Primary progressive aphasia (PPA) refers to a disorder of declining language associated with neurodegenerative diseases such as frontotemporal degeneration and Alzheimer disease. Variants of PPA are important to recognize from a medical perspective because these syndromes are clinical markers suggesting specific underlying pathology. In this review, I discuss linguistic aspects of PPA syndromes that may prove informative for parsing our language mechanism and identifying the neural representation of fundamental elements of language. I focus on the representation of word meaning in a discussion of semantic variant PPA, grammatical comprehension and expression in a discussion of nonfluent/agrammatic variant PPA, the supporting role of short-term memory in a discussion of logopenic variant PPA, and components of language associated with discourse in a discussion of behavioral variant frontotemporal dementia. PPA provides a novel perspective that uniquely addresses facets of language and its disorders while complementing traditional aphasia syndromes that follow stroke.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acosta-Cabronero J, Patterson K, Fryer TD, Hodges JR, Pengas G. et al. 2011. Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story. Brain 134:2025–35 [Google Scholar]
  2. Agosta F, Henry RG, Migliaccio R, Neuhaus J, Miller BL. et al. 2010. Language networks in semantic dementia. Brain 133:286–99 [Google Scholar]
  3. Agosta F, Scola E, Canu E, Marcone A, Sarro L. et al. 2012. White matter damage in frontotemporal lobar degeneration spectrum. Cereb. Cortex 22:2705–14 [Google Scholar]
  4. Ash SP, Evans E, O'Shea J, Powers J, Boller A. et al. 2013. Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology 81:329–36 [Google Scholar]
  5. Ash SP, McMillan C, Gunawardena D, Avants B, Morgan B. et al. 2010. Speech errors in progressive non-fluent aphasia. Brain Lang 113:13–20 [Google Scholar]
  6. Ash SP, Moore P, Antani S, McCawley G, Work M, Grossman M. 2006. Trying to tell a tale: discourse impairments in progressive aphasia and frontotemporal dementia. Neurology 66:1405–13 [Google Scholar]
  7. Ash SP, Moore P, Vesely L, Gunawardena D, McMillan C. et al. 2009. Non-fluent speech in frontotemporal lobar degeneration. J. Neurolinguist. 22:370–83 [Google Scholar]
  8. Ash SP, Ternes K, Bisbing T, Min NE, York C. et al. 2016. Dissociation of quantifiers and object nouns in speech in focal neurodegenerative disease. Neuropsychologia 89:141–52 [Google Scholar]
  9. Baron SG, Osherson D. 2011. Evidence for conceptual combination in the left anterior temporal lobe. NeuroImage 55:1847–52 [Google Scholar]
  10. Barsalou LW. 2009. Simulation, situated conceptualization, and prediction. Philos. Trans. R. Soc. B Biol. Sci. 364:1281–89 [Google Scholar]
  11. Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A. 2004a. Unravelling multisensory integration: patchy organization within human STS multisensory cortex. Nat. Neurosci. 7:1190–92 [Google Scholar]
  12. Beauchamp MS, Lee KE, Argall BD, Martin A. 2004b. Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41:809–23 [Google Scholar]
  13. Bemis DK, Pylkkanen L. 2011. Simple composition: a magnetoencephalography investigation into the comprehension of minimal linguistic phrases. J. Neurosci. 31:2801–14 [Google Scholar]
  14. Binder JR, Desai RH. 2011. The neurobiology of semantic memory. Trends Cogn. Sci. 15:527–36 [Google Scholar]
  15. Binder JR, Desai RH, Graves WW, Conant LL. 2009. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19:2767–96 [Google Scholar]
  16. Binder JR, Westbury CF, McKiernan KA, Possing ET, Medler DA. 2005. Distinct brain systems for processing concrete and abstract concepts. J. Cogn. Neurosci. 17:905–17 [Google Scholar]
  17. Binney RJ, Embleton KV, Jefferies E, Parker GJ, Lambon Ralph MA. 2010. The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb. Cortex 20:2728–38 [Google Scholar]
  18. Bonner MF, Grossman M. 2012. Gray matter density of auditory association cortex related to knowledge of sound concepts in primary progressive aphasia. J. Neurosci. 32:7986–91 [Google Scholar]
  19. Bonner MF, Peelle JE, Cook PA, Grossman M. 2013. Heteromodal conceptual processing in the angular gyrus. NeuroImage 71:175–86 [Google Scholar]
