1932

Abstract

Aphasia, a neurological condition primarily resulting from stroke, significantly impairs communication and quality of life. This review focuses on aphasia recovery and emphasizes the interplay of clinical impairment, neural adaptation, and therapeutic intervention. Natural recovery varies with factors such as lesion characteristics, white matter integrity, and demographics, and neuroplasticity and cognitive compensation play crucial roles. Treatment-induced recovery encompasses traditional language therapies and innovative strategies, including the integration of advanced neurological techniques like neuromodulation and neurofeedback. Emerging trends, such as self-managed digital therapeutics and precision medicine approaches, offer promising avenues for enhancing language recovery. By bridging the gap between neurological understanding and clinical application, this review highlights the multifaceted nature of aphasia recovery and the latest advancements in treatment strategies, paving the way for more targeted and effective rehabilitation approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-linguistics-011724-121245
2025-02-03
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/linguistics/11/1/annurev-linguistics-011724-121245.html?itemId=/content/journals/10.1146/annurev-linguistics-011724-121245&mimeType=html&fmt=ahah

Literature Cited

  1. Abel S, Schultz A, Radermacher I, Willmes K, Huber W. 2005.. Decreasing and increasing cues in naming therapy for aphasia. . Aphasiology 19::83148. https://doi.org/10.1080/02687030500268902
    [Crossref] [Google Scholar]
  2. Ali M, VandenBerg K, Williams LJ, Williams LR, Abo M, et al. 2021.. Predictors of poststroke aphasia recovery. . Stroke 52::177887. https://doi.org/10.1161/STROKEAHA.120.031162
    [Crossref] [Google Scholar]
  3. Alyahya RSW. 2023.. The structural neural correlates of spoken discourse. . In Spoken Discourse Impairments in the Neurogenic Populations, ed. AP-H Kong , pp. 11119. Cham, Switz:.: Springer Int. https://doi.org/10.1007/978-3-031-45190-4_8
    [Google Scholar]
  4. Beeson PM, Hirsch F, Rewega M. 2010a.. Successful single-word writing treatment: experimental analyses of four cases. . Aphasiology 16::47391. https://doi.org/10.1080/02687030244000167
    [Crossref] [Google Scholar]
  5. Beeson PM, Rising K, Kim ES, Rapcsak SZ. 2010b.. A treatment sequence for phonological alexia/agraphia. . J. Speech Lang. Hear. Res. 53:(2):45068. https://doi.org/10.1044/1092-4388(2009/08-0229)
    [Crossref] [Google Scholar]
  6. Beeson PM, Rising K, Volk J. 2003.. Writing treatment for severe aphasia: Who benefits?. J. Speech Lang. Hear. Res. 46::103860. https://doi.org/10.1044/1092-4388(2003/083)
    [Crossref] [Google Scholar]
  7. Benghanem S, Rosso C, Arbizu C, Moulton E, Dormont D, et al. 2019.. Aphasia outcome: the interactions between initial severity, lesion size and location. . J. Neurol. 266::13039. https://doi.org/10.1007/s00415-019-09259
    [Crossref] [Google Scholar]
  8. Berthier ML, Santana-Moreno D, Beltrán-Corbellini Á, Criado-Álamo JC, Edelkraut L, et al. 2022.. Controlling the past, owning the present, and future: Cholinergic modulation decreases semantic perseverations in a person with post-stroke aphasia. . Aphasiology 36::1293311. https://doi.org/10.1080/02687038.2021.1957082
    [Crossref] [Google Scholar]
  9. Billot A, Kiran S. 2024.. Disentangling neuroplasticity mechanisms in post-stroke language recovery. . Brain Lang. 251::105381. https://doi.org/10.1016/j.bandl.2024.105381
    [Crossref] [Google Scholar]
  10. Billot A, Lai S, Varkanitsa M, Braun EJ, Rapp B, et al. 2022.. Multimodal neural and behavioral data predict response to rehabilitation in chronic poststroke aphasia. . Stroke 53::160614
    [Crossref] [Google Scholar]
  11. Biou E, Cassoudesalle H, Cogné M, Sibon I, De Gabory I, et al. 2019.. Transcranial direct current stimulation in post-stroke aphasia rehabilitation: a systematic review. . Ann. Phys. Rehabil. Med. 62::10421. https://doi.org/10.1016/j.rehab.2019.01.003
    [Crossref] [Google Scholar]
  12. Bock K, Levelt W. 1994.. Language production: grammatical encoding. . In Handbook of Psycholinguistics, ed. , pp. 94584. San Diego, CA:: Academic
    [Google Scholar]
  13. Bonkhoff AK, Hope T, Bzdok D, Guggisberg AG, Hawe RL, et al. 2022.. Recovery after stroke: the severely impaired are a distinct group. . J. Neurol. Neurosurg. Psychiatry 93::36978. https://doi.org/10.1136/jnnp-2021-327211
    [Crossref] [Google Scholar]
