1932

Abstract

Understanding the computational algorithm that gives rise to human language is a shared endeavor among neuroscience, linguistics, and machine learning. We propose a conceptual framework for making measurable progress toward this goal by studying the subcomponents of the processing system: its underlying representations, operations, and information flow. We review evidence from neurophysiology, neuropsychology, linguistic theory, and computational modeling and suggest future directions to push the field forward in developing a precise characterization of spoken language understanding. Overall, we claim that representations of speech properties, and the operations that generate and manipulate those representations, exist within a highly parallel, highly redundant spatiotemporal regime.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-linguistics-031120-111245
2025-02-03
2025-06-15
Loading full text...

Full text loading...

/deliver/fulltext/linguistics/11/1/annurev-linguistics-031120-111245.html?itemId=/content/journals/10.1146/annurev-linguistics-031120-111245&mimeType=html&fmt=ahah

Literature Cited

  1. Ahissar E, Nagarajan S, Ahissar M, Protopapas A, Mahncke H, Merzenich MM. 2001.. Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. . PNAS 98:(23):1336772
    [Crossref] [Google Scholar]
  2. Amici S, Brambati SM, Wilkins DP, Ogar J, Dronkers NL, et al. 2007.. Anatomical correlates of sentence comprehension and verbal working memory in neurodegenerative disease. . J. Neurosci. 27:(23):628290
    [Crossref] [Google Scholar]
  3. Aronoff M, Fudeman K. 2022.. What Is Morphology? Hoboken, NJ:: Wiley
    [Google Scholar]
  4. Barsalou LW. 1999.. Perceptual symbol systems. . Behav. Brain Sci. 22:(4):577609
    [Crossref] [Google Scholar]
  5. Belin P, Zatorre RJ. 2000.. ‘What’, ‘where’ and ‘how’ in auditory cortex. . Nat. Neurosci. 3:(10):96566
    [Crossref] [Google Scholar]
  6. Bemis DK, Pylkkänen L. 2011.. Simple composition: a magnetoencephalography investigation into the comprehension of minimal linguistic phrases. . J. Neurosci. 31:(8):280114
    [Crossref] [Google Scholar]
  7. Bemis DK, Pylkkänen L. 2013.. Basic linguistic composition recruits the left anterior temporal lobe and left angular gyrus during both listening and reading. . Cerebr. Cortex 23:(8):185973
    [Crossref] [Google Scholar]
  8. Bhaya-Grossman I, Chang EF. 2022.. Speech computations of the human superior temporal gyrus. . Annu. Rev. Psychol. 73::79102
    [Crossref] [Google Scholar]
  9. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, et al. 2000.. Human temporal lobe activation by speech and nonspeech sounds. . Cerebr. Cortex 10:(5):51228
    [Crossref] [Google Scholar]
  10. Blevins J. 1995.. The syllable in phonological theory. . In Handbook of Phonological Theory, Vol. 1, ed. J Goldsmith , pp. 20644. Chichester, UK:: Wiley-Blackwell
    [Google Scholar]
  11. Blumstein SE, Baker E, Goodglass H. 1977.. Phonological factors in auditory comprehension in aphasia. . Neuropsychologia 15:(1):1930
    [Crossref] [Google Scholar]
  12. Boatman D. 2004.. Cortical bases of speech perception: evidence from functional lesion studies. . Cognition 92:(1–2):4765
    [Crossref] [Google Scholar]
  13. Boatman D, Hall C, Goldstein MH, Lesser R, Gordon B. 1997.. Neuroperceptual differences in consonant and vowel discrimination: as revealed by direct cortical electrical interference. . Cortex 33:(1):8398
    [Crossref] [Google Scholar]
  14. Brent MR. 1999.. Speech segmentation and word discovery: a computational perspective. . Trends Cogn. Sci. 3:(8):294301
    [Crossref] [Google Scholar]
  15. Brodbeck C, Hong LE, Simon JZ. 2018.. Rapid transformation from auditory to linguistic representations of continuous speech. . Curr. Biol. 28:(24):397683.e5
