1932

Abstract

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101921-042929
2024-06-28
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-101921-042929.html?itemId=/content/journals/10.1146/annurev-immunol-101921-042929&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Veiga-Fernandes H, Mucida D. 2016.. Neuro-immune interactions at barrier surfaces. . Cell 165::80111
    [Crossref] [Google Scholar]
  2. 2.
    Godinho-Silva C, Cardoso F, Veiga-Fernandes H. 2019.. Neuro-immune cell units: a new paradigm in physiology. . Annu. Rev. Immunol. 37::1946
    [Crossref] [Google Scholar]
  3. 3.
    McMahon SB, La Russa F, Bennett DL. 2015.. Crosstalk between the nociceptive and immune systems in host defence and disease. . Nat. Rev. Neurosci. 16::389402
    [Crossref] [Google Scholar]
  4. 4.
    Foster SL, Seehus CR, Woolf CJ, Talbot S. 2017.. Sense and immunity: context-dependent neuro-immune interplay. . Front. Immunol. 8::1463
    [Crossref] [Google Scholar]
  5. 5.
    Medzhitov R. 2010.. Inflammation 2010: new adventures of an old flame. . Cell 140::77176
    [Crossref] [Google Scholar]
  6. 6.
    Sousa-Valente J, Brain SD. 2018.. A historical perspective on the role of sensory nerves in neurogenic inflammation. . Semin. Immunopathol. 40::22936
    [Crossref] [Google Scholar]
  7. 7.
    Dubin AE, Patapoutian A. 2010.. Nociceptors: the sensors of the pain pathway. . J. Clin. Investig. 120::376072
    [Crossref] [Google Scholar]
  8. 8.
    Pavlov VA, Tracey KJ. 2017.. Neural regulation of immunity: molecular mechanisms and clinical translation. . Nat. Neurosci. 20::15666
    [Crossref] [Google Scholar]
  9. 9.
    Ludwig M, Leng G. 2006.. Dendritic peptide release and peptide-dependent behaviours. . Nat. Rev. Neurosci. 7::12636
    [Crossref] [Google Scholar]
  10. 10.
    Basbaum AI, Bautista DM, Scherrer G, Julius D. 2009.. Cellular and molecular mechanisms of pain. . Cell 139::26784
    [Crossref] [Google Scholar]
  11. 11.
    Chavan SS, Pavlov VA, Tracey KJ. 2017.. Mechanisms and therapeutic relevance of neuro-immune communication. . Immunity 46::92742
    [Crossref] [Google Scholar]
  12. 12.
    Latremoliere A, Woolf CJ. 2009.. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. . J. Pain 10::895926
    [Crossref] [Google Scholar]
  13. 13.
    Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, et al. 2018.. Molecular architecture of the mouse nervous system. . Cell 174::9991014.e22
    [Crossref] [Google Scholar]
  14. 14.
    Margolis KG, Gershon MD. 2016.. Enteric neuronal regulation of intestinal inflammation. . Trends Neurosci. 39::61424
    [Crossref] [Google Scholar]
  15. 15.
    Furness JB. 2012.. The enteric nervous system and neurogastroenterology. . Nat. Rev. Gastroenterol. Hepatol. 9::28694
    [Crossref] [Google Scholar]
  16. 16.
    Mowat AM, Agace WW. 2014.. Regional specialization within the intestinal immune system. . Nat. Rev. Immunol. 14::66785
    [Crossref] [Google Scholar]
  17. 17.
    Huh JR, Veiga-Fernandes H. 2020.. Neuroimmune circuits in inter-organ communication. . Nat. Rev. Immunol. 20::21728
    [Crossref] [Google Scholar]
  18. 18.
    Brierley SM, Linden DR. 2014.. Neuroplasticity and dysfunction after gastrointestinal inflammation. . Nat. Rev. Gastroenterol. Hepatol. 11::61127
    [Crossref] [Google Scholar]
  19. 19.
    Sang Q, Young HM. 1996.. Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse. . Cell Tissue Res. 284::3953
    [Crossref] [Google Scholar]
  20. 20.
    Sang Q, Williamson S, Young HM. 1997.. Projections of chemically identified myenteric neurons of the small and large intestine of the mouse. . J. Anat. 190:(Part 2):20922
    [Crossref] [Google Scholar]
  21. 21.
    Sang Q, Young HM. 1998.. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. . Anat. Rec. 251::18599
    [Crossref] [Google Scholar]
  22. 22.
    De Jonge F, Van Nassauw L, Adriaensen D, Van Meir F, Miller HR, et al. 2003.. Effect of intestinal inflammation on capsaicin-sensitive afferents in the ileum of Schistosoma mansoni-infected mice. . Histochem. Cell Biol. 119::47784
    [Crossref] [Google Scholar]
  23. 23.
    Mao Y, Wang B, Kunze W. 2006.. Characterization of myenteric sensory neurons in the mouse small intestine. . J. Neurophysiol. 96::9981010
    [Crossref] [Google Scholar]
  24. 24.
    Qu ZD, Thacker M, Castelucci P, Bagyanszki M, Epstein ML, Furness JB. 2008.. Immunohistochemical analysis of neuron types in the mouse small intestine. . Cell Tissue Res. 334::14761
    [Crossref] [Google Scholar]
  25. 25.
    Payne SC, Furness JB, Stebbing MJ. 2019.. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. . Nat. Rev. Gastroenterol. Hepatol. 16::89105
    [Crossref] [Google Scholar]
  26. 26.
    Jänig W. 2006.. The Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  27. 27.
    Rao M, Gershon MD. 2016.. The bowel and beyond: the enteric nervous system in neurological disorders. . Nat. Rev. Gastroenterol. Hepatol. 13::51728
    [Crossref] [Google Scholar]
  28. 28.