  14. Bose A, Buchanan L. 2007.. A cognitive and psycholinguistic investigation of neologisms. . Aphasiology 21::72638. https://doi.org/10.1080/02687030701192315
    [Crossref] [Google Scholar]
  15. Brady MC, Kelly H, Godwin J, Enderby P, Campbell P. 2016.. Speech and language therapy for aphasia following stroke. . Cochrane Database Syst. Rev. 2016:(6):CD000425
    [Google Scholar]
  16. Braley M, Pierce JS, Saxena S, De Oliveira E, Taraboanta L, et al. 2021.. A virtual, randomized, control trial of a digital therapeutic for speech, language, and cognitive intervention in post-stroke persons with aphasia. . Front. Neurol. 12::626780
    [Crossref] [Google Scholar]
  17. Braun EJ, Billot A, Meier EL, Pan Y, Parrish TB, et al. 2022.. White matter microstructural integrity pre- and post-treatment in individuals with chronic post-stroke aphasia. . Brain Lang. 232::105163. https://doi.org/10.1016/j.bandl.2022.105163
    [Crossref] [Google Scholar]
  18. Breining BL, Sebastian R. 2020.. Neuromodulation in post-stroke aphasia treatment. . Curr. Phys. Med. Rehabil. Rep. 8::4456. https://doi.org/10.1007/s40141-020-00257-5
    [Crossref] [Google Scholar]
  19. Brownsett SLE, Warren JE, Geranmayeh F, Woodhead Z, Leech R, et al. 2014.. Cognitive control and its impact on recovery from aphasic stroke. . Brain 137::24254. https://doi.org/10.1093/brain/awt289
    [Crossref] [Google Scholar]
  20. Busby N, Hillis AE, Bunker L, Rorden C, Newman-Norlund R, et al. 2023.. Comparing the brain–behaviour relationship in acute and chronic stroke aphasia. . Brain Commun. 5:(2):fcad014. https://doi.org/10.1093/braincomms/fcad014
    [Crossref] [Google Scholar]
  21. Caramazza A, Miceli G, Villa G, Romani C. 1987.. The role of the Graphemic Buffer in spelling: evidence from a case of acquired dysgraphia. . Cognition 26::5985. https://doi.org/10.1016/0010-0277(87)90014-X
    [Crossref] [Google Scholar]
  22. Cardell EA, Chenery HJ. 1999.. A cognitive neuropsychological approach to the assessment and remediation of acquired dysgraphia. . Lang. Test. 16:(3):35388
    [Crossref] [Google Scholar]
  23. Cavanaugh R, Kravetz C, Jarold L, Quique Y, Turner R, et al. 2021.. Is there a research–practice dosage gap in aphasia rehabilitation?. Am. J. Speech-Lang. Pathol. 30::211529
    [Crossref] [Google Scholar]
  24. Cherney LR, Lee JB, Kim KYA, van Vuuren S. 2021.. Web-based Oral Reading for Language in Aphasia (Web ORLA®): a pilot randomized control trial. . Clin. Rehabil. 35::97687
    [Crossref] [Google Scholar]
  25. Cho S, Thompson CK. 2010.. What goes wrong during passive sentence production in agrammatic aphasia: an eyetracking study. . Aphasiology 24:(12):157692
    [Crossref] [Google Scholar]
  26. Collins AM, Loftus EF. 1975.. A spreading-activation theory of semantic processing. . Psychol. Rev. 82::40728
    [Crossref] [Google Scholar]
  27. Coltheart M, Rastle K, Perry C, Langdon R, Ziegler J. 2001.. DRC: a Dual Route Cascaded model of visual word recognition and reading aloud. . Psychol. Rev. 108::20456. https://doi.org/10.1037/0033-295X.108.1.204
    [Crossref] [Google Scholar]
  28. Conroy P, Sage K, Lambon Ralph MA. 2009.. The effects of decreasing and increasing cue therapy on improving naming speed and accuracy for verbs and nouns in aphasia. . Aphasiology 23::70730. https://doi.org/10.1080/02687030802165574
    [Crossref] [Google Scholar]
  29. Cortes M, Black-Schaffer R, Edwards D. 2012.. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians. . Neuromodulation 15::31625. https://doi.org/10.1111/j.1525-1403.2012.00459.x
    [Crossref] [Google Scholar]
  30. Davis GA. 2005.. PACE revisited. . Aphasiology 19::2138. https://doi.org/10.1080/02687030444000598
    [Crossref] [Google Scholar]
  31. de Aguiar V, Paolazzi CL, Miceli G. 2015.. tDCS in post-stroke aphasia: the role of stimulation parameters, behavioral treatment and patient characteristics. . Cortex 63::296316. https://doi.org/10.1016/j.cortex.2014.08.015
    [Crossref] [Google Scholar]
  32. Dell GS, Schwartz MF, Martin N, Saffran EM, Gagnon DA. 1997.. Lexical access in aphasic and nonaphasic speakers. . Psychol. Rev. 104::80138. https://doi.org/10.1037/0033-295X.104.4.801
    [Crossref] [Google Scholar]
  33. Dell GS, Schwartz MF, Nozari N, Faseyitan O, Branch Coslett H. 2013.. Voxel-based lesion-parameter mapping: identifying the neural correlates of a computational model of word production. . Cognition 128::38096. https://doi.org/10.1016/j.cognition.2013.05.007
    [Crossref] [Google Scholar]