    [Crossref] [Google Scholar]
  16. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, et al. 2020.. Language models are few-shot learners. . arXiv:2005.14165 [cs.CL]
  17. Buchman AS, Garron DC, Trost-Cardamone JE, Wichter MD, Schwartz M. 1986.. Word deafness: one hundred years later. . J. Neurol. Neurosurg. Psychiatry 49:(5):48999
    [Crossref] [Google Scholar]
  18. Caplan D, Michaud J, Hufford R, Makris N. 2016.. Deficit-lesion correlations in syntactic comprehension in aphasia. . Brain Lang. 152::1427
    [Crossref] [Google Scholar]
  19. Carota F, Bozic M, Marslen-Wilson W. 2016.. Decompositional representation of morphological complexity: multivariate fMRI evidence from Italian. . J. Cogn. Neurosci. 28:(12):187896
    [Crossref] [Google Scholar]
  20. Casilio M, Kasdan AV, Schneck SM, Entrup JL, Levy DF, et al. 2024.. Situating word deafness within aphasia recovery: a case report. . Cortex 173::96119
    [Crossref] [Google Scholar]
  21. Caucheteux C, Gramfort A, King J-R. 2022.. Deep language algorithms predict semantic comprehension from brain activity. . Sci. Rep. 12:(1):16327
    [Crossref] [Google Scholar]
  22. Coffey EBJ, Herholz SC, Chepesiuk AMP, Baillet S, Zatorre RJ. 2016.. Cortical contributions to the auditory frequency-following response revealed by MEG. . Nat. Commun. 7::11070
    [Crossref] [Google Scholar]
  23. Devlin J, Chang M-W, Lee K, Toutanova K. 2018.. BERT: pre-training of deep bidirectional transformers for language understanding. . arXiv:1810.04805 [cs.CL]
  24. Doelling KB, Arnal LH, Ghitza O, Poeppel D. 2014.. Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. . NeuroImage 85::76168
    [Crossref] [Google Scholar]
  25. Drullman R, Festen JM, Plomp R. 1994a.. Effect of reducing slow temporal modulations on speech reception. . J. Acoust. Soc. Am. 95:(5 Part 1):267080
    [Crossref] [Google Scholar]
  26. Drullman R, Festen JM, Plomp R. 1994b.. Effect of temporal envelope smearing on speech reception. . J. Acoust. Soc. Am. 95:(2):105364
    [Crossref] [Google Scholar]
  27. Dumanch KA, Poling GL. 2019.. Introduction to the audiological evaluation: case-based applications to patients with skull base disease. . J. Neurol. Surg. B 80:(2):11119
    [Crossref] [Google Scholar]
  28. Fedorenko E, Scott TL, Brunner P, Coon WG, Pritchett B, et al. 2016.. Neural correlate of the construction of sentence meaning. . PNAS 113:(41):E625662
    [Crossref] [Google Scholar]
  29. Friederici AD. 2012.. The cortical language circuit: from auditory perception to sentence comprehension. . Trends Cogn. Sci. 16:(5):26268
    [Crossref] [Google Scholar]
  30. Fruchter J, Marantz A. 2015.. Decomposition, lookup, and recombination: MEG evidence for the full decomposition model of complex visual word recognition. . Brain Lang. 143::8196
    [Crossref] [Google Scholar]
  31. Gaskell MG, Marslen-Wilson WD. 1997.. Integrating form and meaning: a distributed model of speech perception. . Lang. Cogn. Process. 12:(5–6):61356
    [Crossref] [Google Scholar]
  32. Gaston P, Marantz A. 2018.. The time course of contextual cohort effects in auditory processing of category-ambiguous words: MEG evidence for a single “clash” as noun or verb. . Lang. Cogn. Neurosci. 33:(4):40223
    [Crossref] [Google Scholar]
  33. Geschwind N. 1965.. Disconnexion syndromes in animals and man. I. . Brain 88:(2):23794
    [Crossref] [Google Scholar]
  34. Goldstein A, Zada Z, Buchnik E, Schain M, Price A, et al. 2022.. Shared computational principles for language processing in humans and deep language models. . Nat. Neurosci. 25:(3):36980
    [Crossref] [Google Scholar]
  35. Gorno-Tempini ML, Brambati SM, Ginex V, Ogar J, Dronkers NF, et al. 2008.. The logopenic/phonological variant of primary progressive aphasia. . Neurology 71:(16):122734
