1932

Abstract

André Morel (1933–2012) was a prominent pioneer of modern optical oceanography, enabling significant advances in this field. Through his forward thinking and research over more than 40 years, he made key contributions that this field needed to grow and to reach its current status. This article first summarizes his career and then successively covers different aspects of optical oceanography where he made significant contributions, from fundamental work on optical properties of water and particles to global oceanographic applications using satellite ocean color observations. At the end, we share our views on André's legacy to our research field and scientific community.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010213-135135
2014-01-03
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/marine/6/1/annurev-marine-010213-135135.html?itemId=/content/journals/10.1146/annurev-marine-010213-135135&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn YH, Bricaud A, Morel A. 1992. Light backscattering efficiency and related properties of some phytoplankters. Deep-Sea Res. 39:1835–55 [Google Scholar]
  2. André JM, Morel A. 1989. Simulated effects of barometric pressure and ozone content upon the estimate of marine phytoplankton from space. J. Geophys. Res. 94:1029–37 [Google Scholar]
  3. André JM, Morel A. 1991. Atmospheric corrections and interpretation of marine radiances in CZCS imagery, revisited. Oceanol. Acta 14:3–22 [Google Scholar]
  4. Antoine D, André JM, Morel A. 1996. Oceanic primary production: II. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll. Glob. Biogeochem. Cycles 10:57–69 [Google Scholar]
  5. Antoine D, Morel A. 1996. Oceanic primary production: I. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Glob. Biogeochem. Cycles 10:43–55 [Google Scholar]
  6. Antoine D, Morel A. 1998. Relative importance of multiple scattering by air molecules and aerosols in forming the atmospheric path radiance in the visible and near-infrared parts of the spectrum. Appl. Opt. 37:2245–59 [Google Scholar]
  7. Antoine D, Morel A. 1999. A multiple scattering algorithm for atmospheric correction of remotely-sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones. Int. J. Remote Sens. 20:1875–916 [Google Scholar]
  8. Antoine D, Morel A, André JM. 1995. Algal pigment distribution and primary production in the Eastern Mediterranean as derived from Coastal Zone Color Scanner observations. J. Geophys. Res. 100:16193–209 [Google Scholar]
  9. Antoine D, Morel A, Gentili B, Gordon HR, Banzon VF. et al. 2003. In search of long-term trends in ocean color. Eos Trans. AGU 84:301–9 [Google Scholar]
  10. Antoine D, Morel A, Gordon HR, Banzon VF, Evans RH. 2005. Bridging ocean color observations of the 1980's and 2000's in search of long-term trends. J. Geophys. Res. 110:C06009 [Google Scholar]
  11. Arrigo KR, Sullivan CW. 1994. A high resolution bio-optical model of microalgal growth: tests using sea ice algal community time series data. Limnol. Oceanogr. 39:609–31 [Google Scholar]
  12. Babin M, Morel A, Falkowski PG, Claustre H, Bricaud A, Kobler Z. 1996. Nutrient- and light-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems. Deep-Sea Res. 43:1241–72 [Google Scholar]
  13. Bauer D, Ivanoff A. 1965. Au sujet de la mesure du coefficient de diffusion de la lumière par les eaux de mer pour des angles compris entre 14° et 1°30′.. C. R. Acad. Sci. Paris 260:631–34 [Google Scholar]
  14. Bauer D, Ivanoff A. 1970. Spectro-irradiance-metre. Cah. Océanogr. 5:477–82 [Google Scholar]
  15. Bauer D, Morel A. 1967. Etude aux petits angles de l'indicatrice de diffusion de la lumière par les eaux de mer. Ann. Géophys. 23:109–23 [Google Scholar]
  16. Behrenfeld MJ, Falkowski PG. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42:1–20 [Google Scholar]