  34. DeMarco AT, van der Stelt C, Paul S, Dvorak E, Lacey E, et al. 2022.. Absence of perilesional neuroplastic recruitment in chronic poststroke aphasia. . Neurology 99::11928. https://doi.org/10.1212/WNL.0000000000200382
    [Crossref] [Google Scholar]
  35. de Partz M-P. 1986.. Re-education of a deep dyslexic patient: rationale of the method and results. . Cogn. Neuropsychol. 3:(2):14977
    [Crossref] [Google Scholar]
  36. Des Roches CA, Balachandran I, Ascenso EM, Tripodis Y, Kiran S. 2015.. Effectiveness of an impairment-based individualized rehabilitation program using an iPad-based software platform. . Front. Hum. Neurosci. 8::01015
    [Crossref] [Google Scholar]
  37. Dipper L, Marshall J, Boyle M, Botting N, Hersh D, et al. 2021a.. Treatment for improving discourse in aphasia: a systematic review and synthesis of the evidence base. . Aphasiology 35::112567. https://doi.org/10.1080/02687038.2020.1765305
    [Crossref] [Google Scholar]
  38. Dipper L, Marshall J, Boyle M, Hersh D, Botting N, Cruice M. 2021b.. Creating a theoretical framework to underpin discourse assessment and intervention in aphasia. . Brain Sci. 11::183. https://doi.org/10.3390/brainsci11020183
    [Crossref] [Google Scholar]
  39. Doogan C, Dignam J, Copland D, Leff A. 2018.. Aphasia recovery: when, how and who to treat?. Curr. Neurol. Neurosci. Rep. 18::90. https://doi.org/10.1007/s11910-018-0891-x
    [Crossref] [Google Scholar]
  40. Edmonds LA. 2016.. A review of Verb Network Strengthening Treatment: theory, methods, results, and clinical implications. . Top. Lang. Disord. 36::12335. https://doi.org/10.1097/TLD.0000000000000088
    [Crossref] [Google Scholar]
  41. Edmonds LA, Mammino K, Ojeda J. 2014.. Effect of Verb Network Strengthening Treatment (VNeST) in persons with aphasia: extension and replication of previous findings. . Am. J. Speech-Lang. Pathol. 23::S31229. https://doi.org/10.1044/2014_AJSLP-13-0098
    [Crossref] [Google Scholar]
  42. Edmonds LA, Mizrahi S. 2011.. Online priming of agent and patient thematic roles and related verbs in younger and older adults. . Aphasiology 25:(12):14881506
    [Crossref] [Google Scholar]
  43. El Hachioui H, Lingsma HF, van de Sandt-Koenderman ME, Dippel DWJ, Koudstaal PJ, Visch-Brink EG. 2013.. Recovery of aphasia after stroke: a 1-year follow-up study. . J. Neurol. 260::16671. https://doi.org/10.1007/s00415-012-6607-2
    [Crossref] [Google Scholar]
  44. Fedorenko E, Ryskin R, Gibson E. 2023.. Agrammatic output in non-fluent, including Broca's, aphasia as a rational behavior. . Aphasiology 37::19812000. https://doi.org/10.1080/02687038.2022.2143233
    [Crossref] [Google Scholar]
  45. Fleming V, Brownsett S, Krason A, Maegli MA, Coley-Fisher H, et al. 2021.. Efficacy of spoken word comprehension therapy in patients with chronic aphasia: a cross-over randomised controlled trial with structural imaging. . J. Neurol. Neurosurg. Psychiatry 92::41824. https://doi.org/10.1136/jnnp-2020-324256
    [Crossref] [Google Scholar]
  46. Flowers HL, Skoretz SA, Silver FL, Rochon E, Fang J, et al. 2016.. Poststroke aphasia frequency, recovery, and outcomes: a systematic review and meta-analysis. . Arch. Phys. Med. Rehabil. 97::2188201.e8. https://doi.org/10.1016/j.apmr.2016.03.006
    [Crossref] [Google Scholar]
  47. Fridriksson J, Richardson JD, Baker JM, Rorden C. 2011.. Transcranial direct current stimulation improves naming reaction time in fluent aphasia. . Stroke 42::81921. https://doi.org/10.1161/STROKEAHA.110.600288
    [Crossref] [Google Scholar]
  48. Fridriksson J, Richardson JD, Fillmore P, Cai B. 2012.. Left hemisphere plasticity and aphasia recovery. . NeuroImage 60::85463. https://doi.org/10.1016/j.neuroimage.2011.12.057
    [Crossref] [Google Scholar]
  49. Friedman RB, Lott SN. 2002.. Successful blending in a phonological reading treatment for deep alexia. . Aphasiology 16:(3):35572
    [Crossref] [Google Scholar]
  50. George MS, Lisanby SH, Sackeim HA. 1999.. Transcranial magnetic stimulation: applications in neuropsychiatry. . Arch. Gen. Psychiatry 56::30011. https://doi.org/10.1001/archpsyc.56.4.300
    [Crossref] [Google Scholar]
  51. Gilmore N, Dwyer M, Kiran S. 2019.. Benchmarks of significant change after aphasia rehabilitation. . Arch. Phys. Med. Rehabil. 100::113139
    [Crossref] [Google Scholar]
  52. Godlove J, Anantha V, Advani M, Des Roches C, Kiran S. 2019.. Comparison of therapy practice at home and in the clinic: a retrospective analysis of the Constant Therapy platform data set. . Front. Neurol. 10::140