    [Crossref] [Google Scholar]
  36. Gwilliams L. 2020.. How the brain composes morphemes into meaning. . Philos. Trans. R. Soc. Lond. B 375:( 1791.):20190311
    [Crossref] [Google Scholar]
  37. Gwilliams L, Davis MH. 2022.. Extracting language content from speech sounds: the information theoretic approach. . In Speech Perception, ed. LL Holt, JE Peelle, AB Coffin, AN Popper, RR Fay , pp. 11339. Cham, Switz:.: Springer
    [Google Scholar]
  38. Gwilliams L, King J-R, Marantz A, Poeppel D. 2022.. Neural dynamics of phoneme sequences reveal position-invariant code for content and order. . Nat. Commun. 13:(1):6606
    [Crossref] [Google Scholar]
  39. Gwilliams L, Linzen T, Poeppel D, Marantz A. 2018.. In spoken word recognition, the future predicts the past. . J. Neurosci. 38:(35):758599
    [Crossref] [Google Scholar]
  40. Gwilliams L, Marantz A. 2015.. Non-linear processing of a linear speech stream: the influence of morphological structure on the recognition of spoken Arabic words. . Brain Lang. 147::113
    [Crossref] [Google Scholar]
  41. Hamilton LS, Edwards E, Chang EF. 2018.. A spatial map of onset and sustained responses to speech in the human superior temporal gyrus. . Curr. Biol. 28:(12):186071.e4
    [Crossref] [Google Scholar]
  42. Hamilton LS, Oganian Y, Hall J, Chang EF. 2021.. Parallel and distributed encoding of speech across human auditory cortex. . Cell 184:(18):462639.e13
    [Crossref] [Google Scholar]
  43. Hauser MD, Chomsky N, Fitch WT. 2002.. The faculty of language: What is it, who has it, and how did it evolve?. Science 298:(5598):156979
    [Crossref] [Google Scholar]
  44. Hermann BP, Seidenberg M, Haltinerr A, Wyler AR. 1991.. Mood state in unilateral temporal lobe epilepsy. . Biol. Psychiatry 30:(12):120518
    [Crossref] [Google Scholar]
  45. Hickok G, Poeppel D. 2007.. The cortical organization of speech processing. . Nat. Rev. Neurosci. 8:(5):393402
    [Crossref] [Google Scholar]
  46. Hillis AE, Heidler J. 2002.. Mechanisms of early aphasia recovery. . Aphasiology 16:(9):88595
    [Crossref] [Google Scholar]
  47. Hillis AE, Rorden C, Fridriksson J. 2017.. Brain regions essential for word comprehension: drawing inferences from patients. . Ann. Neurol. 81:(6):75968
    [Crossref] [Google Scholar]
  48. Holdcroft D. 1991.. Saussure: Signs, System and Arbitrariness. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  49. Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL. 2016.. Natural speech reveals the semantic maps that tile human cerebral cortex. . Nature 532:(7600):45358
    [Crossref] [Google Scholar]
  50. Indefrey P, Levelt WJM. 2004.. The spatial and temporal signatures of word production components. . Cognition 92:(1–2):10144
    [Crossref] [Google Scholar]
  51. Jain S, Huth A. 2018.. Incorporating context into language encoding models for fMRI. . In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), ed. S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett . Red Hook, NY:: Curran. https://proceedings.neurips.cc/paper_files/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
    [Google Scholar]
  52. Johnson JCS, Jiang J, Bond RL, Benhamou E, Requena-Komuro M-C, et al. 2020.. Impaired phonemic discrimination in logopenic variant primary progressive aphasia. . Ann. Clin. Trans. Neurol. 7:(7):125257
    [Crossref] [Google Scholar]
  53. Johnson K, Sjerps MJ. 2021.. Speaker normalization in speech perception. . In The Handbook of Speech Perception, pp. 14576. Hoboken, NJ:: Wiley
    [Google Scholar]
  54. Kell AJE, Yamins DLK, Shook EN, Norman-Haignere SV, McDermott JH. 2018.. A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy. . Neuron 98:(3):63044.e16
