical significance of tumor pseudoprogression after immunotherapy. . Cancer Biol. Med. 16:(4):65570
    [Crossref] [Google Scholar]
  43. 43.
    Kurra V, Sullivan RJ, Gainor JF, Hodi FS, Gandhi L, et al. 2016.. Pseudoprogression in cancer immunotherapy: rates, time course and patient outcomes. . J. Clin. Oncol. 34:(15_suppl):6580
    [Crossref] [Google Scholar]
  44. 44.
    Humbert O, Chardin D. 2020.. Dissociated response in metastatic cancer: an atypical pattern brought into the spotlight with immunotherapy. . Front. Oncol. 10::566297
    [Crossref] [Google Scholar]
  45. 45.
    Vaflard P, Paoletti X, Servois V, Tresca P, Pons-Tostivint E, et al. 2021.. Dissociated responses in patients with metastatic solid tumors treated with immunotherapy. . Drugs R&D 21:(4):399406
    [Crossref] [Google Scholar]
  46. 46.
    Tozuka T, Kitazono S, Sakamoto H, Yoshida H, Amino Y, et al. 2020.. Dissociated responses at initial computed tomography evaluation is a good prognostic factor in non-small cell lung cancer patients treated with anti-programmed cell death-1/ligand 1 inhibitors. . BMC Cancer 20:(1):207
    [Crossref] [Google Scholar]
  47. 47.
    Matos I, Martin-Liberal J, Hierro C, Olza MOD, Viaplana C, et al. 2018.. Incidence and clinical implications of a new definition of hyperprogression (HPD) with immune checkpoint inhibitors (ICIs) in patients treated in phase 1 (Ph1) trials. . J. Clin. Oncol. 36:(15_suppl):3032
    [Crossref] [Google Scholar]
  48. 48.
    Russo GL, Moro M, Sommariva M, Cancila V, Boeri M, et al. 2019.. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. . Clin. Cancer Res. 25:(3):98999
    [Crossref] [Google Scholar]
  49. 49.
    Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, et al. 2017.. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. . N. Engl. J. Med. 376:(11):101526
    [Crossref] [Google Scholar]
  50. 50.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, et al. 2015.. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. . N. Engl. J. Med. 373:(17):162739
    [Crossref] [Google Scholar]
  51. 51.
    Saâda-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, et al. 2017.. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. . Ann. Oncol. 28:(7):160511
    [Crossref] [Google Scholar]
  52. 52.
    Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, et al. 2017.. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. . Clin. Cancer Res. 23:(8):192028
    [Crossref] [Google Scholar]
  53. 53.
    Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. 2017.. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. . Clin. Cancer Res. 23:(15):424250
    [Crossref] [Google Scholar]
  54. 54.
    Weiss GJ, Beck J, Braun DP, Bornemann-Kolatzki K, Barilla H, et al. 2017.. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy. . Clin. Cancer Res. 23:(17):507481
    [Crossref] [Google Scholar]
  55. 55.
    Li G, Choi JE, Kryczek I, Sun Y, Liao P, et al. 2023.. Intersection of immune and oncometabolic pathways drives cancer hyperprogression during immunotherapy. . Cancer Cell 41:(2):30422.e7
    [Crossref] [Google Scholar]
  56. 56.
    Dwary AD, Master S, Patel A, Cole C, Mansour R, et al. 2017.. Excellent response to chemotherapy post immunotherapy. . Oncotarget 8:(53):91795802
    [Crossref] [Google Scholar]
  57. 57.
    Hadash-Bengad R, Hajaj E, Klein S, Merims S, Frank S, et al. 2020.. Immunotherapy potentiates the effect of chemotherapy in metastatic melanoma—a retrospective study. . Front. Oncol. 10::70
    [Crossref] [Google Scholar]
  58. 58.
    Goldinger SM, Buder-Bakhaya K, Lo SN, Forschner A, McKean M, et al. 2022.. Chemotherapy after immune checkpoint inhibitor failure in metastatic melanoma: a retrospective multicentre analysis. . Eur. J. Cancer 162::2233
    [Crossref] [Google Scholar]
  59. 59.
    Warner AB, Palmer JS, Shoushtari AN, Goldman DA, Panageas KS, et al. 2020.. Long-term outcomes and responses to retreatment in patients with melanoma treated with PD-1 blockade. . J. Clin. Oncol. 38:(15):165563
    [Crossref] [Google Scholar]
  60. 60.