    [Crossref] [Google Scholar]
  53. Gomes J, Wachsman AM. 2013.. Types of strokes. . In Handbook of Clinical Nutrition and Stroke, ed. ML Corrigan, AA Escuro, DF Kirby , pp. 1531. Totowa, NJ:: Humana
    [Google Scholar]
  54. Goodglass H, Wingfield A. 1997.. Anomia: Neuroanatomical and Cognitive Correlates. San Diego, CA:: Academic
    [Google Scholar]
  55. Greenwood A, Grassly J, Hickin J, Best W. 2010.. Phonological and orthographic cueing therapy: a case of generalised improvement. . Aphasiology 24::9911016. https://doi.org/10.1080/02687030903168220
    [Crossref] [Google Scholar]
  56. Hamilton RH, Chrysikou EG, Coslett B. 2011.. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. . Brain Lang. 118::4050. https://doi.org/10.1016/j.bandl.2011.02.005
    [Crossref] [Google Scholar]
  57. Haro-Martínez A, Pérez-Araujo CM, Sanchez-Caro JM, Fuentes B, Díez-Tejedor E. 2021.. Melodic intonation therapy for post-stroke non-fluent aphasia: systematic review and meta-analysis. . Front. Neurol. 12::700115. https://doi.org/10.3389/fneur.2021.700115
    [Crossref] [Google Scholar]
  58. Harvey DY, Parchure S, Hamilton RH. 2022.. Factors predicting long-term recovery from post-stroke aphasia. . Aphasiology 36::135172. https://doi.org/10.1080/02687038.2021.1966374
    [Crossref] [Google Scholar]
  59. Hillis AE, Beh YY, Sebastian R, Breining B, Tippett DC, et al. 2018.. Predicting recovery in acute poststroke aphasia. . Ann. Neurol. 83::61222. https://doi.org/10.1002/ana.25184
    [Crossref] [Google Scholar]
  60. Hillis AE, Heidler J. 2002.. Mechanisms of early aphasia recovery. . Aphasiology 16::88595. https://doi.org/10.1080/0268703
    [Crossref] [Google Scholar]
  61. Hillis AE, Wityk RJ, Beauchamp NJ, Ulatowski JA, Jacobs MA, Barker PB. 2004.. Perfusion-weighted MRI as a marker of response to treatment in acute and subacute stroke. . Neuroradiology 46::3139. https://doi.org/10.1007/s00234-002-0918-4
    [Crossref] [Google Scholar]
  62. Hoover E, DeDe G, Maas E. 2021.. A randomized controlled trial of the effects of group conversation treatment on monologic discourse in aphasia. . J. Speech Lang. Hear. Res. 64::486175. https://doi.org/10.1044/2021_JSLHR-21-00023
    [Crossref] [Google Scholar]
  63. Jacobs BJ, Thompson CK. 2000.. Cross-modal generalization effects of training noncanonical sentence comprehension and production in agrammatic aphasia. . J. Speech Lang. Hear. Res. 43::520. https://doi.org/10.1044/jslhr.4301.05
    [Crossref] [Google Scholar]
  64. Johnson JP, Ross K, Kiran S. 2017.. Multi-step treatment for acquired alexia and agraphia (Part I): efficacy, generalisation, and identification of beneficial treatment steps. . Neuropsychol. Rehabil. 29::53464
    [Crossref] [Google Scholar]
  65. Johnson L, Basilakos A, Yourganov G, Cai B, Bonilha L, et al. 2019.. Progression of aphasia severity in the chronic stages of stroke. . Am. J. Speech-Lang. Pathol. 28::63949. https://doi.org/10.1044/2018_AJSLP-18-0123
    [Crossref] [Google Scholar]
  66. Kang EK, Sohn HM, Han MK, Kim W, Han TR, Paik NJ. 2009.. Severity of post-stroke aphasia according to aphasia type and lesion location in Koreans. . J. Korean Med. Sci. 25::12327. https://doi.org/10.3346/jkms.2010.25.1.123
    [Crossref] [Google Scholar]
  67. Kearns KP. 1985.. Response elaboration training for patient initiated utterances. . Clin. Aphasiol. 15::196204
    [Google Scholar]
  68. Kendall D, Conway T, Rosenbek J, Gonzalez-Rothi L. 2003.. Case study phonological rehabilitation of acquired phonologic alexia. . Aphasiology 17:(11):107395
    [Crossref] [Google Scholar]
  69. Kendall DL, Moldestad MO, Allen W, Torrence J, Nadeau SE. 2019.. Phonomotor versus semantic feature analysis treatment for anomia in 58 persons with aphasia: a randomized controlled trial. . J. Speech Lang. Hear. Res. 62::446482. https://doi.org/10.1044/2019_JSLHR-L-18-0257
    [Crossref] [Google Scholar]
  70. Kertesz A, McCabe P. 1977.. Recovery patterns and prognosis in aphasia. . Brain 100::118. https://doi.org/10.1093/brain/100.1.1
    [Crossref] [Google Scholar]
  71. Kielar A, Patterson D, Chou Y. 2022.. Efficacy of repetitive transcranial magnetic stimulation in treating stroke aphasia: systematic review and meta-analysis. . Clin. Neurophysiol. 140::196227. https://doi.org/10.1016/j.clinph.2022.04.017
    [Crossref] [Google Scholar]
  72. Kim M, Beaudoin-Parsons D. 2007.. Training phonological reading in deep alexia: Does it improve reading words with low imageability?. Clin. Linguist. Phonet. 21:(5):32151