  20. Bonner MF, Peelle JE, Price AR, Grossman M. 2016. Individual variability in a cortical semantic hub. J. Cogn. Neurosci. 28:361–78 [Google Scholar]
  21. Bonner MF, Vesely L, Price C, Anderson C, Richmond L. et al. 2009. Reversal of the concreteness effect in semantic dementia. Cogn. Neuropsychol. 26:568–79 [Google Scholar]
  22. Bozeat S. 2000. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease?. J. Neurol. Neurosurg. Psychiatry 69:178–86 [Google Scholar]
  23. Brambati SM. et al. 2009. Atrophy progression in semantic dementia with asymmetric temporal involvement: a tensor-based morphometry study. Neurobiol. Aging 30:103–11 [Google Scholar]
  24. Breedin SD, Saffran EM, Coslett HB. 1994. Reversal of the concreteness effect in a patient with semantic dementia. Cogn. Neuropsychol. 11:617–60 [Google Scholar]
  25. Cappa SF, Frugoni M, Pasquali P, Perani D, Zorat F. 1998. Category-specific naming impairment for artefacts: a new case. Neurocase 4:191–97 [Google Scholar]
  26. Cappelletti M, Butterworth B, Kopelman M. 2001. Spared numerical abilities in a case of semantic dementia. Neuropsychologia 39:1224–39 [Google Scholar]
  27. Cappelletti M, Butterworth B, Kopelman M. 2006. The understanding of quantifiers in semantic dementia: a single-case study. Neurocase 12:136–45 [Google Scholar]
  28. Caramazza A, Anzellotti S, Strnad L, Lingnau A. 2014. Embodied cognition and mirror neurons: a critical assessment. Annu. Rev. Neurosci. 37:1–15 [Google Scholar]
  29. Carroll E, Garrard P. 2005. Knowledge of living, nonliving and “sensory quality” categories in semantic dementia. Neurocase 11:338–50 [Google Scholar]
  30. Charles D, Olm C, Powers J, Ash S, Irwin DJ. et al. 2014. Grammatical comprehension deficits in non-fluent/agrammatic primary progressive aphasia. J. Neurol. Neurosurg. Psychiatry 85:249–56 [Google Scholar]
  31. Chatterjee A. 2014. Disembodying cognition. Lang. Cogn. 2:79–116 [Google Scholar]
  32. Chawluk JB, Mesulam MM, Hurtig H, Kushner M, Weintraub S. et al. 1986. Slowly progressive aphasia without generalized dementia: studies with positron emission tomography. Ann. Neurol. 19:68–74 [Google Scholar]
  33. Collins JA, Montal V, Hochberg D, Quimby M, Mandell ML. et al. 2017. Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia. Brain 140:457–71 [Google Scholar]
  34. Cooke A, DeVita C, Gee J, Alsop D, Detre J. et al. 2003. Neural basis for sentence comprehension deficits in frontotemporal dementia. Brain Lang 85:211–21 [Google Scholar]
  35. Corbett F, Jefferies E, Burns A, Lambon Ralph MA. 2015. Deregulated semantic cognition contributes to object-use deficits in Alzheimer's disease: a comparison with semantic aphasia and semantic dementia. J. Neuropsychol. 9:219–41 [Google Scholar]
  36. Cousins KAQ, Ash S, Irwin DJ, Grossman M. 2017. Dissociable substrates underlie the production of abstract and concrete nouns. Brain Lang 165:45–54 [Google Scholar]
  37. Cousins KAQ, York C, Bauer L, Grossman M. 2016. Cognitive and anatomic double dissociation in the representation of concrete and abstract words in semantic variant and behavioral variant frontotemporal degeneration. Neuropsychologia 84:244–51 [Google Scholar]
  38. Crutch SJ, Warrington EK. 2002. Preserved calculation skills in a case of semantic dementia. Cortex 38:389–99 [Google Scholar]
  39. Davies RR, Graham KS, Xuereb JH, Williams GB, Hodges JR. 2004. The human perirhinal cortex and semantic memory. Eur. J. Neurosci. 20:2441–46 [Google Scholar]
  40. Deramecourt V, Lebert F, Debachy M, Mackiowiak-Cordoliani MA, Bombois S. et al. 2010. Prediction of pathology in primary progressive language and speech disorders. Neurology 74:42–49 [Google Scholar]
  41. Duda JT, Avants B, Asmuth J, Zhang H, Grossman M, Gee J. 2008. A fiber tractography–based examination of neurodegeneration on language-network neuroanatomy. Proceedings of the Workshop on Computational Diffusion MRI: Medical Image Computing and Computer-Assisted Intervention191–98 New York: NYU [Google Scholar]
  42. Duffy JR, Hanley H, Utianski R, Clark H, Strand E. et al. 2017. Temporal acoustic measures distinguish primary progressive apraxia of speech from primary progressive aphasia. Brain Lang 168:84–94 [Google Scholar]