    Allen EMV, Miao D, Schilling B, Shukla SA, Blank C, et al. 2015.. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. . Science 350:(6257):20711
    [Crossref] [Google Scholar]
  61. 61.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, et al. 2015.. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. . Science 348:(6230):12428
    [Crossref] [Google Scholar]
  62. 62.
    O'Donnell JS, Teng MWL, Smyth MJ. 2019.. Cancer immunoediting and resistance to T cell-based immunotherapy. . Nat. Rev. Clin. Oncol. 16:(3):15167
    [Crossref] [Google Scholar]
  63. 63.
    McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, et al. 2016.. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. . Science 351:(6280):146369
    [Crossref] [Google Scholar]
  64. 64.
    Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, et al. 2017.. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. . Cancer Discov. 7:(3):26476
    [Crossref] [Google Scholar]
  65. 65.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, et al. 2016.. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. . Cell 165:(1):3544
    [Crossref] [Google Scholar]
  66. 66.
    Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, et al. 2016.. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. . Oncotarget 7:(12):1358798
    [Crossref] [Google Scholar]
  67. 67.
    Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, et al. 2022.. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. . N. Engl. J. Med. 386:(25):236376
    [Crossref] [Google Scholar]
  68. 68.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, et al. 2015.. PD-1 blockade in tumors with mismatch-repair deficiency. . N. Engl. J. Med. 372:(26):250920
    [Crossref] [Google Scholar]
  69. 69.
    Taube JM, Anders RA, Young GD, Xu H, Sharma R, et al. 2012.. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. . Sci. Transl. Med. 4:(127):127ra37
    [Crossref] [Google Scholar]
  70. 70.
    Campbell KM, Amouzgar M, Pfeiffer SM, Howes TR, Medina E, et al. 2023.. Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma. . Cancer Cell 41:(4):791806.e4
    [Crossref] [Google Scholar]
  71. 71.
    Zeng Q, Saghafinia S, Chryplewicz A, Fournier N, Christe L, et al. 2022.. Aberrant hyperexpression of the RNA binding protein FMRP in tumors mediates immune evasion. . Science 378:(6621):eabl7207
    [Crossref] [Google Scholar]
  72. 72.
    George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, et al. 2017.. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. . Immunity 46:(2):197204
    [Crossref] [Google Scholar]
  73. 73.
    Spranger S, Bao R, Gajewski TF. 2015.. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. . Nature 523:(7559):23135
    [Crossref] [Google Scholar]
  74. 74.
    Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, et al. 2013.. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. . Clin. Cancer Res. 19:(5):122531
    [Crossref] [Google Scholar]
  75. 75.
    Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ, et al. 2018.. Genetic mechanisms of immune evasion in colorectal cancer. . Cancer Discov. 8:(6):73049
    [Crossref] [Google Scholar]
  76. 76.
    Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, et al. 2017.. CDK4/6 inhibition triggers anti-tumour immunity. . Nature 548:(7668):47175
    [Crossref] [Google Scholar]
  77. 77.
    Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, et al. 2018.. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. . Cancer Discov. 8:(7):82235
    [Crossref] [Google Scholar]
  78. 78.
    Wang W, Green M, Choi JE, Gijón M, Kennedy PD, et al. 2019.. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. . Nature 569:(7755):27074
    [Crossref] [Google Scholar]
  79. 79.
    Liao P, Wang W, Wang W, Kryczek I, Li X, et al. 2022.. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. . Cancer Cell 40:(4):36578.e6
    [Crossref] [Google Scholar]
  80. 80.
    Du W, Frankel TL, Green M, Zou W. 2022.. IFNγ signaling integrity in colorectal cancer immunity and immunotherapy. . Cell. Mol. Immunol. 19:(1):2332
    [Crossref] [Google Scholar]
  81. 81.
    Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, et al. 2016.. Mutations associated with acquired resistance to PD-1 blockade in melanoma. . N. Engl. J. Med. 375:(9):81929
    [Crossref] [Google Scholar]
  82. 82.
    Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, et al. 2017.. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. . Nature 547:(7664):41318
    [Crossref] [Google Scholar]
  83. 83.
    Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, et al. 2018.. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. . Science 359:(6377):77075
    [Crossref] [Google Scholar]
  84. 84.
    Tsai C-H, Chuang Y-M, Li X, Yu Y-R, Tzeng S-F, et al. 2023.. Immunoediting instructs tumor metabolic reprogramming to support immune evasion. . Cell Metab. 35:(1):11833.e7
    [Crossref] [Google Scholar]
  85. 85.
    Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, et al. 2017.. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. . Nat. Commun. 8:(1):1136
    [Crossref] [Google Scholar]
  86. 86.
    Du W, Hua F, Li X, Zhang J, Li S, et al. 2021.. Loss of optineurin drives cancer immune evasion via palmitoylation-dependent IFNGR1 lysosomal sorting and degradation. . Cancer Discov. 11:(7):182643
    [Crossref] [Google Scholar]
  87. 87.
    Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, et al. 2020.. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. . Nature 581:(7806):1005
    [Crossref] [Google Scholar]
  88. 88.
    Andrews LP, Cillo AR, Karapetyan L, Kirkwood JM, Workman CJ, Vignali DAA. 2022.. Molecular pathways and mechanisms of LAG3 in cancer therapy. . Clin. Cancer Res. 28:(23):503039
    [Crossref] [Google Scholar]
  89. 89.
    Schöffski P, Tan DSW, Martín M, Ochoa-de-Olza M, Sarantopoulos J, et al. 2022.. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. . J. Immunother. Cancer 10:(2):e003776
    [Crossref] [Google Scholar]
  90. 90.
    Wang J, Sun J, Liu LN, Flies DB, Nie X, et al. 2019.. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. . Nat. Med. 25:(4):65666
    [Crossref] [Google Scholar]
  91. 91.
    Lin H, Kryczek I, Li S, Green MD, Ali A, et al. 2021.. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. . Cancer Cell 39:(4):48093.e6
    [Crossref] [Google Scholar]
  92. 92.
    Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, et al. 2015.. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. . Nature 527:(7577):24953
    [Crossref] [Google Scholar]
  93. 93.
    Nagarsheth N, Peng D, Kryczek I, Wu K, Li W, et al. 2016.. PRC2 epigenetically silences Th1-Type chemokines to suppress effector T-cell trafficking in colon cancer. . Cancer Res. 76:(2):27582
    [Crossref] [Google Scholar]
  94. 94.
    Li J, Wang W, Zhang Y, Cieślik M, Guo J, et al. 2020.. Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy. . J. Clin. Investig. 130:(5):271226
    [Crossref] [Google Scholar]
  95. 95.
    Shen J, Ju Z, Zhao W, Wang L, Peng Y, et al. 2018.. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. . Nat. Med. 24:(5):55662
    [Crossref] [Google Scholar]
  96. 96.
    Zhu Y, Zhao Y, Wen J, Liu S, Huang T, et al. 2023.. Targeting the chromatin effector Pygo2 promotes cytotoxic T cell responses and overcomes immunotherapy resistance in prostate cancer. . Sci. Immunol. 8:(81):eade4656
    [Crossref] [Google Scholar]
  97. 97.
    Ginter T, Bier C, Knauer SK, Sughra K, Hildebrand D, et al. 2012.. Histone deacetylase inhibitors block IFNγ-induced STAT1 phosphorylation. . Cell Signal. 24:(7):145360
    [Crossref] [Google Scholar]
  98. 98.
    Xu Y, Lv L, Liu Y, Smith MD, Li W-C, et al. 2019.. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. . J. Clin. Investig. 129:(10):431631
    [Crossref] [Google Scholar]
  99. 99.
    Koh J, Hur JY, Lee KY, Kim MS, Heo JY, et al. 2020.. Regulatory (FoxP3+) T cells and TGF-β predict the response to anti-PD-1 immunotherapy in patients with non-small cell lung cancer. . Sci. Rep. 10:(1):18994
    [Crossref] [Google Scholar]
  100. 100.
    Chen P-L, Roh W, Reuben A, Cooper ZA, Spencer CN, et al. 2016.. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. . Cancer Discov. 6:(8):82737
    [Crossref] [Google Scholar]
  101. 101.
    Weide B, Martens A, Zelba H, Stutz C, Derhovanessian E, et al. 2014.. Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. . Clin. Cancer Res. 20:(6):16019
    [Crossref] [Google Scholar]
  102. 102.
    Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, et al. 2014.. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. . Cancer Immunol. Immunother. 63:(3):24757
    [Crossref] [Google Scholar]
  103. 103.
    Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, et al. 2014.. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. . Sci. Transl. Med. 6:(237):237ra67
    [Crossref] [Google Scholar]
  104. 104.
    Henau OD, Rausch M, Winkler D, Campesato LF, Liu C, et al. 2016.. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. . Nature 539:(7629):44347
    [Crossref] [Google Scholar]
  105. 105.