    [Crossref] [Google Scholar]
  73. Kim SH, Jang SH. 2013.. Prediction of aphasia outcome using diffusion tensor tractography for arcuate fasciculus in stroke. . Am. J. Neuroradiol. 34::78590. https://doi.org/10.3174/ajnr.A3259
    [Crossref] [Google Scholar]
  74. Kiran S. 2007.. Complexity in the treatment of naming deficits. . Am. J. Speech-Lang. Pathol. 16::1829. https://doi.org/10.1044/1058-0360(2007/004)
    [Crossref] [Google Scholar]
  75. Kiran S, Meier EL, Johnson JP. 2019.. Neuroplasticity in aphasia: a proposed framework of language recovery. . J. Speech Lang. Hear. Res. 62::397385. https://doi.org/10.1044/2019_JSLHR-L-RSNP-19-0054
    [Crossref] [Google Scholar]
  76. Kiran S, Thompson CK. 2019.. Neuroplasticity of language networks in aphasia: advances, updates, and future challenges. . Front. Neurol. 10::00295
    [Crossref] [Google Scholar]
  77. Kiran S, Viswanathan M. 2008.. Oral reading abilities in severe alexia: a case study. . J. Med. Speech-Lang. Pathol. 16::4359
    [Google Scholar]
  78. Kristensson J, Behrns I, Saldert C. 2015.. Effects on communication from intensive treatment with semantic feature analysis in aphasia. . Aphasiology 29::46687. https://doi.org/10.1080/02687038.2014.973359
    [Crossref] [Google Scholar]
  79. Kristinsson S, Basilakos A, Elm J, Spell LA, Bonilha L, et al. 2021a.. Individualized response to semantic versus phonological aphasia therapies in stroke. . Brain Commun. 3::fcab174
    [Crossref] [Google Scholar]
  80. Kristinsson S, den Ouden DB, Rorden C, Newman-Norlund R, Neils-Strunjas J, Fridriksson J. 2022.. Predictors of therapy response in chronic aphasia: building a foundation for personalized aphasia therapy. . J. Stroke 24::189206. https://doi.org/10.5853/jos.2022.01102
    [Crossref] [Google Scholar]
  81. Kristinsson S, Zhang W, Rorden C, Newman-Norlund R, Basilakos A, et al. 2021b.. Machine learning-based multimodal prediction of language outcomes in chronic aphasia. . Hum. Brain Mapp. 42::168298
    [Crossref] [Google Scholar]
  82. Laine M, Martin N. 1996.. Lexical retrieval deficit in picture naming: implications for word production models. . Brain Lang. 53::283314. https://doi.org/10.1006/brln.1996.0050
    [Crossref] [Google Scholar]
  83. Laska AC, Hellblom A, Murray V, Kahan T, Von Arbin M. 2001.. Aphasia in acute stroke and relation to outcome. . J. Intern. Med. 249::41322. https://doi.org/10.1046/j.1365-2796.2001.00812.x
    [Crossref] [Google Scholar]
  84. Lazar RM, Minzer B, Antoniello D, Festa JR, Krakauer JW, Marshall RS. 2010.. Improvement in aphasia scores after stroke is well predicted by initial severity. . Stroke 41::148588. https://doi.org/10.1161/STROKEAHA.109.577338
    [Crossref] [Google Scholar]
  85. Leaman MC, Edmonds LA. 2024.. Pilot results for ECoLoGiC-Tx: a new conversation-level intervention improving language in people with moderate to severe aphasia. . Am. J. Speech-Lang. Pathol. 33::15372. https://doi.org/10.1044/2023_AJSLP-2300141
    [Crossref] [Google Scholar]
  86. Lee JB, Kaye RC, Cherney LR. 2009.. Conversational script performance in adults with non-fluent aphasia: treatment intensity and aphasia severity. . Aphasiology 23::88597. https://doi.org/10.1080/02687030802669534
    [Crossref] [Google Scholar]
  87. Lendrem W, Lincoln NB. 1985.. Spontaneous recovery of language in patients with aphasia between 4 and 34 weeks after stroke. . J. Neurol. Neurosurg. Psychiatry 48::74348
    [Crossref] [Google Scholar]
  88. Leonard C, Rochon E, Laird L. 2008.. Treating naming impairments in aphasia: findings from a phonological components analysis treatment. . Aphasiology 22::92347. https://doi.org/10.1080/02687030701831474
    [Crossref] [Google Scholar]
  89. Martin N, Saffran EM. 2002.. The relationship of input and output phonological processing: an evaluation of models and evidence to support them. . Aphasiology 16::10750. https://doi.org/10.1080/02687040143000447
    [Crossref] [Google Scholar]
  90. Martin RC, Slevc LR. 2014.. Language production and working memory. . In The Oxford Handbook of Language Production, ed. M Goldrick, VS Ferreira, M Miozzo , pp. 43750. Oxford, UK:: Oxford Univ. Press. https://doi.org/10.1093/oxfordhb/9780199735471.013.009
    [Google Scholar]
  91. Merrett DL, Peretz I, Wilson SJ. 2014.. Neurobiological, cognitive, and emotional mechanisms in melodic intonation therapy. . Front. Hum. Neurosci. 8::401
    [Crossref] [Google Scholar]