  17. Berthon JF, Morel A. 1992. Validation of a spectral light-photosynthesis model and use of the model in conjunction with remotely sensed pigment observations. Limnol. Oceanogr. 37:781–96 [Google Scholar]
  18. Bricaud A, Babin M, Morel A, Claustre H. 1995. Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parametrization. J. Geophys. Res. 100:13321–32 [Google Scholar]
  19. Bricaud A, Morel A. 1986. Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling. Appl. Opt. 25:571–80 [Google Scholar]
  20. Bricaud A, Morel A. 1987. Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model. Oceanol. Acta No. SP:33–50 [Google Scholar]
  21. Bricaud A, Morel A, Babin M, Allali K, Claustre H. 1998. Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J. Geophys. Res. 103:31033–44 [Google Scholar]
  22. Bricaud A, Morel A, Prieur L. 1983. Optical efficiency factors of some phytoplankters. Limnol. Oceanogr. 28:816–32 [Google Scholar]
  23. Chomko RM, Gordon HR. 2001. Atmospheric correction of ocean color imagery: test of the spectral optimization algorithm with the Sea-Viewing Wide Field-of-View Sensor. Appl. Opt. 40:2973–84 [Google Scholar]
  24. Chomko RM, Gordon HR, Maritorena S, Siegel DA. 2003. Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation. Remote Sens. Environ. 84:208–20 [Google Scholar]
  25. Church MJ, Lomas MW, Muller-Karger F. 2013. Sea change: charting the course for biogeochemical ocean time-series research in a new millennium. Deep-Sea Res. II 93:2–15 [Google Scholar]
  26. Clarke GL, Ewing GC, Lorenzen CJ. 1970. Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration. Science 167:1119–21 [Google Scholar]
  27. Claustre H, Antoine D, Boehme L, Boss E, D'Ortenzio F. et al. 2010. Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles. Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society 1 J Hall, DE Harrison, D Stammer. ESA Publ. WPP-306 Paris: Eur. Space Agency http://www.oceanobs09.net/proceedings/pp/pp14
  28. Cullen JJ. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can. J. Fish. Aquat. Sci. 39:791–803 [Google Scholar]
  29. Dawson LH, Hulburt EO. 1937. The scattering of light by water. J. Opt. Soc. Am. 27:199–201 [Google Scholar]
  30. Ducklow HW, Doney SC, Steinberg DK. 2009. Contributions of long-term research and time-series observations to marine ecology and biogeochemistry. Annu. Rev. Mar. Sci. 1:279–302 [Google Scholar]
  31. Duysens LM. 1956. The flattening of the absorption spectra of suspensions as compared to that of solutions. Biochim. Biophys. Acta 19:1–12 [Google Scholar]
  32. Fee EJ. 1969. A numerical model for the estimation of photosynthetic production, integrated over time and depth, in natural waters. Limnol. Oceanogr. 14:906–11 [Google Scholar]
  33. Geider RJ, Osborne BA. 1992. Algal Photosynthesis: The Measurement of Algal Gas Exchange London: Chapman and Hall
  34. Gordon HR, Brown OB, Evans RH, Brown JW, Smith RC. et al. 1988. A semianalytic radiance model of ocean color. J. Geophys. Res. 93:10909–24 [Google Scholar]
  35. Gordon HR, Morel A. 1983. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery New York: Springer-Verlag
  36. Højerslev NK. 1994. A history of early optical oceanographic instrument in Scandinavia. Ocean Optics RW Spinrad, KL Carder, MJ Perry 118–47 Oxford, UK: Oxford Univ. Press [Google Scholar]
  37. Huot Y, Morel A, Twardowski MS, Stramski D, Reynolds RA. 2008. Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean. Biogeosciences 5:495–507 [Google Scholar]
  38. Ivanoff A, Morel A. 1970. Terminologie concernant l'optique océanographique. Cah. Océanogr. 12:457–68 [Google Scholar]
  39. Jitts HR, Morel A, Saijo Y. 1976. The relation of oceanic primary production to available photosynthetic irradiance. Aust. J. Freshw. Res. 27:441–54 [Google Scholar]