    [Crossref] [Google Scholar]
  55. Keshishian M, Akbari H, Khalighinejad B, Herrero JL, Mehta AD, Mesgarani N. 2020.. Estimating and interpreting nonlinear receptive field of sensory neural responses with deep neural network models. . eLife 9::53445
    [Crossref] [Google Scholar]
  56. Keshishian M, Norman-Haignere S, Mesgarani N. 2021.. Understanding adaptive, multiscale temporal integration in deep speech recognition systems. . In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), ed. M Ranzato, A Beygelzimer, Y Dauphinm, PS Liang, J Wortman Vaughan , pp. 2445567. Red Hook, NY:: Curran
    [Google Scholar]
  57. Khalighinejad B, Patel P, Herrero JL, Bickel S, Mehta AD, Mesgarani N. 2021.. Functional characterization of human Heschl's gyrus in response to natural speech. . NeuroImage 235::118003
    [Crossref] [Google Scholar]
  58. Klatt DH. 1986.. Representation of the first formant in speech recognition and in models of the auditory periphery. . Can. Acoust. 14:(3 bis):57
    [Google Scholar]
  59. Kubanek J, Brunner P, Gunduz A, Poeppel D, Schalk G. 2013.. The tracking of speech envelope in the human cortex. . PLOS ONE 8:(1):e53398
    [Crossref] [Google Scholar]
  60. Leonard MK, Cai R, Babiak MC, Ren A, Chang EF. 2019.. The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings. . Brain Lang. 193::5872
    [Crossref] [Google Scholar]
  61. Leonard MK, Gwilliams L, Sellers KK, Chung JE, Xu D, et al. 2024.. Large-scale single-neuron speech sound encoding across the depth of human cortex. . Nature 626:(7999):593602
    [Crossref] [Google Scholar]
  62. Lesser RP, Raudzens P, Lüders H, Nuwer MR, Goldie WD, et al. 1986.. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. . Ann. Neurol. 19:(1):2225
    [Crossref] [Google Scholar]
  63. Levy DF, Wilson SM. 2020.. Categorical encoding of vowels in primary auditory cortex. . Cerebr. Cortex 30:(2):61827
    [Crossref] [Google Scholar]
  64. Ley A, Vroomen J, Hausfeld L, Valente G, De Weerd P, Formisano E. 2012.. Learning of new sound categories shapes neural response patterns in human auditory cortex. . J. Neurosci. 32:(38):1327380
    [Crossref] [Google Scholar]
  65. Leyton CE, Savage S, Irish M, Schubert S, Piguet O, et al. 2014.. Verbal repetition in primary progressive aphasia and Alzheimer's disease. . J. Alzheimer's Dis. 41:(2):57585
    [Crossref] [Google Scholar]
  66. Li Y, Anumanchipalli GK, Mohamed A, Chen P, Carney LH, et al. 2023.. Dissecting neural computations in the human auditory pathway using deep neural networks for speech. . Nat. Neurosci. 26::221325
    [Crossref] [Google Scholar]
  67. Liberman AM, Delattre P, Cooper FS. 1952.. The role of selected stimulus-variables in the perception of the unvoiced stop consonants. . Am. J. Psychol. 65:(4):497516
    [Crossref] [Google Scholar]
  68. Luo H, Poeppel D. 2007.. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. . Neuron 54:(6):100110
    [Crossref] [Google Scholar]
  69. Marslen-Wilson WD. 1975.. Sentence perception as an interactive parallel process. . Science 189:(4198):22628
    [Crossref] [Google Scholar]
  70. Marslen-Wilson WD. 1987.. Functional parallelism in spoken word-recognition. . Cognition 25:(1–2):71102
    [Crossref] [Google Scholar]
  71. Marslen-Wilson WD, Tyler LK. 1980.. The temporal structure of spoken language understanding. . Cognition 8:(1):171
    [Crossref] [Google Scholar]
  72. Marslen-Wilson WD, Tyler LK. 2007.. Morphology, language and the brain: the decompositional substrate for language comprehension. . Philos. Trans. R. Soc. Lond. B 362:(1481):82336
    [Crossref] [Google Scholar]
  73. Marslen-Wilson WD, Welsh A. 1978.. Processing interactions and lexical access during word recognition in continuous speech. . Cogn. Psychol. 10:(1):2963