    Spencer NJ, Hu H. 2020.. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. . Nat. Rev. Gastroenterol. Hepatol. 17::33851
    [Crossref] [Google Scholar]
  29. 29.
    Brookes SJ, Spencer NJ, Costa M, Zagorodnyuk VP. 2013.. Extrinsic primary afferent signalling in the gut. . Nat. Rev. Gastroenterol. Hepatol. 10::28696
    [Crossref] [Google Scholar]
  30. 30.
    Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK, et al. 2020.. The human and mouse enteric nervous system at single-cell resolution. . Cell 182::160622.e23
    [Crossref] [Google Scholar]
  31. 31.
    Obata Y, Castano A, Boeing S, Bon-Frauches AC, Fung C, et al. 2020.. Neuronal programming by microbiota regulates intestinal physiology. . Nature 578::28489
    [Crossref] [Google Scholar]
  32. 32.
    Morarach K, Mikhailova A, Knoflach V, Memic F, Kumar R, et al. 2021.. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. . Nat. Neurosci. 24::3446
    [Crossref] [Google Scholar]
  33. 33.
    May-Zhang AA, Tycksen E, Southard-Smith AN, Deal KK, Benthal JT, et al. 2021.. Combinatorial transcriptional profiling of mouse and human enteric neurons identifies shared and disparate subtypes in situ. . Gastroenterology 160::75570.e26
    [Crossref] [Google Scholar]
  34. 34.
    Wright CM, Schneider S, Smith-Edwards KM, Mafra F, Leembruggen AJL, et al. 2021.. scRNA-Seq reveals new enteric nervous system roles for GDNF, NRTN, and TBX3. . Cell. Mol. Gastroenterol. Hepatol. 11::154892.e1
    [Crossref] [Google Scholar]
  35. 35.
    Muller PA, Matheis F, Schneeberger M, Kerner Z, Jove V, Mucida D. 2020.. Microbiota-modulated CART+ enteric neurons autonomously regulate blood glucose. . Science 370::31421
    [Crossref] [Google Scholar]
  36. 36.
    Gershon MD, Margolis KG. 2021.. The gut, its microbiome, and the brain: connections and communications. . J. Clin. Investig. 131::e143768
    [Crossref] [Google Scholar]
  37. 37.
    Mayer EA. 2011.. Gut feelings: the emerging biology of gut-brain communication. . Nat. Rev. Neurosci. 12::45366
    [Crossref] [Google Scholar]
  38. 38.
    Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. 2013.. The gut as a sensory organ. . Nat. Rev. Gastroenterol. Hepatol. 10::72940
    [Crossref] [Google Scholar]
  39. 39.
    Jacobson A, Yang D, Vella M, Chiu IM. 2021.. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. . Mucosal Immunol. 14::55565
    [Crossref] [Google Scholar]
  40. 40.
    Zhong F, Christianson JA, Davis BM, Bielefeldt K. 2008.. Dichotomizing axons in spinal and vagal afferents of the mouse stomach. . Dig. Dis. Sci. 53::194203
    [Crossref] [Google Scholar]
  41. 41.
    Prescott SL, Liberles SD. 2022.. Internal senses of the vagus nerve. . Neuron 110::57999
    [Crossref] [Google Scholar]
  42. 42.
    Kyloh M, Nicholas S, Zagorodnyuk VP, Brookes SJ, Spencer NJ. 2011.. Identification of the visceral pain pathway activated by noxious colorectal distension in mice. . Front. Neurosci. 5::16
    [Crossref] [Google Scholar]
  43. 43.
    Grundy L, Erickson A, Brierley SM. 2019.. Visceral pain. . Annu. Rev. Physiol. 81::26184
    [Crossref] [Google Scholar]
  44. 44.
    Christianson JA, Liang R, Ustinova EE, Davis BM, Fraser MO, Pezzone MA. 2007.. Convergence of bladder and colon sensory innervation occurs at the primary afferent level. . Pain 128::23543
    [Crossref] [Google Scholar]
  45. 45.
    Thakur M, Crow M, Richards N, Davey GI, Levine E, et al. 2014.. Defining the nociceptor transcriptome. . Front. Mol. Neurosci. 7::87
    [Crossref] [Google Scholar]
  46. 46.
    Goswami SC, Mishra SK, Maric D, Kaszas K, Gonnella GL, et al. 2014.. Molecular signatures of mouse TRPV1-lineage neurons revealed by RNA-Seq transcriptome analysis. . J. Pain 15::133859
    [Crossref] [Google Scholar]
  47. 47.
    Zheng Y, Liu P, Bai L, Trimmer JS, Bean BP, Ginty DD. 2019.. Deep sequencing of somatosensory neurons reveals molecular determinants of intrinsic physiological properties. . Neuron 103::598616.e7
    [Crossref] [Google Scholar]
  48. 48.
    Chiu IM, Barrett LB, Williams EK, Strochlic DE, Lee S, et al. 2014.. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. . eLife 3::e04660
    [Crossref] [Google Scholar]
  49. 49.
    Kupari J, Haring M, Agirre E, Castelo-Branco G, Ernfors P. 2019.. An atlas of vagal sensory neurons and their molecular specialization. . Cell Rep. 27::250823.e4
    [Crossref] [Google Scholar]
  50. 50.
    Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, et al. 2015.. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. . Nat. Neurosci. 18::14553
    [Crossref] [Google Scholar]
  51. 51.
    Li CL, Li KC, Wu D, Chen Y, Luo H, et al. 2016.. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. . Cell Res. 26::83102
    [Crossref] [Google Scholar]
  52. 52.
    Sharma N, Flaherty K, Lezgiyeva K, Wagner DE, Klein AM, Ginty DD. 2020.. The emergence of transcriptional identity in somatosensory neurons. . Nature 577::39298
    [Crossref] [Google Scholar]
  53. 53.