  43. Fairhall SL, Caramazza A. 2013. Brain regions that represent amodal conceptual knowledge. J. Neurosci. 33:10552–58 [Google Scholar]
  44. Farag C, Troiani V, Bonner M, Powers C, Avants B. et al. 2010. Hierarchical organization of scripts: converging evidence from fMRI and frontotemporal degeneration. Cereb. Cortex 20:2453–63 [Google Scholar]
  45. Flanagan EC, Tu S, Ahmed S, Hodges JR, Hornberger M. 2014. Memory and orientation in the logopenic and nonfluent subtypes of primary progressive aphasia. J. Alzheimer's Dis. 40:33–36 [Google Scholar]
  46. Friederici AD. 2011. The brain basis of language processing: from structure to function. Physiol. Rev. 91:1357–92 [Google Scholar]
  47. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M. et al. 2011. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain 134:3011–29 [Google Scholar]
  48. Gefen T, Gasho K, Rademaker A, Lalehzari M, Weintraub S. et al. 2012. Clinically concordant variations of Alzheimer pathology in aphasic versus amnestic dementia. Brain 135:1554–65 [Google Scholar]
  49. Giannini LAA, Irwin DJ, McMillan CT, Ash S, Rascovsky K. et al. 2017. Clinical marker for Alzheimer's disease pathology in logopenic primary progressive aphasia. Neurology 88:2276–84 [Google Scholar]
  50. Glasser MF, Van Essen DC. 2011. Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J. Neurosci. 31:11597–616 [Google Scholar]
  51. Gloor P. 1997. The Temporal Lobe and Limbic System Oxford, UK: Oxford Univ. Press [Google Scholar]
  52. Goll JC, Crutch SJ, Loo JH, Rohrer JD, Frost C. et al. 2009. Non-verbal sound processing in the primary progressive aphasias. Brain 133:272–85 [Google Scholar]
  53. Goll JC, Ridgway GR, Crutch SJ, Theunissen FE, Warren JD. 2012. Nonverbal sound processing in semantic dementia: a functional MRI study. NeuroImage 61:170–80 [Google Scholar]
  54. González J, Barros-Loscertales A, Pulvermüller F, Meseguer V, Sanjuán A. et al. 2006. Reading cinnamon activates olfactory brain regions. NeuroImage 32:906–12 [Google Scholar]
  55. Gorno-Tempini ML, Brambati SM, Ginex V, Ogar J, Dronkers NF. et al. 2008. The logopenic/phonological variant of primary progressive aphasia. Neurology 71:1227–34 [Google Scholar]
  56. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L. et al. 2004. Cognition and anatomy in three variants of primary progressive aphasia. Ann. Neurol. 55:335–46 [Google Scholar]
  57. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M. et al. 2011. Classification of primary progressive aphasia and its variants. Neurology 76:1006–14 [Google Scholar]
  58. Grossman M. 2010. Primary progressive aphasia: clinicopathological correlations. Nat. Rev. Neurol. 6:88–97 [Google Scholar]
  59. Grossman M. 2012. The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol 11:545–55 [Google Scholar]
  60. Grossman M, Anderson C, Khan A, Avants B, Elman L, McCluskey L. 2008a. Impaired action knowledge in amyotrophic lateral sclerosis. Neurology 71:1396–401 [Google Scholar]
  61. Grossman M, McMillan C, Moore P, Ding L, Glosser G. et al. 2004. What's in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer's disease, frontotemporal dementia and corticobasal degeneration. Brain 127:628–49 [Google Scholar]
  62. Grossman M, Mickanin J, Onishi K, Hughes E, D'Esposito M. et al. 1996. Progressive nonfluent aphasia: language, cognitive, and PET measures contrasted with probable Alzheimer's disease. J. Cogn. Neurosci. 8:135–54 [Google Scholar]
  63. Grossman M, Moore P. 2005. A longitudinal study of sentence comprehension difficulty in primary progressive aphasia. J. Neurol. Neurosurg. Psychiatry 76:644–49 [Google Scholar]
  64. Grossman M, Powers J, Ash S, McMillan C, Burkholder L. et al. 2013. Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain Lang 127:106–20 [Google Scholar]
  65. Grossman M, Rhee J, Moore P. 2005. Sentence processing in frontotemporal dementia. Cortex 41:764–77 [Google Scholar]
  66. Grossman M, Xie SX, Libon DJ, Wang X, Massimo L. et al. 2008b. Longitudinal decline in autopsy-defined frontotemporal lobar degeneration. Neurology 70:2036–45 [Google Scholar]