  92. Murray LL, Karcher L. 2000.. A treatment for written verb retrieval and sentence construction skills. . Aphasiology 14::585602. https://doi.org/10.1080/026870300401333
    [Crossref] [Google Scholar]
  93. Murray LL, Timberlake A, Eberle R. 2007.. Treatment of underlying forms in a discourse context. . Aphasiology 21::13963. https://doi.org/10.1080/02687030601026530
    [Crossref] [Google Scholar]
  94. Nickels L. 2002.. Therapy for naming disorders: revisiting, revising, and reviewing. . Aphasiology 16::93579. https://doi.org/10.1080/02687030244000563
    [Crossref] [Google Scholar]
  95. Norton A, Zipse L, Marchina S, Schlaug G. 2009.. Melodic intonation therapy: shared insights on how it is done and why it might help. . Ann. N.Y. Acad. Sci. 1169::43136
    [Crossref] [Google Scholar]
  96. O'Halloran R, Renton J, Harvey S, McSween M-P, Wallace SJ. 2024.. Do social determinants influence post-stroke aphasia outcomes? A scoping review. . Disabil. Rehabil. 46:(7):127487. https://doi.org/10.1080/09638288.2023.2193760
    [Crossref] [Google Scholar]
  97. Palmer R, Dimairo M, Cooper C, Enderby P, Brady M, et al. 2019.. Self-managed, computerised speech and language therapy for patients with chronic aphasia post-stroke compared with usual care or attention control (Big CACTUS): a multicentre, single-blinded, randomised controlled trial. . Lancet Neurol. 18::82133
    [Crossref] [Google Scholar]
  98. Papo D. 2019.. Neurofeedback: principles, appraisal, and outstanding issues. . Eur. J. Neurosci. 49::145469. https://doi.org/10.1111/ejn.14312
    [Crossref] [Google Scholar]
  99. Pedersen PM, Stig Jørgensen H, Nakayama H, Raaschou HO, Olsen TS. 1995.. Aphasia in acute stroke: incidence, determinants, and recovery. . Ann. Neurol. 38::65966. https://doi.org/10.1002/ana.410380416
    [Crossref] [Google Scholar]
  100. Pedersen PM, Vinter K, Olsen TS. 2001.. The communicative effectiveness index: psychometric properties of a Danish adaptation. . Aphasiology 15::787802. https://doi.org/10.1080/02687040143000195
    [Crossref] [Google Scholar]
  101. Pedersen PM, Vinter K, Olsen TS. 2004.. Aphasia after stroke: type, severity and prognosis: the Copenhagen Aphasia Study. . Cerebrovasc. Dis. 17::3543. https://doi.org/10.1159/000073896
    [Crossref] [Google Scholar]
  102. Peñaloza C, Dekhtyar M, Scimeca M, Carpenter E, Mukadam N, Kiran S. 2020.. Predicting treatment outcomes for bilinguals with aphasia using computational modeling: study protocol for the PROCoM randomised controlled trial. . BMJ Open 10::e040495
    [Crossref] [Google Scholar]
  103. Pickersgill MJ, Lincoln NB. 1983.. Prognostic indicators and the pattern of recovery of communication in aphasic stroke patients. . J. Neurol. Neurosurg. Psychiatry 46::13039. https://doi.org/10.1136/jnnp.46.2.130
    [Crossref] [Google Scholar]
  104. Pierce JE, Menahemi-Falkov M, O'Halloran R, Togher L, Rose ML. 2019.. Constraint and multimodal approaches to therapy for chronic aphasia: a systematic review and meta-analysis. . Neuropsychol. Rehabil. 29::100541. https://doi.org/10.1080/09602011.2017.1365730
    [Crossref] [Google Scholar]
  105. Pinter D, Gattringer T, Fandler-Höfler S, Kneihsl M, Eppinger S, et al. 2020.. Early progressive changes in white matter integrity are associated with stroke recovery. . Transl. Stroke Res. 11::126472. https://doi.org/10.1007/s12975-020-00797-x
    [Crossref] [Google Scholar]
  106. Poirier , Fossard M, Monetta L. 2023.. The efficacy of treatments for sentence production deficits in aphasia: a systematic review. . Aphasiology 37::12242. https://doi.org/10.1080/02687038.2021.1983152
    [Crossref] [Google Scholar]
  107. Popescu T, Stahl B, Wiernik BM, Haiduk F, Zemanek M, et al. 2022.. Melodic intonation therapy for aphasia: a multi-level meta-analysis of randomized controlled trials and individual participant data. . Ann. N.Y. Acad. Sci. 1516::7684. https://doi.org/10.1111/nyas.14848
    [Crossref] [Google Scholar]
  108. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, et al. 2008.. Inter-individual variability in the capacity for motor recovery after ischemic stroke. . Neurorehabil. Neural Repair 22::6471. https://doi.org/10.1177/1545968307305302
    [Crossref] [Google Scholar]
  109. Pulvermüller F, Neininger B, Elbert T, Mohr B, Rockstroh B, et al. 2001.. Constraint-induced therapy of chronic aphasia after stroke. . Stroke 32::162126. https://doi.org/10.1161/01.STR.32.7.1621
    [Crossref] [Google Scholar]
  110. Purdy M, Coppens P, Madden EB, Mozeiko J, Patterson J, et al. 2019.. Reading comprehension treatment in aphasia: a systematic review. . Aphasiology 33::62951. https://doi.org/10.1080/02687038.2018.1482405