    [Crossref] [Google Scholar]
  74. Matchin W, Basilakos A, den Ouden D-B, Stark BC, Hickok G, Fridriksson J. 2022.. Functional differentiation in the language network revealed by lesion-symptom mapping. . NeuroImage 247::118778
    [Crossref] [Google Scholar]
  75. Matchin W, Hickok G. 2020.. The cortical organization of syntax. . Cerebr. Cortex 30:(3):148198
    [Crossref] [Google Scholar]
  76. Matushansky O, Marantz AP. 2013.. Distributed Morphology Today: Morphemes for Morris Halle. Cambridge, MA:: MIT Press
    [Google Scholar]
  77. McClelland JL, Rumelhart DE, PDP Res. Group. 1987.. Parallel Distributed Processing, Vol. 2: Explorations in the Microstructure of Cognition: Psychological and Biological Models. Cambridge, MA:: MIT Press
    [Google Scholar]
  78. Mendez MF, Rosenberg S. 1991.. Word deafness mistaken for Alzheimer's disease: differential characteristics. . J. Am. Geriatr. Soc. 39:(2):20911
    [Crossref] [Google Scholar]
  79. Mesgarani N, Cheung C, Johnson K, Chang EF. 2014.. Phonetic feature encoding in human superior temporal gyrus. . Science 343:(6174):100610
    [Crossref] [Google Scholar]
  80. Mesulam M-M, Nelson MJ, Hyun J, Rader B, Hurley RS, et al. 2019a.. Preferential disruption of auditory word representations in primary progressive aphasia with the neuropathology of FTLD-TDP type A. . Cogn. Behav. Neurol. 32:(1):4653
    [Crossref] [Google Scholar]
  81. Mesulam M-M, Rader BM, Sridhar J, Nelson MJ, Hyun J, et al. 2019b.. Word comprehension in temporal cortex and Wernicke area: a PPA perspective. . Neurology 92:(3):e22433
    [Crossref] [Google Scholar]
  82. Mikolov T, Chen K, Corrado G, Dean J. 2013.. Efficient estimation of word representations in vector space. . arxiv:1301.3781 [cs.CL]
  83. Mitchell TM, Shinkareva SV, Carlson A, Chang K-M, Malave VL, et al. 2008.. Predicting human brain activity associated with the meanings of nouns. . Science 320:(5880):119195
    [Crossref] [Google Scholar]
  84. Moerel M, De Martino F, Formisano E. 2012.. Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. . J. Neurosci. 32:(41):1420516
    [Crossref] [Google Scholar]
  85. Mollica F, Siegelman M, Diachek E, Piantadosi ST, Mineroff Z, et al. 2020.. Composition is the core driver of the language-selective network. . Neurobiol. Lang. 1:(1):10434
    [Crossref] [Google Scholar]
  86. Neophytou K, Manouilidou C, Stockall L, Marantz A. 2018.. Syntactic and semantic restrictions on morphological recomposition: MEG evidence from Greek. . Brain Lang. 183::1120
    [Crossref] [Google Scholar]
  87. Oganian Y, Bhaya-Grossman I, Johnson K, Chang EF. 2023.. Vowel and formant representation in the human auditory speech cortex. . Neuron 111:(13):210518.e4
    [Crossref] [Google Scholar]
  88. Oganian Y, Chang EF. 2019.. A speech envelope landmark for syllable encoding in human superior temporal gyrus. . Sci. Adv. 5:(11):eaay6279
    [Crossref] [Google Scholar]
  89. Pallier C, Devauchelle A-D, Dehaene S. 2011.. Cortical representation of the constituent structure of sentences. . PNAS 108:(6):252227
    [Crossref] [Google Scholar]
  90. Patterson K, Lambon Ralph MA. 2016.. The hub-and-spoke hypothesis of semantic memory. . In Neurobiology of Language, ed. G Hickok, SL Small , pp. 76575. Amsterdam:: Academic
    [Google Scholar]
  91. Patterson K, Nestor PJ, Rogers TT. 2007.. Where do you know what you know? The representation of semantic knowledge in the human brain. . Nat. Rev. Neurosci. 8:(12):97687
    [Crossref] [Google Scholar]
  92. Pennington J, Socher R, Manning C. 2014.. Glove: global vectors for word representation. . In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), ed. A Moschitti, B Pang, W Daelemans , pp. 153243. Stroudsburg, PA:: Assoc. Comput. Linguist.