  40. Karl DM. 2010. Oceanic ecosystem time-series programs: ten lessons learned. Oceanography 23:3104–25 [Google Scholar]
  41. Lee Z, Hu C. 2006. Global distribution of Case-1 waters: an analysis from SeaWiFS measurements. Remote Sens. Environ. 101:270–76 [Google Scholar]
  42. Loisel H, Morel A. 1998. Light scattering and chlorophyll concentration in case 1 waters: a reexamination. Limnol. Oceanogr. 43:847–58 [Google Scholar]
  43. Loisel H, Morel A. 2001. Non-isotropy of the upward-radiance field in typical coastal case 2 waters. Int. J. Remote Sens. 22:275–95 [Google Scholar]
  44. Longhurst A, Sathyendranath S, Platt T, Caverhill C. 1995. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17:1245–71 [Google Scholar]
  45. Maritorena S, Morel A, Gentili B. 1994. Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo. Limnol. Oceanogr. 39:1689–703 [Google Scholar]
  46. Martin WH. 1920. The scattering of light by dust-free liquids. J. Phys. Chem. 24:478–92 [Google Scholar]
  47. McClain CR. 2009. A decade of satellite ocean color observations. Annu. Rev. Mar. Sci. 1:19–42 [Google Scholar]
  48. Mie G. 1908. Beiträge zur optic trüber medien, speziell kolloidalen Metall-lösungen. Ann. Phys. 25:377–445 [Google Scholar]
  49. Mobley CD, Boss E. 2012. Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations. Appl. Opt. 51:6549–60 [Google Scholar]
  50. Mobley CD, Gentili B, Gordon HR, Jin Z, Kattawar GW. et al. 1993. Comparison of numerical models for computing underwater light fields. Appl. Opt. 32:7484–504 [Google Scholar]
  51. Mobley CD, Stramski D, Bissett WP, Boss E. 2004. Optical modeling of ocean waters: Is the Case 1 – Case 2 classification still useful?. Oceanography 17:260–67 [Google Scholar]
  52. Morel A. 1965. Résultats expérimentaux concernant la pénétration de la lumière du jour dans les eaux Méditerranéennes. Cah. Océanogr. 17:177–84 [Google Scholar]
  53. Morel A. 1966. Etude expérimentale de la diffusion de la lumière par l'eau, les solutions de chlorure de sodium et l'eau de mer optiquement pures. J. Chim. Phys. 10:1359–66 [Google Scholar]
  54. Morel A. 1968. Note au sujet des constantes de diffusion de la lumière pour l'eau et l'eau optiquement pures. Cah. Océanogr. 20:157–62 [Google Scholar]
  55. Morel A. 1973. Diffusion de la lumière par les eaux de mer. Résultats expérimentaux et approche théorique. Optics of the Sea 3.11–76 AGARD Lect. Ser. 61 Paris: NATO [Google Scholar]
  56. Morel A. 1974. Optical properties of pure water and pure seawater. Optical Aspects of Oceanography NJ Jerlov, E Steemann Nielsen 1–24 London: Academic [Google Scholar]
  57. Morel A. 1978. Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep-Sea Res. 25:673–88 [Google Scholar]
  58. Morel A. 1980. In-water and remote measurements of ocean color. Bound. Layer Meteorol. 18:177–201 [Google Scholar]
  59. Morel A. 1982. Optical properties and radiant energy in the waters of the Guinea dome and the Mauritanian upwelling area in relation to primary production. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 180:94–107 [Google Scholar]
  60. Morel A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 water). J. Geophys. Res. 93:10749–68 [Google Scholar]
  61. Morel A. 1991. Light and marine photosynthesis: a spectral model with geochemical and climatological implications. Prog. Oceanogr. 26:263–306 [Google Scholar]
  62. Morel A. 1996. An ocean flux study in eutrophic, mesotrophic and oligotrophic situations: the EUMELI program. Deep-Sea Res. I 43:1273–304 [Google Scholar]
  63. Morel A. 2009. Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?. J. Geophys. Res. 114:C01016 [Google Scholar]
  64. Morel A, Ahn YH. 1990. Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters. J. Mar. Res. 48:145–75 [Google Scholar]
  65. Morel A, Ahn YH. 1991. Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells. J. Mar. Res. 49:177–202 [Google Scholar]