  67. Gunawardena D, Ash S, McMillan C, Avants B, Gee J, Grossman M. 2010. Why are patients with progressive nonfluent aphasia nonfluent. ? Neurology 75:588–94 [Google Scholar]
  68. Halpern CH, Glosser G, Clark R, Gee J, Moore P. et al. 2004. Dissociation of numbers and objects in corticobasal degeneration and semantic dementia. Neurology 62:1163–69 [Google Scholar]
  69. Harris JM, Gall C, Thompson JC, Richardson AM, Neary D. et al. 2013. Classification and pathology of primary progressive aphasia. Neurology 81:1832–39 [Google Scholar]
  70. Hauk O, Johnsrude I, Pulvermüller F. 2004. Somatotopic representation of action words in human motor and premotor cortex. Neuron 41:301–7 [Google Scholar]
  71. Healey ML, McMillan CT, Golob S, Spotorno N, Rascovsky K. et al. 2015. Getting on the same page: the neural basis for social coordination deficits in behavioral variant frontotemporal degeneration. Neuropsychologia 69:56–66 [Google Scholar]
  72. Hickok G, Poeppel D. 2007. The cortical organization of speech processing. Nat. Rev. Neurosci. 8:393–402 [Google Scholar]
  73. Hodges JR, Davies RR, Xuereb JH, Casey B, Broe M. et al. 2004. Clinicopathological correlates in frontotemporal dementia. Ann. Neurol. 56:399–406 [Google Scholar]
  74. Hodges JR, Davies RR, Xuereb J, Kril J, Halliday G. 2003. Survival in frontotemporal dementia. Neurology 61:349–54 [Google Scholar]
  75. Hodges JR, Graham N, Patterson K. 1995. Charting the progression in semantic dementia: implications for the organisation of semantic memory. Memory 3:463–95 [Google Scholar]
  76. Hodges JR, Patterson K. 2007. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol 6:1004–14 [Google Scholar]
  77. Hoffman P, Binney RJ, Lambon Ralph MA. 2015. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex 63:250–66 [Google Scholar]
  78. Hoffman P, Jefferies E, Lambon Ralph MA. 2010. Ventrolateral prefrontal cortex plays an executive regulation role in comprehension of abstract words: convergent neuropsychological and repetitive TMS evidence. J. Neurosci. 30:15450–56 [Google Scholar]
  79. Hoffman P, Meteyard L, Patterson K. 2013. Broadly speaking: vocabulary in semantic dementia shifts towards general, semantically diverse words. Cortex 55:30–42 [Google Scholar]
  80. Hume D. 1978 (1739). A Treatise of Human Nature London: John Noon [Google Scholar]
  81. Jacobs B, Schall M, Prather M, Kapler E, Driscoll L. et al. 2001. Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb. Cortex 11:558–71 [Google Scholar]
  82. Jefferies E. 2013. The neural basis of semantic cognition: converging evidence from neuropsychology, neuroimaging and TMS. Cortex 49:611–25 [Google Scholar]
  83. Jefferies E, Bateman D, Lambon Ralph MA. 2005. The role of the temporal lobe semantic system in number knowledge: evidence from late-stage semantic dementia. Neuropsychologia 43:887–905 [Google Scholar]
  84. Jefferies E, Patterson K, Jones RW, Bateman D, Lambon Ralph MA. 2004. A category-specific advantage for numbers in verbal short-term memory: evidence from semantic dementia. Neuropsychologia 42:639–60 [Google Scholar]
  85. Josephs KA, Dickson DW, Murray ME, Senjem ML, Parisi JE. et al. 2013a. Quantitative neurofibrillary tangle density and brain volumetric MRI analyses in Alzheimer's disease presenting as logopenic progressive aphasia. Brain Lang 127:127–34 [Google Scholar]
  86. Josephs KA, Duffy JR, Strand EA, Machulda MM, Senjem ML. et al. 2012. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain 135:1522–36 [Google Scholar]
  87. Josephs KA, Duffy JR, Strand EA, Machulda MM, Senjem ML. et al. 2013b. Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA. Neurology 81:337–45 [Google Scholar]
  88. Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF. et al. 2006. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129:1385–98 [Google Scholar]
  89. Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M. et al. 2011. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122:137–53 [Google Scholar]
  90. Jurkowski MK. 1976. [Animal phospholipases.]. Postępy Biochem 22:65–75 In Polish [Google Scholar]
  91. Katz JJ. 1972. Semantic Theory New York: Harper & Row [Google Scholar]
  92. Kiefer M, Sim EJ, Herrnberger B, Grothe J, Hoenig K. 2008. The sound of concepts: four markers for a link between auditory and conceptual brain systems. J. Neurosci. 28:12224–30 [Google Scholar]