    Kupari J, Usoskin D, Parisien M, Lou D, Hu Y, et al. 2021.. Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain. . Nat. Commun. 12::1510
    [Crossref] [Google Scholar]
  54. 54.
    Hockley JRF, Taylor TS, Callejo G, Wilbrey AL, Gutteridge A, et al. 2019.. Single-cell RNAseq reveals seven classes of colonic sensory neuron. . Gut 68::63344
    [Crossref] [Google Scholar]
  55. 55.
    Baral P, Udit S, Chiu IM. 2019.. Pain and immunity: implications for host defence. . Nat. Rev. Immunol. 19::43347
    [Crossref] [Google Scholar]
  56. 56.
    Julius D. 2013.. TRP channels and pain. . Annu. Rev. Cell Dev. Biol. 29::35584
    [Crossref] [Google Scholar]
  57. 57.
    Ochoa-Cortes F, Ramos-Lomas T, Miranda-Morales M, Spreadbury I, Ibeakanma C, et al. 2010.. Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. . Am. J. Physiol. Gastrointest. Liver Physiol. 299::G72332
    [Crossref] [Google Scholar]
  58. 58.
    Meseguer V, Alpizar YA, Luis E, Tajada S, Denlinger B, et al. 2014.. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. . Nat. Commun. 5::3125
    [Crossref] [Google Scholar]
  59. 59.
    Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, et al. 2009.. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. . J. Histochem. Cytochem. 57::101323
    [Crossref] [Google Scholar]
  60. 60.
    Yissachar N, Zhou Y, Ung L, Lai NY, Mohan JF, et al. 2017.. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. . Cell 168::113548.e12
    [Crossref] [Google Scholar]
  61. 61.
    Cervi AL, Lukewich MK, Lomax AE. 2014.. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system. . Auton. Neurosci. 182::8388
    [Crossref] [Google Scholar]
  62. 62.
    Costes LM, Boeckxstaens GE, de Jonge WJ, Cailotto C. 2013.. Neural networks in intestinal immunoregulation. . Organogenesis 9::21623
    [Crossref] [Google Scholar]
  63. 63.
    Lomax AE, Sharkey KA, Furness JB. 2010.. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. . Neurogastroenterol. Motil. 22::718
    [Crossref] [Google Scholar]
  64. 64.
    Smith-Edwards KM, Edwards BS, Wright CM, Schneider S, Meerschaert KA, et al. 2021.. Sympathetic input to multiple cell types in mouse and human colon produces region-specific responses. . Gastroenterology 160::120823.e4
    [Crossref] [Google Scholar]
  65. 65.
    Klose CSN, Veiga-Fernandes H. 2021.. Neuroimmune interactions in peripheral tissues. . Eur. J. Immunol. 51::160214
    [Crossref] [Google Scholar]
  66. 66.
    Neurath MF. 2014.. Cytokines in inflammatory bowel disease. . Nat. Rev. Immunol. 14::32942
    [Crossref] [Google Scholar]
  67. 67.
    Bakshi N, Hart AL, Lee MC, Williams ACC, Lackner JM, et al. 2021.. Chronic pain in patients with inflammatory bowel disease. . Pain 162::246671
    [Crossref] [Google Scholar]
  68. 68.
    Black J, Sweeney L, Yuan Y, Singh H, Norton C, Czuber-Dochan W. 2022.. Systematic review: the role of psychological stress in inflammatory bowel disease. . Aliment. Pharmacol. Ther. 56::123549
    [Crossref] [Google Scholar]
  69. 69.
    Mawdsley JE, Rampton DS. 2005.. Psychological stress in IBD: new insights into pathogenic and therapeutic implications. . Gut 54::148191
    [Crossref] [Google Scholar]
  70. 70.
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, et al. 2000.. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. . Nature 405::45862
    [Crossref] [Google Scholar]
  71. 71.
    Wang H, Yu M, Ochani M, Amella CA, Tanovic M, et al. 2003.. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. . Nature 421::38488
    [Crossref] [Google Scholar]
  72. 72.
    Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, et al. 2006.. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. . J. Exp. Med. 203::162328
    [Crossref] [Google Scholar]
  73. 73.
    Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, et al. 2008.. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. . PNAS 105::1100813
    [Crossref] [Google Scholar]
  74. 74.
    Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, et al. 2011.. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. . Science 334::98101
    [Crossref] [Google Scholar]
  75. 75.
    Meregnani J, Clarencon D, Vivier M, Peinnequin A, Mouret C, et al. 2011.. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. . Auton. Neurosci. 160::8289
    [Crossref] [Google Scholar]
  76. 76.
    Sun P, Zhou K, Wang S, Li P, Chen S, et al. 2013.. Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. . PLOS ONE 8::e69424
    [Crossref] [Google Scholar]
  77. 77.
    Meroni E, Stakenborg N, Gomez-Pinilla PJ, Stakenborg M, Aguilera-Lizarraga J, et al. 2021.. Vagus nerve stimulation promotes epithelial proliferation and controls colon monocyte infiltration during DSS-induced colitis. . Front. Med. 8::694268
    [Crossref] [Google Scholar]
  78. 78.
    Meroni E, Stakenborg N, Gomez-Pinilla PJ, De Hertogh G, Goverse G, et al. 2018.. Functional characterization of oxazolone-induced colitis and survival improvement by vagus nerve stimulation. . PLOS ONE 13::e0197487
    [Crossref] [Google Scholar]
  79. 79.
    Ji H, Rabbi MF, Labis B, Pavlov VA, Tracey KJ, Ghia JE. 2014.. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. . Mucosal Immunol. 7::33547
    [Crossref] [Google Scholar]
  80. 80.
    Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. 2006.. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. . Gastroenterology 131::112230
    [Crossref] [Google Scholar]
  81. 81.
    Di Giovangiulio M, Bosmans G, Meroni E, Stakenborg N, Florens M, et al. 2016.. Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of the α-7 nicotinic receptor. . Mol. Med. 22::46476
    [Crossref] [Google Scholar]
  82. 82.