    Li W, Tanikawa T, Kryczek I, Xia H, Li G, et al. 2018.. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. . Cell Metab. 28:(1):87103.e6
    [Crossref] [Google Scholar]
  106. 106.
    Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, et al. 2016.. PI3Kγ is a molecular switch that controls immune suppression. . Nature 539:(7629):43742
    [Crossref] [Google Scholar]
  107. 107.
    Hong DS, Postow M, Chmielowski B, Sullivan R, Patnaik A, et al. 2023.. Eganelisib, a first-in-class PI3Kγ inhibitor, in patients with advanced solid tumors: results of the phase 1/1b MARIO-1 trial. . Clin. Cancer Res. 29:(12):221019
    [Crossref] [Google Scholar]
  108. 108.
    Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, et al. 2013.. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. . PNAS 110:(44):1794550
    [Crossref] [Google Scholar]
  109. 109.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, et al. 2004.. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. . Nat. Med. 10:(9):94249
    [Crossref] [Google Scholar]
  110. 110.
    Zou W. 2006.. Regulatory T cells, tumour immunity and immunotherapy. . Nat. Rev. Immunol. 6:(4):295307
    [Crossref] [Google Scholar]
  111. 111.
    Liu P-S, Chen Y-T, Li X, Hsueh P-C, Tzeng S-F, et al. 2023.. CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. . Nat. Immunol. 24:(3):45262
    [Crossref] [Google Scholar]
  112. 112.
    Mantovani A, Allavena P, Marchesi F, Garlanda C. 2022.. Macrophages as tools and targets in cancer therapy. . Nat. Rev. Drug Discov. 21:(11):799820
    [Crossref] [Google Scholar]
  113. 113.
    Ruffell B, Coussens LM. 2015.. Macrophages and therapeutic resistance in cancer. . Cancer Cell 27:(4):46272
    [Crossref] [Google Scholar]
  114. 114.
    Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, et al. 2011.. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. . J. Transl. Med. 9:(1):204
    [Crossref] [Google Scholar]
  115. 115.
    Nambiar DK, Aguilera T, Cao H, Kwok S, Kong C, et al. 2019.. Galectin-1-driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance. . J. Clin. Investig. 129:(12):555367
    [Crossref] [Google Scholar]
  116. 116.
    Chen G, Huang AC, Zhang W, Zhang G, Wu M, et al. 2018.. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. . Nature 560:(7718):38286
    [Crossref] [Google Scholar]
  117. 117.
    Ning Y, Shen K, Wu Q, Sun X, Bai Y, et al. 2018.. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. . Immunol. Lett. 199::3643
    [Crossref] [Google Scholar]
  118. 118.
    Guan X, Hasan MN, Begum G, Kohanbash G, Carney KE, et al. 2018.. Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. . Cell Death Dis. 9:(10):1010
    [Crossref] [Google Scholar]
  119. 119.
    Xia H, Wang W, Crespo J, Kryczek I, Li W, et al. 2017.. Suppression of FIP200 and autophagy by tumor-derived lactate promotes naïve T cell apoptosis and affects tumor immunity. . Sci. Immunol. 2:(17):eaan4631
    [Crossref] [Google Scholar]
  120. 120.
    Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, et al. 2019.. Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. . Oncogene 38:(19):368195
    [Crossref] [Google Scholar]
  121. 121.
    Gudgeon N, Munford H, Bishop EL, Hill J, Fulton-Ward T, et al. 2022.. Succinate uptake by T cells suppresses their effector function via inhibition of mitochondrial glucose oxidation. . Cell Rep. 40:(7):111193
    [Crossref] [Google Scholar]
  122. 122.
    Bell HN, Huber AK, Singhal R, Korimerla N, Rebernick RJ, et al. 2023.. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. . Cell Metab. 35:(1):13449.e6
    [Crossref] [Google Scholar]
  123. 123.
    Ma S, Zhao Y, Lee WC, Ong L-T, Lee PL, et al. 2022.. Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy. . Nat. Commun. 13:(1):4118
    [Crossref] [Google Scholar]
  124. 124.
    Ai M, Budhani P, Sheng J, Balasubramanyam S, Bartkowiak T, et al. 2015.. Tumor hypoxia drives immune suppression and immunotherapy resistance. . J. Immunother. Cancer 3:(Suppl. 2):P392
    [Crossref] [Google Scholar]
  125. 125.
    Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, et al. 2018.. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. . J. Clin. Investig. 128:(11):513749
    [Crossref] [Google Scholar]
  126. 126.
    Bian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, et al. 2020.. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. . Nature 585:(7824):27782
    [Crossref] [Google Scholar]
  127. 127.
    Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, et al. 2016.. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. . Cell 167:(3):82942.e13
    [Crossref] [Google Scholar]
  128. 128.
    Leone RD, Zhao L, Englert JM, Sun I-M, Oh M-H, et al. 2019.. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. . Science 366:(6468):101321
    [Crossref] [Google Scholar]
  129. 129.
    Ma X, Xiao L, Liu L, Ye L, Su P, et al. 2021.. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. . Cell Metab. 33:(5):100112.e5
    [Crossref] [Google Scholar]
  130. 130.
    Ma X, Bi E, Lu Y, Su P, Huang C, et al. 2019.. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. . Cell Metab. 30:(1):14356.e5
    [Crossref] [Google Scholar]
  131. 131.
    Yang W, Bai Y, Xiong Y, Zhang J, Chen S, et al. 2016.. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. . Nature 531:(7596):65155
    [Crossref] [Google Scholar]
  132. 132.
    Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, et al. 2021.. Cell-programmed nutrient partitioning in the tumour microenvironment. . Nature 593:(7858):28288
    [Crossref] [Google Scholar]
  133. 133.
    Chang C-H, Qiu J, O'Sullivan D, Buck MD, Noguchi T, et al. 2015.. Metabolic competition in the tumor microenvironment is a driver of cancer progression. . Cell 162:(6):122941
    [Crossref] [Google Scholar]
  134. 134.
    Maj T, Wang W, Crespo J, Zhang H, Wang W, et al. 2017.. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. . Nat. Immunol. 18:(12):133241
    [Crossref] [Google Scholar]
  135. 135.
    Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, et al. 2015.. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. . Cell 162:(6):121728
    [Crossref] [Google Scholar]
  136. 136.
    Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, et al. 2018.. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. . Nature 554:(7693):54448
    [Crossref] [Google Scholar]
  137. 137.
    Martin CJ, Datta A, Littlefield C, Kalra A, Chapron C, et al. 2020.. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. . Sci. Transl. Med. 12:(536):eaay8456
    [Crossref] [Google Scholar]
  138. 138.
    Metropulos AE, Munshi HG, Principe DR. 2022.. The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial. . eBioMedicine 86::104380
    [Crossref] [Google Scholar]
  139. 139.
    Schalper KA, Carleton M, Zhou M, Chen T, Feng Y, et al. 2020.. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. . Nat. Med. 26:(5):68892
    [Crossref] [Google Scholar]
  140. 140.
    Neubert NJ, Schmittnaegel M, Bordry N, Nassiri S, Wald N, et al. 2018.. T cell–induced CSF1 promotes melanoma resistance to PD1 blockade. . Sci. Transl. Med. 10:(436):eaan3311
    [Crossref] [Google Scholar]
  141. 141.
    Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, et al. 2014.. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. . Cancer Res. 74:(18):505769
    [Crossref] [Google Scholar]
  142. 142.
    Patnaik A, Eisenberg PD, Sachdev JC, Weise AM, Tse AN, et al. 2016.. Phase 1/2a study of double immune suppression blockade by combining a CSF1R inhibitor (pexidartinib/PLX3397) with an anti PD-1 antibody (pembrolizumab) to treat advanced, solid tumors. . J. Clin. Oncol. 34:(15_suppl):TPS11618
    [Crossref] [Google Scholar]
  143. 143.
    Tanikawa T, Wilke CM, Kryczek I, Chen GY, Kao J, et al. 2012.. Interleukin-10 ablation promotes tumor development, growth, and metastasis. . Cancer Res. 72:(2):42029
    [Crossref] [Google Scholar]
  144. 144.
    Oft M. 2014.. IL-10: master switch from tumor-promoting inflammation to antitumor immunity. . Cancer Immunol. Res. 2:(3):19499
    [Crossref] [Google Scholar]
  145. 145.
    Oft M. 2019.. Immune regulation and cytotoxic T cell activation of IL-10 agonists – preclinical and clinical experience. . Semin. Immunol. 44::101325
    [Crossref] [Google Scholar]
  146. 146.
    Guo Y, Xie Y-Q, Gao M, Zhao Y, Franco F, et al. 2021.. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. . Nat. Immunol. 22:(6):74656
    [Crossref] [Google Scholar]
  147. 147.