  93. Kiefer M, Trumpp N, Herrnberger B, Sim EJ, Hoenig K, Pulvermüller F. 2012. Dissociating the representation of action- and sound-related concepts in middle temporal cortex. Brain Lang 122:120–25 [Google Scholar]
  94. Knibb JA, Woollams AM, Hodges JR, Patterson K. 2009. Making sense of progressive non-fluent aphasia: an analysis of conversational speech. Brain 132:2734–46 [Google Scholar]
  95. Knibb JA, Xuereb JH, Patterson K, Hodges JR. 2006. Clinical and pathological characterization of progressive aphasia. Ann. Neurol. 59:156–65 [Google Scholar]
  96. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. 2013. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17:26–49 [Google Scholar]
  97. Lambon Ralph MA, Cipolotti L, Manes F, Patterson K. 2010a. Taking both sides: Do unilateral anterior temporal lobe lesions disrupt semantic memory. ? Brain 133:3243–55 [Google Scholar]
  98. Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT. 2017. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18:42–55 [Google Scholar]
  99. Lambon Ralph MA, Lowe C, Rogers TT. 2007. Neural basis of category-specific deficits for living things: evidence from semantic dementia, HSVE and a neural network model. Brain 130:1127–37 [Google Scholar]
  100. Lambon Ralph MA, Sage K, Jones FW, Mayberry EJ. 2010b. Coherent concepts are computed in the anterior temporal lobes. PNAS 107:2717–22 [Google Scholar]
  101. Leyton CE, Ballard KJ, Piguet O, Hodges JR. 2014a. Phonologic errors as a clinical marker of the logopenic variant of PPA. Neurology 82:1620–27 [Google Scholar]
  102. Leyton CE, Hodges JR, Piguet O, Ballard KJ. 2017. Common and divergent neural correlates of anomia in amnestic and logopenic presentations of Alzheimer's disease. Cortex 86:45–54 [Google Scholar]
  103. Leyton CE, Savage S, Irish M, Schubert S, Piguet O. et al. 2014b. Verbal repetition in primary progressive aphasia and Alzheimer's disease. J. Alzheimer's Dis. 41:575–85 [Google Scholar]
  104. Libon DJ, Rascovsky K, Powers J, Irwin DJ, Boller A. et al. 2013. Comparative semantic profiles in semantic dementia and Alzheimer's disease. Brain 136:2497–509 [Google Scholar]
  105. Libon DJ, Xie SX, Moore P, Farmer J, Antani S. et al. 2007. Patterns of neuropsychological impairment in frontotemporal dementia. Neurology 68:369–75 [Google Scholar]
  106. Libon DJ, Xie SX, Wang X, Massimo L, Moore P. et al. 2009. Neuropsychological decline in frontotemporal lobar degeneration: a longitudinal analysis. Neuropsychology 23:337–46 [Google Scholar]
  107. Macoir J. 2009. Is a plum a memory problem? Longitudinal study of the reversal of concreteness effect in a patient with semantic dementia. Neuropsychologia 47:518–35 [Google Scholar]
  108. Martin A. 2007. The representation of object concepts in the brain. Annu. Rev. Psychol. 58:25–45 [Google Scholar]
  109. Massimo L, Zee J, Xie SX, McMillan CT, Rascovsky K. et al. 2015. Occupational attainment influences survival in autopsy-confirmed frontotemporal degeneration. Neurology 84:2070–75 [Google Scholar]
  110. McMillan CT, Coleman D, Clark R, Liang T-W, Gross RG, Grossman M. 2013. Converging evidence for the processing costs associated with ambiguous quantifier comprehension. Front. Psychol. 4:153 [Google Scholar]
  111. McMillan CT, Rascovsky K, Khella MC, Clark R, Grossman M. 2012. The neural basis for establishing a focal point in pure coordination games. Soc. Cogn. Affect. Neurosci. 7:881–87 [Google Scholar]
  112. Mellet E, Tzourio N, Denis M, Mazoyer B. 1998. Cortical anatomy of mental imagery of concrete nouns based on their dictionary definition. NeuroReport 9:803–8 [Google Scholar]
  113. Mesulam MM. 1982. Slowly progressive aphasia without generalized dementia. Ann. Neurol. 11:592–98 [Google Scholar]
  114. Mesulam MM. 2003. Primary progressive aphasia—a language-based dementia. N. Engl. J. Med. 349:1535–42 [Google Scholar]
  115. Mesulam MM, Rogalski EJ, Wieneke C, Hurley RS, Geula C. et al. 2014a. Primary progressive aphasia and the evolving neurology of the language network. Nat. Rev. Neurol. 10:554–69 [Google Scholar]