    Schiller M, Azulay-Debby H, Boshnak N, Elyahu Y, Korin B, et al. 2021.. Optogenetic activation of local colonic sympathetic innervations attenuates colitis by limiting immune cell extravasation. . Immunity 54::102236.e8
    [Crossref] [Google Scholar]
  83. 83.
    Zádori ZS, Tóth VE, Fehér A, Al-Khrasani M, Puskár Z, et al. 2016.. Inhibition of α2A-adrenoceptors ameliorates dextran sulfate sodium-induced acute intestinal inflammation in mice. . J. Pharmacol. Exp. Ther. 358::48391
    [Crossref] [Google Scholar]
  84. 84.
    Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, et al. 2022.. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. . Cell 185::417089.e20
    [Crossref] [Google Scholar]
  85. 85.
    Yang D, Jacobson A, Meerschaert KA, Sifakis JJ, Wu M, et al. 2022.. Nociceptor neurons direct goblet cells via a CGRP-RAMP1 axis to drive mucus production and gut barrier protection. . Cell 185::4190205.e25
    [Crossref] [Google Scholar]
  86. 86.
    Engel MA, Khalil M, Siklosi N, Mueller-Tribbensee SM, Neuhuber WL, et al. 2012.. Opposite effects of substance P and calcitonin gene-related peptide in oxazolone colitis. . Dig. Liver Dis. 44::2429
    [Crossref] [Google Scholar]
  87. 87.
    Abad C, Martinez C, Juarranz MG, Arranz A, Leceta J, et al. 2003.. Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn's disease. . Gastroenterology 124::96171
    [Crossref] [Google Scholar]
  88. 88.
    Abad C, Juarranz Y, Martinez C, Arranz A, Rosignoli F, et al. 2005.. cDNA array analysis of cytokines, chemokines, and receptors involved in the development of TNBS-induced colitis: homeostatic role of VIP. . Inflamm. Bowel Dis. 11::67484
    [Crossref] [Google Scholar]
  89. 89.
    Newman R, Cuan N, Hampartzoumian T, Connor SJ, Lloyd AR, Grimm MC. 2005.. Vasoactive intestinal peptide impairs leucocyte migration but fails to modify experimental murine colitis. . Clin. Exp. Immunol. 139::41120
    [Crossref] [Google Scholar]
  90. 90.
    Abad C, Cheung-Lau G, Coute-Monvoisin AC, Waschek JA. 2015.. Vasoactive intestinal peptide-deficient mice exhibit reduced pathology in trinitrobenzene sulfonic acid-induced colitis. . Neuroimmunomodulation 22::20312
    [Crossref] [Google Scholar]
  91. 91.
    Koren T, Yifa R, Amer M, Krot M, Boshnak N, et al. 2021.. Insular cortex neurons encode and retrieve specific immune responses. . Cell 184::590215.e17
    [Crossref] [Google Scholar]
  92. 92.
    Klein Wolterink RGJ, Wu GS, Chiu IM, Veiga-Fernandes H. 2022.. Neuroimmune interactions in peripheral organs. . Annu. Rev. Neurosci. 45::33960
    [Crossref] [Google Scholar]
  93. 93.
    Yan Y, Ramanan D, Rozenberg M, McGovern K, Rastelli D, et al. 2021.. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut. . Immunity 54::499513.e5
    [Crossref] [Google Scholar]
  94. 94.
    Wallrapp A, Riesenfeld SJ, Burkett PR, Kuchroo VK. 2018.. Type 2 innate lymphoid cells in the induction and resolution of tissue inflammation. . Immunol. Rev. 286::5373
    [Crossref] [Google Scholar]
  95. 95.
    Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, et al. 2018.. Innate lymphoid cells: 10 years on. . Cell 174::105466
    [Crossref] [Google Scholar]
  96. 96.
    Klose CSN, Artis D. 2020.. Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. . Cell Res. 30::47591
    [Crossref] [Google Scholar]
  97. 97.
    Klose CSN, Mahlakõiv T, Moeller JB, Rankin LC, Flamar A-L, et al. 2017.. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. . Nature 549::28286
    [Crossref] [Google Scholar]
  98. 98.
    Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T, et al. 2017.. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. . Nature 549::27781
    [Crossref] [Google Scholar]
  99. 99.
    Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, et al. 2017.. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. . Nature 549::35156
    [Crossref] [Google Scholar]
  100. 100.
    Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR. 2020.. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. . Nature 579::57580
    [Crossref] [Google Scholar]
  101. 101.
    Seillet C, Luong K, Tellier J, Jacquelot N, Shen RD, et al. 2020.. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. . Nat. Immunol. 21::16877
    [Crossref] [Google Scholar]
  102. 102.
    Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, et al. 2013.. Type 2 innate lymphoid cells control eosinophil homeostasis. . Nature 502::24548
    [Crossref] [Google Scholar]
  103. 103.
    Pascal M, Kazakov A, Chevalier G, Dubrule L, Deyrat J, et al. 2022.. The neuropeptide VIP potentiates intestinal innate type 2 and type 3 immunity in response to feeding. . Mucosal Immunol. 15::62941
    [Crossref] [Google Scholar]
  104. 104.
    Talbot S, Abdulnour RE, Burkett PR, Lee S, Cronin SJ, et al. 2015.. Silencing nociceptor neurons reduces allergic airway inflammation. . Neuron 87::34154
    [Crossref] [Google Scholar]
  105. 105.
    Xu H, Ding J, Porter CBM, Wallrapp A, Tabaka M, et al. 2019.. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α-CGRP modulates group 2 innate lymphoid cell responses. . Immunity 51::696708.e9
    [Crossref] [Google Scholar]
  106. 106.
    Nagashima H, Mahlakõiv T, Shih HY, Davis FP, Meylan F, et al. 2019.. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. . Immunity 51::68295.e6
    [Crossref] [Google Scholar]
  107. 107.
    Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, et al. 2019.. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. . Immunity 51::70923.e6
    [Crossref] [Google Scholar]
  108. 108.
    Moriyama S, Brestoff JR, Flamar A-L, Moeller JB, Klose CSN, et al. 2018.. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. . Science 359::105661
    [Crossref] [Google Scholar]
  109. 109.
    Keir M, Yi Y, Lu T, Ghilardi N. 2020.. The role of IL-22 in intestinal health and disease. . J. Exp. Med. 217::e20192195
    [Crossref] [Google Scholar]
  110. 110.
    Harmar AJ, Marston HM, Shen S, Spratt C, West KM, et al. 2002.. The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. . Cell 109::497508
    [Crossref] [Google Scholar]
  111. 111.
    Wang Q, Robinette ML, Billon C, Collins PL, Bando JK, et al. 2019.. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. . Sci. Immunol. 4::eaay7501
    [Crossref] [Google Scholar]
  112. 112.
    Teng F, Goc J, Zhou L, Chu C, Shah MA, et al. 2019.. A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. . Sci. Immunol. 4::eaax1215
    [Crossref] [Google Scholar]
  113. 113.
    Godinho-Silva C, Domingues RG, Rendas M, Raposo B, et al. 2019.. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. . Nature 574::25458
    [Crossref] [Google Scholar]
  114. 114.
    Chu C, Parkhurst CN, Zhang W, Zhou L, Yano H, et al. 2021.. The ChAT-acetylcholine pathway promotes group 2 innate lymphoid cell responses and anti-helminth immunity. . Sci. Immunol. 6::eabe3218
    [Crossref] [Google Scholar]
  115. 115.
    Roberts LB, Schnoeller C, Berkachy R, Darby M, Pillaye J, et al. 2021.. Acetylcholine production by group 2 innate lymphoid cells promotes mucosal immunity to helminths. . Sci. Immunol. 6::eabd0359
    [Crossref] [Google Scholar]
  116. 116.
    Flamar A-L, Klose CSN, Moeller JB, Mahlakõiv T, Bessman NJ, et al. 2020.. Interleukin-33 induces the enzyme tryptophan hydroxylase 1 to promote inflammatory group 2 innate lymphoid cell-mediated immunity. . Immunity 52::60619.e6
    [Crossref] [Google Scholar]
  117. 117.
    Shimokawa C, Kanaya T, Hachisuka M, Ishiwata K, Hisaeda H, et al. 2017.. Mast cells are crucial for induction of group 2 innate lymphoid cells and clearance of helminth infections. . Immunity 46::86374.e4
    [Crossref] [Google Scholar]
  118. 118.
    Galli SJ, Tsai M. 2012.. IgE and mast cells in allergic disease. . Nat. Med. 18::693704
    [Crossref] [Google Scholar]
  119. 119.
    Galli SJ, Gaudenzio N, Tsai M. 2020.. Mast cells in inflammation and disease: recent progress and ongoing concerns. . Annu. Rev. Immunol. 38::4977
    [Crossref] [Google Scholar]
  120. 120.
    Yamamoto T, Kodama T, Lee J, Utsunomiya N, Hayashi S, et al. 2014.. Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model. . PLOS ONE 9::e85888
    [Crossref] [Google Scholar]
  121. 121.
    Stead RH, Tomioka M, Quinonez G, Simon GT, Felten SY, Bienenstock J. 1987.. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. . PNAS 84::297579
    [Crossref] [Google Scholar]
  122. 122.
    Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, et al. 2004.. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. . Gastroenterology 126::693702
    [Crossref] [Google Scholar]
  123. 123.
    Shanahan F, Denburg JA, Fox J, Bienenstock J, Befus D. 1985.. Mast cell heterogeneity: effects of neuroenteric peptides on histamine release. . J. Immunol. 135::133137
    [Crossref] [Google Scholar]
  124. 124.
    De Jonge F, De Laet A, Van Nassauw L, Brown JK, Miller HR, et al. 2004.. In vitro activation of murine DRG neurons by CGRP-mediated mucosal mast cell degranulation. . Am. J. Physiol. Gastrointest. Liver Physiol. 287::G17891
    [Crossref] [Google Scholar]
  125. 125.
    Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP. 2008.. Neuropeptides activate human mast cell degranulation and chemokine production. . Immunology 123::398410
    [Crossref] [Google Scholar]
  126. 126.
    Bischoff SC, Schwengberg S, Lorentz A, Manns MP, Bektas H, et al. 2004.. Substance P and other neuropeptides do not induce mediator release in isolated human intestinal mast cells. . Neurogastroenterol. Motil. 16::18593
    [Crossref] [Google Scholar]
  127. 127.
    Kageyama-Yahara N, Suehiro Y, Yamamoto T, Kadowaki M. 2008.. IgE-induced degranulation of mucosal mast cells is negatively regulated via nicotinic acetylcholine receptors. . Biochem. Biophys. Res. Commun. 377::32125
    [Crossref] [Google Scholar]
  128. 128.
    Bosmans G, Appeltans I, Stakenborg N, Gomez-Pinilla PJ, Florens MV, et al. 2019.. Vagus nerve stimulation dampens intestinal inflammation in a murine model of experimental food allergy. . Allergy 74::174859
    [Crossref] [Google Scholar]
  129. 129.
    Yashiro T, Ogata H, Zaidi SF, Lee J, Hayashi S, et al. 2021.. Pathophysiological roles of neuro-immune interactions between enteric neurons and mucosal mast cells in the gut of food allergy mice. . Cells 10::1586
    [Crossref] [Google Scholar]
  130. 130.
    Muller PA, Matheis F, Mucida D. 2020.. Gut macrophages: key players in intestinal immunity and tissue physiology. . Curr. Opin. Immunol. 62::5461
    [Crossref] [Google Scholar]
  131. 131.