    [Crossref] [Google Scholar]
  111. Quique YM, Evans WS, Dickey MW. 2019.. Acquisition and generalization responses in aphasia naming treatment: a meta-analysis of semantic feature analysis outcomes. . Am. J. Speech-Lang. Pathol. 28::23046. https://doi.org/10.1044/2018_AJSLP-170155
    [Crossref] [Google Scholar]
  112. Raymer AM, Roitsch J. 2023.. Effectiveness of constraint-induced language therapy for aphasia: evidence from systematic reviews and meta-analyses. . Am. J. Speech-Lang. Pathol. 32::2393401. https://doi.org/10.1044/2022_AJSLP-22-00248
    [Crossref] [Google Scholar]
  113. Rezaii N, Mahowald K, Ryskin R, Dickerson B, Gibson E. 2022.. A syntax–lexicon trade-off in language production. . PNAS 119::e2120203119. https://doi.org/10.1073/pnas.2120203119
    [Crossref] [Google Scholar]
  114. Riley EA, Brookshire CE, Kendall DL. 2018.. Acquired alexias: mechanisms of reading. . In The Oxford Handbook of Aphasia and Language Disorders, ed. AM Raymer, LJ Gonzalez Rothi , pp. 21540. New York:: Oxford Univ. Press. https://doi.org/10.1093/oxfordhb/9780199772391.013.12
    [Google Scholar]
  115. Rochon E, Laird L, Bose A, Scofield J. 2005.. Mapping therapy for sentence production impairments in nonfluent aphasia. . Neuropsychol. Rehabil. 15::136. https://doi.org/10.1080/09602010343000327
    [Crossref] [Google Scholar]
  116. Rose ML, Nickels L, Copland D, Togher L, Godecke E, et al. 2022.. Results of the COMPARE trial of constraint-induced or multimodality aphasia therapy compared with usual care in chronic post-stroke aphasia. . J. Neurol. Neurosurg. Psychiatry 93::57381. https://doi.org/10.1136/jnnp-2021-328422
    [Crossref] [Google Scholar]
  117. Sandberg CW, Khorassani H, Gray T, Dickey MW. 2023.. Novel participant-level meta-analytic evidence for AbSANT efficacy. . Front. Rehabil. Sci. 4::1017389
    [Crossref] [Google Scholar]
  118. Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, et al. 2006.. Dynamics of language reorganization after stroke. . Brain 129::137184. https://doi.org/10.1093/brain/awl090
    [Crossref] [Google Scholar]
  119. Schlaug G, Marchina S, Norton A. 2009.. Evidence for plasticity in white-matter tracts of patients with chronic Broca's aphasia undergoing intense intonation-based speech therapy. . Ann. N.Y. Acad. Sci. 1169::38594. https://doi.org/10.1111/j.1749-6632.2009.04587.x
    [Crossref] [Google Scholar]
  120. Schwartz MF, Linebarger MC, Saffran EM, Pate DS. 1987.. Syntactic transparency and sentence interpretation in aphasia. . Lang. Cogn. Process. 2::85113. https://doi.org/10.1080/01690968708406352
    [Crossref] [Google Scholar]
  121. Schwartz MF, Saffran EM, Fink RB, Myers JL, Martin N. 1994.. Mapping therapy: a treatment programme for agrammatism. . Aphasiology 8::1954. https://doi.org/10.1080/02687039408248639
    [Crossref] [Google Scholar]
  122. Sebastian R, Saxena S, Tsapkini K, Faria AV, Long C, et al. 2017.. Cerebellar tDCS: a novel approach to augment language treatment post-stroke. . Front. Hum. Neurosci. 10::00695
    [Crossref] [Google Scholar]
  123. Shewan CM, Kertesz A. 1980.. Reliability and validity characteristics of the Western Aphasia Battery (WAB). . J. Speech Hear. Disord. 45::30824. https://doi.org/10.1044/jshd.4503.308
    [Crossref] [Google Scholar]
  124. Sihvonen AJ, Vadinova V, Garden KL, Meinzer M, Roxbury T, et al. 2023.. Right hemispheric structural connectivity and poststroke language recovery. . Hum. Brain Mapp. 44::2897904. https://doi.org/10.1002/hbm.26252
    [Crossref] [Google Scholar]
  125. Simic T, Leonard C, Laird L, Stewart S, Rochon E. 2021.. The effects of intensity on a phonological treatment for anomia in post-stroke aphasia. . J. Commun. Disord. 93::106125
    [Crossref] [Google Scholar]
  126. Sreedharan S, Arun K, Sylaja P, Kesavadas C, Sitaram R. 2019.. Functional connectivity of language regions of stroke patients with expressive aphasia during real-time functional magnetic resonance imaging based neurofeedback. . Brain Connectivity 9::61326. https://doi.org/10.1089/brain.2019.0674
    [Crossref] [Google Scholar]
  127. Stadie N, Rilling E. 2006.. Evaluation of lexically and nonlexically based reading treatment in a deep dyslexic. . Cogn. Neuropsychol. 23:(4):64372
    [Crossref] [Google Scholar]
  128. Stefaniak JD, Alyahya RSW, Lambon Ralph MA. 2021.. Language networks in aphasia and health: a 1000 participant activation likelihood estimation meta-analysis. . NeuroImage 233::117960. https://doi.org/10.1016/j.neuroimage.2021.117960