  66. Morel A, Ahn YW, Partensky F, Vaulot D, Claustre H. 1993. Prochlorococcus and Synechococcus: a comparative study of their size, pigmentation and related optical properties. J. Mar. Res. 51:617–49 [Google Scholar]
  67. Morel A, André JM. 1991. Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. J. Geophys. Res. 96:12685–98 [Google Scholar]
  68. Morel A, Antoine D. 2002. Small critters—big effects. Science 296:1980–82 [Google Scholar]
  69. Morel A, Antoine D, Babin M, Dandonneau Y. 1996. Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill. Deep-Sea Res. I 43:1273–304 [Google Scholar]
  70. Morel A, Antoine D, Gentili B. 2002. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle phase function. Appl. Opt. 41:6289–306 [Google Scholar]
  71. Morel A, Bélanger S. 2006. Improved detection of turbid waters from ocean color information. Remote Sens. Environ. 102:237–49 [Google Scholar]
  72. Morel A, Berthon JF. 1989. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. 34:1545–62 [Google Scholar]
  73. Morel A, Bricaud A. 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res. 28:1375–93 [Google Scholar]
  74. Morel A, Bricaud A. 1986. Inherent optical properties of algal cells, including picoplankton: theoretical and experimental results. Can. Bull. Fish. Aquat. Sci. 214:521–59 [Google Scholar]
  75. Morel A, Claustre H, Antoine D, Gentili B. 2007a. Natural variability of bio-optical properties in Case 1 waters: attenuation and reflectance within the visible and near-UV spectral domains, as observed in South Pacific and Mediterranean waters. Biogeosciences 4:913–25 [Google Scholar]
  76. Morel A, Claustre H, Gentili B. 2010. The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences 7:3139–51 [Google Scholar]
  77. Morel A, Gentili B. 1991. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by molecular scattering contribution. Appl. Opt. 30:4427–38 [Google Scholar]
  78. Morel A, Gentili B. 1993. Diffuse reflectance of oceanic waters. 2. Bidirectional aspects. Appl. Opt. 32:6864–72 [Google Scholar]
  79. Morel A, Gentili B. 1996. Diffuse reflectance of oceanic waters. 3. Implication of bidirectionality for the remote-sensing problem. Appl. Opt. 35:4850–62 [Google Scholar]
  80. Morel A, Gentili B. 2004. Radiation transport within oceanic (case 1) waters. J. Geophys. Res. 109:C06008 [Google Scholar]
  81. Morel A, Gentili B. 2008. Practical application of the “turbid water” flag in ocean color imagery: interference with sun-glint contaminated pixels in open ocean. Remote Sens. Environ. 112:934–38 [Google Scholar]
  82. Morel A, Gentili B. 2009a. The dissolved yellow substance and the shades of blue in the Mediterranean Sea. Biogeosciences 6:2625–36 [Google Scholar]
  83. Morel A, Gentili B. 2009b. A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens. Environ. 113:998–1011 [Google Scholar]
  84. Morel A, Gentili B, Chami M, Ras J. 2006. Bio-optical properties of high chlorophyll Case 1 waters and of yellow-substance-dominated Case 2 waters. Deep-Sea Res. I 53:1439–559 [Google Scholar]
  85. Morel A, Gentili B, Claustre H, Babin M, Bricaud A. et al. 2007b. Optical properties of the “clearest” natural waters. Limnol. Oceanogr. 52:217–29 [Google Scholar]
  86. Morel A, Gordon HR. 1980. Report of the working group on water color. Bound. Layer Meteorol. 18:343–55 [Google Scholar]
  87. Morel A, Huot Y, Gentili B, Werdell PJ, Hooker SB, Franz BA. 2007c. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111:69–88 [Google Scholar]
  88. Morel A, Lazzara L, Gostan J. 1987. Growth rate and quantum yield time response for a diatom to changing irradiances (energy and color). Limnol. Oceanogr. 32:1066–84 [Google Scholar]
  89. Morel A, Loisel H. 1998. Apparent optical properties of oceanic water: dependence on the molecular scattering contribution. Appl. Opt. 37:4765–74 [Google Scholar]