    Na YR, Stakenborg M, Seok SH, Matteoli G. 2019.. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. . Nat. Rev. Gastroenterol. Hepatol. 16::53143
    [Crossref] [Google Scholar]
  132. 132.
    Muller PA, Koscsó B, Rajani GM, Stevanovic K, Berres M-L, et al. 2014.. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. . Cell 158::30013
    [Crossref] [Google Scholar]
  133. 133.
    Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D. 2016.. Neuro-immune interactions drive tissue programming in intestinal macrophages. . Cell 164::37891
    [Crossref] [Google Scholar]
  134. 134.
    Matheis F, Muller PA, Graves CL, Gabanyi I, Kerner ZJ, et al. 2020.. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. . Cell 180::6478.e16
    [Crossref] [Google Scholar]
  135. 135.
    de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, et al. 2005.. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. . Nat. Immunol. 6::84451
    [Crossref] [Google Scholar]
  136. 136.
    Matteoli G, Gomez-Pinilla PJ, Nemethova A, Di Giovangiulio M, Cailotto C, et al. 2014.. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. . Gut 63::93848
    [Crossref] [Google Scholar]
  137. 137.
    Zhu P, Lu T, Wu J, Fan D, Liu B, et al. 2022.. Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. . Cell Res. 32::55569
    [Crossref] [Google Scholar]
  138. 138.
    Hoeffel G, Debroas G, Roger A, Rossignol R, Gouilly J, et al. 2021.. Sensory neuron-derived TAFA4 promotes macrophage tissue repair functions. . Nature 594::9499
    [Crossref] [Google Scholar]
  139. 139.
    Worbs T, Hammerschmidt SI, Forster R. 2017.. Dendritic cell migration in health and disease. . Nat. Rev. Immunol. 17::3048
    [Crossref] [Google Scholar]
  140. 140.
    Eisenbarth SC. 2019.. Dendritic cell subsets in T cell programming: location dictates function. . Nat. Rev. Immunol. 19::89103
    [Crossref] [Google Scholar]
  141. 141.
    Chorny A, Gonzalez-Rey E, Fernandez-Martin A, Pozo D, Ganea D, Delgado M. 2005.. Vasoactive intestinal peptide induces regulatory dendritic cells with therapeutic effects on autoimmune disorders. . PNAS 102::1356267
    [Crossref] [Google Scholar]
  142. 142.
    Hanc P, Gonzalez RJ, Mazo IB, Wang Y, Lambert T, et al. 2023.. Multimodal control of dendritic cell functions by nociceptors. . Science 379::eabm5658
    [Crossref] [Google Scholar]
  143. 143.
    Perner C, Flayer CH, Zhu X, Aderhold PA, Dewan ZNA, et al. 2020.. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. . Immunity 53::106377.e7
    [Crossref] [Google Scholar]
  144. 144.
    Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y, et al. 2020.. The liver-brain-gut neural arc maintains the Treg cell niche in the gut. . Nature 585::59196
    [Crossref] [Google Scholar]
  145. 145.
    Whibley N, Tucci A, Powrie F. 2019.. Regulatory T cell adaptation in the intestine and skin. . Nat. Immunol. 20::38696
    [Crossref] [Google Scholar]
  146. 146.
    Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. 2020.. Regulatory T cells and human disease. . Annu. Rev. Immunol. 38::54166
    [Crossref] [Google Scholar]
  147. 147.
    Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, et al. 2015.. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. . Science 349::99397
    [Crossref] [Google Scholar]
  148. 148.
    Pinho-Ribeiro FA, Baddal B, Haarsma R, O'Seaghdha M, Yang NJ, et al. 2018.. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. . Cell 173::108397.e22
    [Crossref] [Google Scholar]
  149. 149.
    Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR, et al. 2019.. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. . Cell 178::91932.e14
    [Crossref] [Google Scholar]
  150. 150.
    Baral P, Umans BD, Li L, Wallrapp A, Bist M, et al. 2018.. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. . Nat. Med. 24::41726
    [Crossref] [Google Scholar]
  151. 151.
    Chu C, Artis D, Chiu IM. 2020.. Neuro-immune interactions in the tissues. . Immunity 52::46474
    [Crossref] [Google Scholar]
  152. 152.
    Pavlov VA, Chavan SS, Tracey KJ. 2018.. Molecular and functional neuroscience in immunity. . Annu. Rev. Immunol. 36::783812
    [Crossref] [Google Scholar]
  153. 153.
    Ibiza S, Garcia-Cassani B, Ribeiro H, Carvalho T, Almeida L, et al. 2016.. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. . Nature 535::44043
    [Crossref] [Google Scholar]
  154. 154.
    Stakenborg M, Abdurahiman S, De Simone V, Goverse G, Stakenborg N, et al. 2022.. Enteric glial cells favor accumulation of anti-inflammatory macrophages during the resolution of muscularis inflammation. . Mucosal Immunol. 15::1296308
    [Crossref] [Google Scholar]
  155. 155.
    Grubisic V, McClain JL, Fried DE, Grants I, Rajasekhar P, et al. 2020.. Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. . Cell Rep. 32::108100
    [Crossref] [Google Scholar]
  156. 156.
    Progatzky F, Shapiro M, Chng SH, Garcia-Cassani B, Classon CH, et al. 2021.. Regulation of intestinal immunity and tissue repair by enteric glia. . Nature 599::12530
    [Crossref] [Google Scholar]
  157. 157.
    Rosenberg HJ, Rao M. 2021.. Enteric glia in homeostasis and disease: from fundamental biology to human pathology. . iScience 24::102863
    [Crossref] [Google Scholar]
  158. 158.
    Progatzky F, Pachnis V. 2022.. The role of enteric glia in intestinal immunity. . Curr. Opin. Immunol. 77::102183
    [Crossref] [Google Scholar]
  159. 159.
    Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. 2018.. The intestinal epithelium: central coordinator of mucosal immunity. . Trends Immunol. 39::67796
    [Crossref] [Google Scholar]
  160. 160.
    Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A, et al. 2020.. Gut-innervating nociceptor neurons regulate Peyer's patch microfold cells and SFB levels to mediate Salmonella host defense. . Cell 180::3349.e22
    [Crossref] [Google Scholar]
  161. 161.
    Jarret A, Jackson R, Duizer C, Healy ME, Zhao J, et al. 2020.. Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity. . Cell 180::5063.e12
    [Crossref] [Google Scholar]
  162. 162.
    Knoop KA, Newberry RD. 2018.. Goblet cells: multifaceted players in immunity at mucosal surfaces. . Mucosal Immunol. 11::155157
    [Crossref] [Google Scholar]
  163. 163.
    McDole JR, Wheeler LW, McDonald KG, Wang B, et al. 2012.. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. . Nature 483::34549
    [Crossref] [Google Scholar]
  164. 164.
    Knoop KA, McDonald KG, McCrate S, McDole JR, Newberry RD. 2015.. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. . Mucosal Immunol. 8::198210
    [Crossref] [Google Scholar]
  165. 165.
    Neunlist M, Toumi F, Oreschkova T, Denis M, Leborgne J, et al. 2003.. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. . Am. J. Physiol. Gastrointest. Liver Physiol. 285::G102836
    [Crossref] [Google Scholar]
  166. 166.
    Lelievre V, Favrais G, Abad C, Adle-Biassette H, Lu Y, et al. 2007.. Gastrointestinal dysfunction in mice with a targeted mutation in the gene encoding vasoactive intestinal polypeptide: a model for the study of intestinal ileus and Hirschsprung's disease. . Peptides 28::168899
    [Crossref] [Google Scholar]
  167. 167.
    Conlin VS, Wu X, Nguyen C, Dai C, Vallance BA, et al. 2009.. Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with Citrobacter rodentium-induced colitis. . Am. J. Physiol. Gastrointest. Liver Physiol. 297::G73550
    [Crossref] [Google Scholar]
  168. 168.
    Bednarska O, Walter SA, Casado-Bedmar M, Strom M, Salvo-Romero E, et al. 2017.. Vasoactive intestinal polypeptide and mast cells regulate increased passage of colonic bacteria in patients with irritable bowel syndrome. . Gastroenterology 153::94860.e3
    [Crossref] [Google Scholar]
  169. 169.
    Aguilera-Lizarraga J, Hussein H, Boeckxstaens GE. 2022.. Immune activation in irritable bowel syndrome: What is the evidence?. Nat. Rev. Immunol. 22::67486
    [Crossref] [Google Scholar]
  170. 170.
    Lamb K, Zhong F, Gebhart GF, Bielefeldt K. 2006.. Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. . Am. J. Physiol. Gastrointest. Liver Physiol. 290::G45157
    [Crossref] [Google Scholar]
  171. 171.
    Gao X, Han S, Huang Q, He SQ, Ford NC, et al. 2021.. Calcium imaging in population of dorsal root ganglion neurons unravels novel mechanisms of visceral pain sensitization and referred somatic hypersensitivity. . Pain 162::106881
    [Crossref] [Google Scholar]
  172. 172.
    Lapointe TK, Basso L, Iftinca MC, Flynn R, Chapman K, et al. 2015.. TRPV1 sensitization mediates postinflammatory visceral pain following acute colitis. . Am. J. Physiol. Gastrointest. Liver Physiol. 309::G8799
    [Crossref] [Google Scholar]
  173. 173.
    Aguilera-Lizarraga J, Florens MV, Viola MF, Jain P, Decraecker L, et al. 2021.. Local immune response to food antigens drives meal-induced abdominal pain. . Nature 590::15156
    [Crossref] [Google Scholar]
  174. 174.
    Fritscher-Ravens A, Schuppan D, Ellrichmann M, Schoch S, Röcken C, et al. 2014.. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. . Gastroenterology 147::101220.e4
    [Crossref] [Google Scholar]
  175. 175.
    Defaye M, Abdullah NS, Iftinca M, Hassan A, Agosti F, et al. 2022.. Gut-innervating TRPV1+ neurons drive chronic visceral pain via microglial P2Y12 receptor. . Cell. Mol. Gastroenterol. Hepatol. 13::97799
    [Crossref] [Google Scholar]
  176. 176.
    Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, et al. 2007.. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. . Gastroenterology 132::2637
    [Crossref] [Google Scholar]
  177. 177.
    Buhner S, Li Q, Vignali S, Barbara G, De Giorgio R, et al. 2009.. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. . Gastroenterology 137::142534
    [Crossref] [Google Scholar]
  178. 178.
    Cenac N, Andrews CN, Holzhausen M, Chapman K, Cottrell G, et al. 2007.. Role for protease activity in visceral pain in irritable bowel syndrome. . J. Clin. Investig. 117::63647
    [Crossref] [Google Scholar]
  179. 179.
    Valdez-Morales EE, Overington J, Guerrero-Alba R, Ochoa-Cortes F, Ibeakanma CO, et al. 2013.. Sensitization of peripheral sensory nerves by mediators from colonic biopsies of diarrhea-predominant irritable bowel syndrome patients: a role for PAR2. . Am. J. Gastroenterol. 108::163443
    [Crossref] [Google Scholar]
  180. 180.
    Wouters MM, Balemans D, Van Wanrooy S, Dooley J, Cibert-Goton V, et al. 2016.. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. . Gastroenterology 150::87587.e9
    [Crossref] [Google Scholar]
  181. 181.
    Perna E, Aguilera-Lizarraga J, Florens MV, Jain P, Theofanous SA, et al. 2021.. Effect of resolvins on sensitisation of TRPV1 and visceral hypersensitivity in IBS. . Gut 70::127586
    [Crossref] [Google Scholar]
  182. 182.