    [Crossref] [Google Scholar]
  129. Stefaniak JD, Geranmayeh F, Lambon Ralph MA. 2022.. The multidimensional nature of aphasia recovery post-stroke. . Brain 145::135467. https://doi.org/10.1093/brain/awab377
    [Crossref] [Google Scholar]
  130. Stefaniak JD, Halai AD, Lambon Ralph MA. 2020.. The neural and neurocomputational bases of recovery from post-stroke aphasia. . Nat. Rev. Neurol. 16::4355. https://doi.org/10.1038/s41582-019-0282-1
    [Crossref] [Google Scholar]
  131. Stockbridge MD, Faria AV, Fridriksson J, Rorden C, Bonilha L, Hillis AE. 2023.. Subacute aphasia recovery is associated with resting-state connectivity within and beyond the language network. . Ann. Clin. Transl. Neurol. 10::152532. https://doi.org/10.1002/acn3.51842
    [Crossref] [Google Scholar]
  132. Swiderski AM, Quique YM, Dickey MW, Hula WD. 2021.. Treatment of underlying forms: a Bayesian meta-analysis of the effects of treatment and person related-variables on treatment response. . J. Speech Lang. Hear. Res. 64::430828. https://doi.org/10.1044/2021_JSLHR-21-00131
    [Crossref] [Google Scholar]
  133. Thompson CK. 2019.. Neurocognitive recovery of sentence processing in aphasia. . J. Speech Lang. Hear. Res. 62::394772. https://doi.org/10.1044/2019_JSLHR-L-RSNP-19-0219
    [Crossref] [Google Scholar]
  134. Thompson CK, Shapiro LP. 2005.. Treating agrammatic aphasia within a linguistic framework: treatment of underlying forms. . Aphasiology 19::102136. https://doi.org/10.1080/02687030544000227
    [Crossref] [Google Scholar]
  135. Thompson CK, Shapiro LP, Kiran S, Sobecks J. 2003.. The role of syntactic complexity in treatment of sentence deficits in agrammatic aphasia: the Complexity Account of Treatment Efficacy (CATE). . J. Speech Lang. Hear. Res. 46::591607. https://doi.org/10.1044/1092-4388(2003/047)
    [Crossref] [Google Scholar]
  136. Tsapkini K, Hillis AE. 2013.. Spelling intervention in post-stroke aphasia and primary progressive aphasia. . Behav. Neurol. 26::5566
    [Crossref] [Google Scholar]
  137. Turkeltaub PE, Messing S, Norise C, Hamilton RH. 2011.. Are networks for residual language function and recovery consistent across aphasic patients?. Neurology 76::172634. https://doi.org/10.1212/WNL.0b013e31821a44c1
    [Crossref] [Google Scholar]
  138. van Hees S, Angwin A, McMahon K, Copland D. 2013.. A comparison of semantic feature analysis and phonological components analysis for the treatment of naming impairments in aphasia. . Neuropsychol. Rehabil. 23::10232. https://doi.org/10.1080/09602011.2012.726201
    [Crossref] [Google Scholar]
  139. van Hees S, McMahon K, Angwin A, de Zubicaray G, Read S, Copland DA. 2014.. Changes in white matter connectivity following therapy for anomia post stroke. . Neurorehabil. Neural Repair 28::32534. https://doi.org/10.1177/1545968313508654
    [Crossref] [Google Scholar]
  140. Wambaugh JL, Linebaugh CW, Doyle PJ, Martinez AL, Kalinyak-Fliszar M, Spencer KA. 2001.. Effects of two cueing treatments on lexical retrieval in aphasic speakers with different levels of deficit. . Aphasiology 15::93350. https://doi.org/10.1080/02687040143000302
    [Crossref] [Google Scholar]
  141. Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G. 2016.. White matter injury in ischemic stroke. . Prog. Neurobiol. 141::4560. https://doi.org/10.1016/j.pneurobio.2016.04.005
    [Crossref] [Google Scholar]
  142. Webster J, Whitworth A, Morris J. 2015.. Is it time to stop “fishing”? A review of generalisation following aphasia intervention. . Aphasiology 29::124064. https://doi.org/10.1080/02687038.2015.1027169
    [Crossref] [Google Scholar]
  143. Weidner K, Lowman J. 2020.. Telepractice for adult speech-language pathology services: a systematic review. . Perspect. ASHA SIGs 5::32638. https://doi.org/10.1044/2019_PERSP-19-00146
    [Crossref] [Google Scholar]
  144. Wilson SM, Entrup JL, Schneck SM, Onuscheck CF, Levy DF, et al. 2023.. Recovery from aphasia in the first year after stroke. . Brain 146::102139. https://doi.org/10.1093/brain/awac129
    [Crossref] [Google Scholar]
  145. Wycoco V, Shroff M, Sudhakar S, Lee W. 2013.. White matter anatomy. . Neuroimaging Clin. N. Am. 23::197216. https://doi.org/10.1016/j.nic.2012.12.002
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-linguistics-011724-121245
Loading
/content/journals/10.1146/annurev-linguistics-011724-121245
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error