  90. Morel A, Maritorena S. 2001. Bio-optical properties of oceanic waters: a reappraisal. J. Geophys. Res. 106:7763–80 [Google Scholar]
  91. Morel A, Prieur L. 1976. Analyse spectrale de l'absorption par les substances dissoutes (substances jaunes). Résultats de la Campagne CINECA V 1.1.111–9 Paris: CNEXO [Google Scholar]
  92. Morel A, Prieur L. 1977. Analysis of variations in ocean color. Limnol. Oceanogr. 22:709–22 [Google Scholar]
  93. Morel A, Smith RC. 1982. Terminology and units in optical oceanography. Mar. Geod. 5:335–49 [Google Scholar]
  94. Morel A, Voss KJ, Gentili B. 1995. Bidirectional reflectance of oceanic waters: a comparison of modeled and measured upward radiance fields. J. Geophys. Res. 100:13143–50 [Google Scholar]
  95. Preisendorfer RW. 1961. Application of radiative transfer theory to light measurements in the sea. Monogr. Int. Union Geod. Geophys. Paris 10:11–30 [Google Scholar]
  96. Prieur L. 1970. Photomètre marin mesurant un flux de photons (quanta-metre). Cah. Océanogr. 5:493–501 [Google Scholar]
  97. Prieur L, Morel A. 1971. Etude théorique du régime assymptotique. Relations entre caractéristiques optiques et coefficient d'extinction relatif à la pénétration de la lumière du jour. Cah. Océanogr. 23:35–47 [Google Scholar]
  98. Raman CV. 1922. On the molecular scattering of light in water and the colour of the sea. Proc. R. Soc. Lond. A 101:64–79 [Google Scholar]
  99. Ryther JH, Yentsch CS. 1957. The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol. Oceanogr. 2:281–86 [Google Scholar]
  100. Sathyendranath S, Platt T. 1989. Remote sensing of ocean chlorophyll: consequences of nonuniform pigment profile. Appl. Opt. 28:490–95 [Google Scholar]
  101. Siegel DA, Maritorena S, Nelson NB, Behrenfeld MJB. 2005. Independence and interdependencies of global ocean color properties: re-assessing the bio-optical assumption. J. Geophys. Res. 110:C07011 [Google Scholar]
  102. Stramski D, Bricaud A, Morel A. 1988. Modeling the light attenuation and scattering by spherical phytoplankton cells, a retrieval of the bulk refractive index. Appl. Opt. 27:3954–56 [Google Scholar]
  103. Stramski D, Bricaud A, Morel A. 2001. Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community. Appl. Opt. 40:2929–45 [Google Scholar]
  104. Stramski D, Morel A. 1990. Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance. Deep-Sea Res. 37:245–66 [Google Scholar]
  105. Uitz J, Claustre H, Morel A, Hooker S. 2006. Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J. Geophys. Res. 111:C08005 [Google Scholar]
  106. van de Hulst HC. 1957. Light Scattering by Small Particles New York: Wiley
  107. Voss K, Morel A. 2005. Bidirectional reflectance function for oceanic waters with varying chlorophyll concentration measurements versus predictions. Limnol. Oceanogr. 50:698–705 [Google Scholar]
  108. Voss K, Morel A, Antoine D. 2007. Detailed validation of the bidirectional effect in various Case 1 waters for application to ocean color imagery. Biogeosciences 4:781–89 [Google Scholar]
  109. Werdell PJ, Bailey SW, Franz BA, Morel A, McClain CR. 2007. On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model. Appl. Opt. 46:5649–66 [Google Scholar]
  110. Xing X, Morel A, Claustre H, Antoine D, D'Ortenzio F. et al. 2011. Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: chlorophyll a retrieval. J. Geophys. Res. 116:C06020 [Google Scholar]
  111. Xing X, Morel A, Claustre H, D'Ortenzio F, Poteau A. 2012. Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption retrieval. J. Geophys. Res. 117:C04022 [Google Scholar]
/content/journals/10.1146/annurev-marine-010213-135135
Loading
/content/journals/10.1146/annurev-marine-010213-135135
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error