    Spigel D, Jotte R, Nemunaitis J, Shum M, Schneider J, et al. 2021.. Randomized phase 2 studies of checkpoint inhibitors alone or in combination with pegilodecakin in patients with metastatic NSCLC (CYPRESS 1 and CYPRESS 2). . J. Thorac. Oncol. 16:(2):32733
    [Crossref] [Google Scholar]
  148. 148.
    Jain V, Hwang W, Venigalla S, Nead KT, Lukens JN, et al. 2020.. Association of age with efficacy of immunotherapy in metastatic melanoma. . Oncology 25:(2):e38185
    [Google Scholar]
  149. 149.
    Kugel CH, Douglass SM, Webster MR, Kaur A, Liu Q, et al. 2018.. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. . Clin. Cancer Res. 24:(21):534756
    [Crossref] [Google Scholar]
  150. 150.
    Conforti F, Pala L, Bagnardi V, Pas TD, Martinetti M, et al. 2018.. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. . Lancet Oncol. 19:(6):73746
    [Crossref] [Google Scholar]
  151. 151.
    Ye Y, Jing Y, Li L, Mills GB, Diao L, et al. 2020.. Sex-associated molecular differences for cancer immunotherapy. . Nat. Commun. 11:(1):1779
    [Crossref] [Google Scholar]
  152. 152.
    Wells L, Cerniglia M, Hall S, Jost AC, Britt G. 2022.. Treatment of metastatic disease with immune checkpoint inhibitors nivolumab and pembrolizumab: effect of performance status on clinical outcomes. . J. Immunother. Precis. Oncol. 5:(2):3742
    [Crossref] [Google Scholar]
  153. 153.
    Sehgal K, Gill RR, Widick P, Bindal P, McDonald DC, et al. 2021.. Association of performance status with survival in patients with advanced non-small cell lung cancer treated with pembrolizumab monotherapy. . JAMA Netw. Open 4:(2):e2037120
    [Crossref] [Google Scholar]
  154. 154.
    Mojsak D, Kuklińska B, Dębczyński M, Mróz RM. 2021.. Immunotherapy in patients with non-small cell lung cancer with ECOG PS 2. . Contemp. Oncol. 25:(1):5356
    [Google Scholar]
  155. 155.
    Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, et al. 2017.. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. . Nature 545:(7652):6065
    [Crossref] [Google Scholar]
  156. 156.
    Weide B, Martens A, Hassel JC, Berking C, Postow MA, et al. 2016.. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. . Clin. Cancer Res. 22:(22):548796
    [Crossref] [Google Scholar]
  157. 157.
    Heppt MV, Heinzerling L, Kähler KC, Forschner A, Kirchberger MC, et al. 2017.. Prognostic factors and outcomes in metastatic uveal melanoma treated with programmed cell death-1 or combined PD-1/cytotoxic T-lymphocyte antigen-4 inhibition. . Eur. J. Cancer 82::5665
    [Crossref] [Google Scholar]
  158. 158.
    Spencer CN, McQuade JL, Gopalakrishnan V, McCulloch JA, Vetizou M, et al. 2021.. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. . Science 374:(6575):163240
    [Crossref] [Google Scholar]
  159. 159.
    Yoo S-K, Chowell D, Valero C, Morris LGT, Chan TA. 2022.. Outcomes among patients with or without obesity and with cancer following treatment with immune checkpoint blockade. . JAMA Netw. Open 5:(2):e220448
    [Crossref] [Google Scholar]
  160. 160.
    Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, et al. 2019.. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. . Nat. Med. 25:(1):14151
    [Crossref] [Google Scholar]
  161. 161.
    Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, et al. 2020.. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. . Cell 183:(7):184866.e26
    [Crossref] [Google Scholar]
  162. 162.
    Boi SK, Orlandella RM, Gibson JT, Turbitt WJ, Wald G, et al. 2020.. Obesity diminishes response to PD-1-based immunotherapies in renal cancer. . J. Immunother. Cancer 8:(2):e000725
    [Crossref] [Google Scholar]
  163. 163.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, et al. 2015.. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. . Science 350:(6264):108489
    [Crossref] [Google Scholar]
  164. 164.
    Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, et al. 2015.. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. . Science 350:(6264):107984
    [Crossref] [Google Scholar]
  165. 165.
    Routy B, Chatelier EL, Derosa L, Duong CPM, Alou MT, et al. 2018.. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. . Science 359:(6371):9197
    [Crossref] [Google Scholar]
  166. 166.
    Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, et al. 2018.. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. . Science 359:(6371):1048
    [Crossref] [Google Scholar]
  167. 167.
    Wang Y, Wiesnoski DH, Helmink BA, Gopalakrishnan V, Choi K, et al. 2018.. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. . Nat. Med. 24:(12):18048
    [Crossref] [Google Scholar]
  168. 168.
    Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin J-M, et al. 2021.. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. . Science 371:(6529):595602
    [Crossref] [Google Scholar]
  169. 169.
    Khan MAW, Ologun G, Arora R, McQuade JL, Wargo JA. 2020.. Gut microbiome modulates response to cancer immunotherapy. . Digest Dis. Sci. 65:(3):88596
    [Crossref] [Google Scholar]
  170. 170.
    Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. 2018.. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. . Science 359:(6382):136670
    [Crossref] [Google Scholar]
  171. 171.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, et al. 2015.. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. . N. Engl. J. Med. 373:(1):2334
    [Crossref] [Google Scholar]
  172. 172.
    Villemin C, Six A, Neville BA, Lawley TD, Robinson MJ, Bakdash G. 2023.. The heightened importance of the microbiome in cancer immunotherapy. . Trends Immunol. 44:(1):4459
    [Crossref] [Google Scholar]
  173. 173.
    Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, et al. 2021.. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. . Science 371:(6529):6029
    [Crossref] [Google Scholar]
  174. 174.
    Li X, Su X, Liu R, Pan Y, Fang J, et al. 2021.. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. . Oncogene 40:(10):183650
    [Crossref] [Google Scholar]
  175. 175.
    Nie J, Wang C, Liu Y, Yang Q, Mei Q, et al. 2019.. Addition of low-dose decitabine to anti-PD-1 antibody camrelizumab in relapsed/refractory classical Hodgkin lymphoma. . J. Clin. Oncol. 37:(17):147989
    [Crossref] [Google Scholar]
  176. 176.
    Grosser R, Cherkassky L, Chintala N, Adusumilli PS. 2019.. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. . Cancer Cell 36:(5):47182
    [Crossref] [Google Scholar]
  177. 177.
    June CH, Sadelain M. 2018.. Chimeric antigen receptor therapy. . N. Engl. J. Med. 379:(1):6473
    [Crossref] [Google Scholar]
  178. 178.
    Al-Haideri M, Tondok SB, Safa SH, Maleki AH, Rostami S, et al. 2022.. CAR-T cell combination therapy: the next revolution in cancer treatment. . Cancer Cell Int. 22:(1):365
    [Crossref] [Google Scholar]
  179. 179.
    Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, et al. 2016.. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. . J. Clin. Investig. 126:(8):313044
    [Crossref] [Google Scholar]
  180. 180.
    Strome SE, Dong H, Tamura H, Voss SG, Flies DB, et al. 2003.. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. . Cancer Res. 63:(19):65015
    [Google Scholar]
  181. 181.
    Grenier JM, Yeung ST, Khanna KM. 2018.. Combination immunotherapy: taking cancer vaccines to the next level. . Front. Immunol. 9::610
    [Crossref] [Google Scholar]
  182. 182.
    Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, et al. 2015.. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T cell infiltration into pancreatic tumors. . J. Immunother. 38:(1):111
    [Crossref] [Google Scholar]
  183. 183.
    Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. 2015.. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 epitope-modified DNA vaccine immunization. . Cancer Immunol. Res. 3:(8):94655
    [Crossref] [Google Scholar]
  184. 184.
    Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, et al. 2017.. An immunogenic personal neoantigen vaccine for patients with melanoma. . Nature 547:(7662):21721
    [Crossref] [Google Scholar]
  185. 185.
    Hu Z, Leet DE, Allesøe RL, Oliveira G, Li S, et al. 2021.. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. . Nat. Med. 27:(3):51525
    [Crossref] [Google Scholar]
  186. 186.
    Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, et al. 2019.. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. . Nature 565:(7738):23439
    [Crossref] [Google Scholar]
  187. 187.
    Platten M, Bunse L, Wick A, Bunse T, Cornet LL, et al. 2021.. A vaccine targeting mutant IDH1 in newly diagnosed glioma. . Nature 592:(7854):46368
    [Crossref] [Google Scholar]
  188. 188.
    Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, et al. 2018.. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. . N. Engl. J. Med. 378:(22):207892
    [Crossref] [Google Scholar]
  189. 189.