  116. Mesulam MM, Weintraub S, Rogalski EJ, Wieneke C, Geula C, Bigio EH. 2014b. Asymmetry and heterogeneity of Alzheimer's and frontotemporal pathology in primary progressive aphasia. Brain 137:1176–92 [Google Scholar]
  117. Mesulam MM, Wicklund A, Johnson N, Rogalski E, Léger GC. et al. 2008. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann. Neurol. 63:709–19 [Google Scholar]
  118. Mesulam MM, Wieneke C, Thompson C, Rogalski E, Weintraub S. 2012. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain 135:1537–53 [Google Scholar]
  119. Mion M, Patterson K, Acosta-Cabronero J, Pengas G, Izquierdo-Garcia D. et al. 2010. What the left and right anterior fusiform gyri tell us about semantic memory. Brain 133:3256–68 [Google Scholar]
  120. Moss HE, Abdallah S, Fletcher P, Bright P, Pilgrim L. et al. 2005. Selecting among competing alternatives: selection and retrieval in the left inferior frontal gyrus. Cereb. Cortex 15:1723–35 [Google Scholar]
  121. Moss HE, Tyler LK. 2000. A progressive category-specific semantic deficit for non-living things. Neuropsychologia 38:60–82 [Google Scholar]
  122. Mundy ME, Downing PE, Dwyer DM, Honey RC, Graham KS. 2013. A critical role for the hippocampus and perirhinal cortex in perceptual learning of scenes and faces: complementary findings frosm amnesia and fMRI. J. Neurosci. 33:10490–502 [Google Scholar]
  123. Murray EA, O'Doherty JP, Schoenbaum G. 2007. What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. J. Neurosci. 27:8166–69 [Google Scholar]
  124. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. 2011. Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–96 [Google Scholar]
  125. Nestor PJ, Graham NL, Fryer TD, Williams GB, Patterson K, Hodges JR. 2003. Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain 126:2406–18 [Google Scholar]
  126. Nevler N, Ash S, Jester C, Irwin DJ, Liberman M, Grossman M. 2017. Automatic measurement of prosody in behavioral variant FTD. Neurology 89:650–56 [Google Scholar]
  127. Noppeney U, Patterson K, Tyler LK, Moss H, Stamatakis EA. et al. 2007. Temporal lobe lesions and semantic impairment: a comparison of herpes simplex virus encephalitis and semantic dementia. Brain 130:1138–47 [Google Scholar]
  128. Olm CA, Kandel BA, Avants BB, Detre DA, Gee JC. et al. 2016. Arterial spin labeling perfusion predicts longitudinal decline in semantic variant primary progressive aphasia. J. Neurol. 263:1927–38 [Google Scholar]
  129. Olson IR, Plotzker A, Ezzyat Y. 2007. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130:1718–31 [Google Scholar]
  130. Orban GA, Van Essen D Vanduffel W. 2004. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8:315–24 [Google Scholar]
  131. Paivio A. 1991. Dual coding theory: retrospect and current status. Can. J. Psychol. 45:255–87 [Google Scholar]
  132. Pandya DN, Yeterian EH. 1985. Architecture and connections of cortical association areas. Cerebral Cortex 4 Association and Auditory Cortex A Peters, EG Jones 3–61 New York: Plenum [Google Scholar]
  133. Papagno C, Capasso R, Miceli G. 2009. Reversed concreteness effect for nouns in a subject with semantic dementia. Neuropsychologia 47:1138–48 [Google Scholar]
  134. Patterson K. 2006. “Pre-semantic” cognition in semantic dementia: six deficits in search of an explanation. J. Cogn. Neurosci. 18:169–83 [Google Scholar]
  135. Patterson K. 2007. The reign of typicality in semantic memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362:813–21 [Google Scholar]
  136. Patterson K, Kopelman MD, Woollams AM, Brownsett SL, Geranmayeh F, Wise RJ. 2015. Semantic memory: Which side are you on?. Neuropsychologia 76:182–91 [Google Scholar]
  137. Patterson K, Nestor PJ, Rogers TT. 2007. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8:976–87 [Google Scholar]
  138. Peelle JE, Cooke A, Moore P, Vesely L, Grossman M. 2007. Syntactic and thematic components of sentence processing in progressive nonfluent aphasia and nonaphasic frontotemporal dementia. J. Neurolinguist. 20:482–94 [Google Scholar]
  139. Peelle JE, Troiani V, Gee J, Moore P, McMillan C. et al. 2008. Sentence comprehension and voxel-based morphometry in progressive nonfluent aphasia, semantic dementia, and nonaphasic frontotemporal dementia. J. Neurolinguist. 21:418–32 [Google Scholar]