    [Google Scholar]
  93. Poeppel D. 2001.. Pure word deafness and the bilateral processing of the speech code. . Cogn. Sci. 25:(5):67993
    [Crossref] [Google Scholar]
  94. Poeppel D, Emmorey K, Hickok G, Pylkkänen L. 2012.. Towards a new neurobiology of language. . J. Neurosci. 32:(41):1412531
    [Crossref] [Google Scholar]
  95. Price AR, Bonner MF, Peelle JE, Grossman M. 2015.. Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. . J. Neurosci. 35:(7):327684
    [Crossref] [Google Scholar]
  96. Punske JP. 2023.. Morphology: A Distributed Morphology Introduction. Hoboken, NJ:: Wiley
    [Google Scholar]
  97. Pylkkänen L, McElree B. 2007.. An MEG study of silent meaning. . J. Cogn. Neurosci. 19:(11):190521
    [Crossref] [Google Scholar]
  98. Ray S, Maunsell JHR. 2011.. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. . PLOS Biol. 9:(4):e1000610
    [Crossref] [Google Scholar]
  99. Robson H, Grube M, Lambon Ralph MA, Griffiths TD, Sage K. 2013.. Fundamental deficits of auditory perception in Wernicke's aphasia. . Cortex 49:(7):180822
    [Crossref] [Google Scholar]
  100. Rogalsky C, Basilakos A, Rorden C, Pillay S, LaCroix AN, et al. 2022.. The neuroanatomy of speech processing: a large-scale lesion study. . J. Cogn. Neurosci. 34:(8):135575
    [Google Scholar]
  101. Rogalsky C, LaCroix AN, Chen K-H, Anderson SW, Damasio H, et al. 2018.. The neurobiology of agrammatic sentence comprehension: a lesion study. . J. Cogn. Neurosci. 30:(2):23455
    [Crossref] [Google Scholar]
  102. Sahin NT, Pinker S, Cash SS, Schomer D, Halgren E. 2009.. Sequential processing of lexical, grammatical, and phonological information within Broca's area. . Science 326:(5951):44549
    [Crossref] [Google Scholar]
  103. Schwartz MF, Kimberg DY, Walker GM, Brecher A, Faseyitan OK, et al. 2011.. Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. . PNAS 108:(20):852024
    [Crossref] [Google Scholar]
  104. Selnes OA, Niccum N, Knopman DS, Rubens AB. 1984.. Recovery of single word comprehension: CT-scan correlates. . Brain Lang. 21:(1):7284
    [Crossref] [Google Scholar]
  105. Shannon CE. 1948.. A mathematical theory of communication. . Bell Syst. Tech. J. 27:(3):379423
    [Crossref] [Google Scholar]
  106. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. 1995.. Speech recognition with primarily temporal cues. . Science 270:(5234):3034
    [Crossref] [Google Scholar]
  107. Simon JZ, Commuri V, Kulasingham JP. 2022.. Time-locked auditory cortical responses in the high-gamma band: a window into primary auditory cortex. . Front. Neurosci. 16::1075369
    [Crossref] [Google Scholar]
  108. Stowe LA, Broere CA, Paans AM, Wijers AA, Mulder G, et al. 1998.. Localizing components of a complex task: sentence processing and working memory. . NeuroReport 9:(13):299599
    [Crossref] [Google Scholar]
  109. Thothathiri M, Kimberg DY, Schwartz MF. 2012.. The neural basis of reversible sentence comprehension: evidence from voxel-based lesion symptom mapping in aphasia. . J. Cogn. Neurosci. 24:(1):21222
    [Crossref] [Google Scholar]
  110. Tomasello R, Garagnani M, Wennekers T, Pulvermüller F. 2018.. A neurobiologically constrained cortex model of semantic grounding with spiking neurons and brain-like connectivity. . Front. Comput. Neurosci. 12::00088