    Jo YY, Lee JY, Park CK. 2016.. Resolvin E1 inhibits substance P-induced potentiation of TRPV1 in primary sensory neurons. . Mediat. Inflamm. 2016::5259321
    [Crossref] [Google Scholar]
  183. 183.
    Serhan CN, Levy BD. 2018.. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. . J. Clin. Investig. 128::265769
    [Crossref] [Google Scholar]
  184. 184.
    Bao C, Chen O, Sheng H, Zhang J, Luo Y, et al. 2023.. A mast cell-thermoregulatory neuron circuit axis regulates hypothermia in anaphylaxis. . Sci. Immunol. 8::eadc9417
    [Crossref] [Google Scholar]
  185. 185.
    Florsheim EB, Bachtel ND, Cullen JL, Lima BGC, Godazgar M, et al. 2023.. Immune sensing of food allergens promotes avoidance behaviour. . Nature 620::64350
    [Crossref] [Google Scholar]
  186. 186.
    Plum T, Binzberger R, Thiele R, Shang F, Postrach D, et al. 2023.. Mast cells link immune sensing to antigen-avoidance behaviour. . Nature 620::63442
    [Crossref] [Google Scholar]
  187. 187.
    Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, et al. 2017.. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. . Cell 170::18598.e16
    [Crossref] [Google Scholar]
  188. 188.
    Bayrer JR, Castro J, Venkataraman A, Touhara KK, Rossen ND, et al. 2023.. Gut enterochromaffin cells drive visceral pain and anxiety. . Nature 616::13742
    [Crossref] [Google Scholar]
  189. 189.
    Yu YB, Zuo XL, Zhao QJ, Chen FX, Yang J, et al. 2012.. Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. . Gut 61::68594
    [Crossref] [Google Scholar]
  190. 190.
    Dothel G, Barbaro MR, Boudin H, Vasina V, Cremon C, et al. 2015.. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. . Gastroenterology 148::100211.e4
    [Crossref] [Google Scholar]
  191. 191.
    Enamorado M, Kulalert W, Han SJ, Rao I, Delaleu J, et al. 2023.. Immunity to the microbiota promotes sensory neuron regeneration. . Cell 186::60720.e17
    [Crossref] [Google Scholar]
  192. 192.
    Xu J, Zanvit P, Hu L, Tseng PY, Liu N, et al. 2020.. The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching. . Immunity 53::37183.e5
    [Crossref] [Google Scholar]
  193. 193.
    Basso L, Lapointe TK, Iftinca M, Marsters C, Hollenberg MD, et al. 2017.. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. . PNAS 114::1123540
    [Crossref] [Google Scholar]
  194. 194.
    De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, et al. 2018.. Self-maintaining gut macrophages are essential for intestinal homeostasis. . Cell 175::40015.e13
    [Crossref] [Google Scholar]
  195. 195.
    Ahrends T, Aydin B, Matheis F, Classon CH, Marchildon F, et al. 2021.. Enteric pathogens induce tissue tolerance and prevent neuronal loss from subsequent infections. . Cell 184::571527.e12
    [Crossref] [Google Scholar]
  196. 196.
    White JP, Xiong S, Malvin NP, Khoury-Hanold W, Heuckeroth RO, et al. 2018.. Intestinal dysmotility syndromes following systemic infection by flaviviruses. . Cell 175::1198212.e12
    [Crossref] [Google Scholar]
  197. 197.
    Sanchez-Ruiz M, Brunn A, Montesinos-Rongen M, Rudroff C, Hartmann M, et al. 2019.. Enteric murine ganglionitis induced by autoimmune CD8 T cells mimics human gastrointestinal dysmotility. . Am. J. Pathol. 189::54051
    [Crossref] [Google Scholar]
  198. 198.
    Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. 2012.. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. . Gastroenterology 143::100616.e4
    [Crossref] [Google Scholar]
  199. 199.
    Ge X, Ding C, Zhao W, Xu L, Tian H, et al. 2017.. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. . J. Transl. Med. 15::13
    [Crossref] [Google Scholar]
  200. 200.
    Vincent AD, Wang XY, Parsons SP, Khan WI, Huizinga JD. 2018.. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. . Am. J. Physiol. Gastrointest. Liver Physiol. 315::G896907
    [Crossref] [Google Scholar]
  201. 201.
    Muller PA, Schneeberger M, Matheis F, Wang P, Kerner Z, et al. 2020.. Microbiota modulate sympathetic neurons via a gut-brain circuit. . Nature 583::44146
    [Crossref] [Google Scholar]
  202. 202.
    McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA. 2013.. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. . Neurogastroenterol. Motil. 25::183-e88
    [Crossref] [Google Scholar]
  203. 203.
    Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. 2014.. Intestinal microbiota influence the early postnatal development of the enteric nervous system. . Neurogastroenterol. Motil. 26::98107
    [Crossref] [Google Scholar]
  204. 204.
    De Vadder F, Grasset E, Mannerås Holm L, Karsenty G, et al. 2018.. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. . PNAS 115::645863
    [Crossref] [Google Scholar]
  205. 205.
    Bonaz B, Sinniger V, Hoffmann D, Clarencon D, Mathieu N, et al. 2016.. Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study. . Neurogastroenterol. Motil. 28::94853
    [Crossref] [Google Scholar]
  206. 206.
    Sinniger V, Pellissier S, Fauvelle F, Trocme C, Hoffmann D, et al. 2020.. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn's disease. . Neurogastroenterol. Motil. 32::e13911
    [Crossref] [Google Scholar]
  207. 207.
    Klooker TK, Braak B, Koopman KE, Welting O, Wouters MM, et al. 2010.. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. . Gut 59::121321
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-101921-042929
Loading
/content/journals/10.1146/annurev-immunol-101921-042929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error