    West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, et al. 2019.. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. . Lancet Oncol. 20:(7):92437
    [Crossref] [Google Scholar]
  190. 190.
    Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, et al. 2018.. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. . N. Engl. J. Med. 379:(23):222029
    [Crossref] [Google Scholar]
  191. 191.
    Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im S-A, et al. 2020.. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. . Lancet 396:(10265):181728
    [Crossref] [Google Scholar]
  192. 192.
    Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, et al. 2018.. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. . N. Engl. J. Med. 379:(22):210821
    [Crossref] [Google Scholar]
  193. 193.
    Park SE, Lee SH, Ahn JS, Ahn M-J, Park K, Sun J-M. 2018.. Increased response rates to salvage chemotherapy administered after PD-1/PD-L1 inhibitors in patients with non-small cell lung cancer. . J. Thorac. Oncol. 13:(1):10611
    [Crossref] [Google Scholar]
  194. 194.
    Rossi C, Gilhodes J, Maerevoet M, Herbaux C, Morschhauser F, et al. 2018.. Efficacy of chemotherapy or chemo-anti-PD-1 combination after failed anti-PD-1 therapy for relapsed and refractory Hodgkin lymphoma: a series from LYSA centers. . Am. J. Hematol. 93:(8):104249
    [Crossref] [Google Scholar]
  195. 195.
    Ribas A, Algazi A, Ascierto PA, Butler MO, Chandra S, et al. 2020.. PD-L1 blockade in combination with inhibition of MAPK oncogenic signaling in patients with advanced melanoma. . Nat. Commun. 11:(1):6262
    [Crossref] [Google Scholar]
  196. 196.
    Gutzmer R, Stroyakovskiy D, Gogas H, Robert C, Lewis K, et al. 2020.. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF V600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. . Lancet 395:(10240):183544
    [Crossref] [Google Scholar]
  197. 197.
    Isoyama S, Mori S, Sugiyama D, Kojima Y, Tada Y, et al. 2021.. Cancer immunotherapy with PI3K and PD-1 dual-blockade via optimal modulation of T cell activation signal. . J. Immunother. Cancer 9:(8):e002279
    [Crossref] [Google Scholar]
  198. 198.
    Daud A, Saleh MN, Hu J, Bleeker JS, Riese MJ, et al. 2018.. Epacadostat plus nivolumab for advanced melanoma: updated phase 2 results of the ECHO-204 study. . J. Clin. Oncol. 36:(15_suppl):9511
    [Crossref] [Google Scholar]
  199. 199.
    Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, et al. 2019.. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. . Lancet Oncol. 20:(8):108397
    [Crossref] [Google Scholar]
  200. 200.
    Tu E, McGlinchey K, Wang J, Martin P, Ching SLK, et al. 2022.. Anti-PD-L1 and anti-CD73 combination therapy promotes T cell response to EGFR-mutated NSCLC. . JCI Insight 7:(3):e142843
    [Crossref] [Google Scholar]
  201. 201.
    Lang X, Green MD, Wang W, Yu J, Choi JE, et al. 2019.. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. . Cancer Discov. 9:(12):167385
    [Crossref] [Google Scholar]
  202. 202.
    Ahmed KA, Stallworth DG, Kim Y, Johnstone PAS, Harrison LB, et al. 2016.. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. . Ann. Oncol. 27:(3):43441
    [Crossref] [Google Scholar]
  203. 203.
    Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, et al. 2017.. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. . Lancet Oncol. 18:(7):895903
    [Crossref] [Google Scholar]
  204. 204.
    Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, et al. 2014.. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184–043): a multicentre, randomised, double-blind, phase 3 trial. . Lancet Oncol. 15:(7):70012
    [Crossref] [Google Scholar]
  205. 205.
    Formenti SC, Rudqvist N-P, Golden E, Cooper B, Wennerberg E, et al. 2018.. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. . Nat. Med. 24:(12):184551
    [Crossref] [Google Scholar]
  206. 206.
    Jagodinsky JC, Harari PM, Morris ZS. 2020.. The promise of combining radiation therapy with immunotherapy. . Int. J. Radiat. Oncol. Biol. Phys. 108:(1):616
    [Crossref] [Google Scholar]
  207. 207.
    Zou W, Green DR. 2023.. Beggar's banquet: metabolism in the tumor immune microenvironment and cancer therapy. . Cell Metab. 35:(7):110113
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-101819-024752
Loading
/content/journals/10.1146/annurev-immunol-101819-024752
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error