  140. Pick A. 1892. Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med. Wochenschr. 16:165–76 [Google Scholar]
  141. Pobric G, Jefferies E, Lambon Ralph MA. 2007. Anterior temporal lobes mediate semantic representation: mimicking semantic dementia by using rTMS in normal participants. PNAS 104:20137–41 [Google Scholar]
  142. Pobric G, Jefferies E, Lambon Ralph MA. 2010. Category-specific versus category-general semantic impairment induced by transcranial magnetic stimulation. Curr. Biol. 20:964–68 [Google Scholar]
  143. Price AR, Bonner MF, Peelle JE, Grossman M. 2015. Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. J. Neurosci. 35:3276–84 [Google Scholar]
  144. Price AR, Peelle JE, Bonner MF, Grossman M, Hamilton RH. 2016. Causal evidence for a mechanism of semantic integration in the angular gyrus as revealed by high-definition transcranial direct current stimulation. J. Neurosci. 36:3829–38 [Google Scholar]
  145. Quiroga RQ. 2012. Concept cells: the building blocks of declarative memory functions. Nat. Rev. Neurosci. 13:587–97 [Google Scholar]
  146. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH. et al. 2011. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–77 [Google Scholar]
  147. Rogalski E, Cobia D, Harrison TM, Wieneke C, Thompson CK. et al. 2011a. Anatomy of language impairments in primary progressive aphasia. J. Neurosci. 31:3344–50 [Google Scholar]
  148. Rogalski E, Cobia D, Harrison TM, Wieneke C, Weintraub S. et al. 2011b. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 76:1804–10 [Google Scholar]
  149. Rogers TT, Lambon Ralph MA, Garrard P, Bozeat S, McClelland JL. et al. 2004. Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychol. Rev. 111:205–35 [Google Scholar]
  150. Rohrer JD, Caso F, Mahoney C, Henry M, Rosen HJ. et al. 2013. Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia. Brain Lang 127:121–26 [Google Scholar]
  151. Rohrer JD, Lashley T, Schott JM, Warren JE, Mead S. et al. 2011. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 134:2565–81 [Google Scholar]
  152. Rohrer JD, Ridgway GR, Modat M, Ourselin S, Mead S. et al. 2010a. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. NeuroImage 53:1070–76 [Google Scholar]
  153. Rohrer JD, Rossor MN, Warren JD. 2010b. Apraxia in progressive nonfluent aphasia. J. Neurol. 257:569–74 [Google Scholar]
  154. Sacchett C, Humphreys GW. 1992. Calling a squirrel a squirrel but a canoe a wigwam: a category-specific deficit for artifactual objects and body parts. Cogn. Neuropsychol. 9:73–86 [Google Scholar]
  155. Sajjadi SA, Patterson K, Arnold RJ, Watson PC, Nestor PJ. 2012. Primary progressive aphasia: a tale of two syndromes and the rest. Neurology 78:1670–77 [Google Scholar]
  156. Santos-Santos MA, Mandelli ML, Binney RJ, Ogar J, Wilson SM. et al. 2016. Features of patients with nonfluent/agrammatic primary progressive aphasia with underlying progressive supranuclear palsy pathology or corticobasal degeneration. JAMA Neurol 73:733–42 [Google Scholar]
  157. Schwanenflugel PJ, Harnishfeger KK, Stowe RW. 1988. Context availability and lexical decisions for abstract and concrete words. J. Mem. Lang. 27:499–520 [Google Scholar]
  158. Schwanenflugel PJ, Shoben EJ. 1983. Differential context effects in the comprehension of abstract and concrete verbal materials. J. Exp. Psychol. Learn. Mem. Cogn. 9:82–102 [Google Scholar]
  159. Schwanenflugel PJ, Stowe RW. 1989. The influence of a sentence context on the processing of abstract and concrete words. Read. Res. Q. 24:114–26 [Google Scholar]
  160. Schwindt GC, Graham NL, Rochon E, Tang-Wai DF, Lobaugh NJ. et al. 2013. Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum. Brain Mapp. 34:973–84 [Google Scholar]
  161. Sérieux P. 1893. Sur un cas de surdité verbale pure. Rev. Med. 13:733–50 [Google Scholar]
  162. Silveri MC, Ciccarelli N. 2009. Semantic memory in object use. Neuropsychologia 47:2634–41 [Google Scholar]
  163. Simmons WK, Martin A, Barsalou LW. 2005. Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb. Cortex 15:1602–8 [Google Scholar]
  164. Simmons WK, Ramjee V, McRae K, Martin A, Barsalou LW. 2006. fMRI evidence for an overlap in the neural bases of color perception and color knowledge. NeuroImage 31:S182 [Google Scholar]