    [Crossref] [Google Scholar]
  111. Tong J, Binder JR, Humphries C, Mazurchuk S, Conant LL, Fernandino L. 2022.. A distributed network for multimodal experiential representation of concepts. . J. Neurosci. 42:(37):712130
    [Crossref] [Google Scholar]
  112. Tsapkini K, Vindiola M, Rapp B. 2011.. Patterns of brain reorganization subsequent to left fusiform damage: fMRI evidence from visual processing of words and pseudowords, faces and objects. . Neuroimage 55:(3):135772
    [Crossref] [Google Scholar]
  113. Vandenberghe R, Nobre AC, Price CJ. 2002.. The response of left temporal cortex to sentences. . J. Cogn. Neurosci. 14:(4):55060
    [Crossref] [Google Scholar]
  114. Westerlund M, Pylkkänen L. 2014.. The role of the left anterior temporal lobe in semantic composition vs. semantic memory. . Neuropsychologia 57::5970
    [Crossref] [Google Scholar]
  115. Whiteford KL, Kreft HA, Oxenham AJ. 2020.. The role of cochlear place coding in the perception of frequency modulation. . eLife 9::58468
    [Crossref] [Google Scholar]
  116. Whiting C, Shtyrov Y, Marslen-Wilson W. 2015.. Real-time functional architecture of visual word recognition. . J. Cogn. Neurosci. 27:(2):24665
    [Crossref] [Google Scholar]
  117. Wilson SM, Entrup JL, Schneck SM, Onuscheck CF, Levy DF, et al. 2023.. Recovery from aphasia in the first year after stroke. . Brain 146:(3):102139
    [Crossref] [Google Scholar]
  118. Wilson SM, Galantucci S, Tartaglia MC, Gorno-Tempini ML. 2012.. The neural basis of syntactic deficits in primary progressive aphasia. . Brain Lang. 122:(3):19098
    [Crossref] [Google Scholar]
  119. Wilson SM, Saygın AP. 2004.. Grammaticality judgment in aphasia: Deficits are not specific to syntactic structures, aphasic syndromes, or lesion sites. . J. Cogn. Neurosci. 16:(2):23852
    [Crossref] [Google Scholar]
  120. Yamins DLK, DiCarlo JJ. 2016.. Using goal-driven deep learning models to understand sensory cortex. . Nat. Neurosci. 19:(3):35665
    [Crossref] [Google Scholar]
  121. Yi HG, Leonard MK, Chang EF. 2019.. The encoding of speech sounds in the superior temporal gyrus. . Neuron 102:(6):1096110
    [Crossref] [Google Scholar]
  122. Zatorre RJ, Evans AC, Meyer E, Gjedde A. 1992.. Lateralization of phonetic and pitch discrimination in speech processing. . Science 256:(5058):84649
    [Crossref] [Google Scholar]
  123. Zhang L, Pylkkänen L. 2015.. The interplay of composition and concept specificity in the left anterior temporal lobe: an MEG study. . NeuroImage 111::22840
    [Crossref] [Google Scholar]
  124. Zhang Y, Choi M, Han K, Liu Z. 2021.. Explainable semantic space by grounding language to vision with cross-modal contrastive learning. . In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), ed. M Ranzato, A Beygelzimer, Y Dauphin, PS Liang, J Wortman Vaughan , pp. 1851326. Red Hook, NY:: Curran
    [Google Scholar]
  125. Zhang Y, Han K, Worth R, Liu Z. 2020.. Connecting concepts in the brain by mapping cortical representations of semantic relations. . Nat. Commun. 11:(1):1877
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-linguistics-031120-111245
Loading
/content/journals/10.1146/annurev-linguistics-031120-111245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error