  165. Snowden JS, Goulding PJ, Neary D. 1989. Semantic dementia: a form of circumscribed cerebral atrophy. Behav. Neurol. 2:167–82 [Google Scholar]
  166. Snowden JS, Neary D, Mann D. 2007. Frontotemporal lobar degeneration: clinical and pathological relationships. Acta Neuropathol 114:31–38 [Google Scholar]
  167. Snowden JS, Thompson JC, Stopford CL, Richardson AM, Gerhard A. et al. 2011. The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain 134:2478–92 [Google Scholar]
  168. Thompson-Schill SL. 2003. Neuroimaging studies of semantic memory: inferring “how” from “where.”. Neuropsychologia 41:280–92 [Google Scholar]
  169. Thompson-Schill SL, D'Esposito M, Aguirre GK, Farah MJ. 1997. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. PNAS 94:14792–97 [Google Scholar]
  170. Tulving E. 1972. Organisation of memory. The Organisation of Mind T Shallice, RP Cooper 381–403 Oxford, UK: Oxford Univ. Press [Google Scholar]
  171. van Hell JG De Groot AMB. 1998. Disentangling context availability and concreteness in lexical decision and word translation. Q. J. Exp. Psychol. 51:41–63 [Google Scholar]
  172. Vargha-Khadem F, Gadian DG, Copp A, Mishkin M. 2005. FOXP2 and the neuroanatomy of speech and language. Nat. Rev. Neurosci. 6:131–38 [Google Scholar]
  173. Visser M, Lambon Ralph MA. 2011. Differential contributions of bilateral ventral anterior temporal lobe and left anterior superior temporal gyrus to semantic processes. J. Cogn. Neurosci. 23:3121–31 [Google Scholar]
  174. Wang J, Conder JA, Blitzer DN, Shinkareva SV. 2010. Neural representation of abstract and concrete concepts: a meta-analysis of neuroimaging studies. Hum. Brain Mapp. 31:1459–68 [Google Scholar]
  175. Warrington EK. 1975. The selective impairment of semantic memory. Q. J. Exp. Psychol. 27:635–57 [Google Scholar]
  176. Weinstein J, Koenig P, Gunawardena BA, McMillan C, Bonner M, Grossman M. 2011. Preserved musical semantic memory in semantic dementia. Arch. Neurol. 68:248–50 [Google Scholar]
  177. Weintraub S, Mesulam MM, Wieneke C, Rademaker A, Rogalski EJ, Thompson CK. 2009. The northwestern anagram test: measuring sentence production in primary progressive aphasia. Am. J. Alzheimer's Dis. Other Dement. 24:408–16 [Google Scholar]
  178. Weintraub S, Rogalski E, Shaw E, Sawiani S, Rademaker A. et al. 2013. Verbal and nonverbal memory in primary progressive aphasia: the Three Words–Three Shapes Test. Behav. Neurol. 26:67–76 [Google Scholar]
  179. Whitwell JL, Dickson DW, Murray ME, Weigand SD, Tosakulwong N. et al. 2012. Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease: a case-control study. Lancet Neurol 11:868–77 [Google Scholar]
  180. Wilson SM, DeMarco AT, Henry ML, Gesierich B, Babiak M. et al. 2016. Variable disruption of a syntactic processing network in primary progressive aphasia. Brain 139:2994–3006 [Google Scholar]
  181. Wilson SM, Dronkers NF, Ogar JM, Jang J, Growdon ME. et al. 2010a. Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J. Neurosci. 30:16845–54 [Google Scholar]
  182. Wilson SM, Henry ML, Besbris M, Ogar JM, Dronkers NF. et al. 2010b. Connected speech production in three variants of primary progressive aphasia. Brain 133:2069–88 [Google Scholar]
  183. Win KT, Pluta J, Yushkevich P, Irwin DJ, McMillan CT. et al. 2017. Neural correlates of verbal episodic memory and lexical retrieval in logopenic variant primary progressive aphasia. Front. Neurosci. 11:330 [Google Scholar]
  184. Wood EM, Falcone D, Suh E, Irwin DJ, Chen-Plotkin A. et al. 2013. Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurol 70:1411–17 [Google Scholar]
  185. Xie SX, Forman MS, Farmer J, Moore P, Wang Y. et al. 2008. Factors associated with survival probability in autopsy-proven frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry 79:126–29 [Google Scholar]
  186. York C, Olm C, Boller A, McCluskey L, Elman L. et al. 2014. Action verb comprehension in amyotrophic lateral sclerosis and Parkinson's disease. J. Neurol. 261:1073–79 [Google Scholar]
  187. Zeidman P, Maguire EA. 2016. Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nat. Rev. Neurosci. 17:173–82 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error