1932

Abstract

Nearly 100 years ago, Alfred Lotka published two short but insightful papers describing how ecosystems may organize. Principally, Lotka argued that ecosystems will grow in size and that their cycles will spin faster via predation and nutrient recycling so as to capture all available energy, and that evolution and natural selection are the mechanisms by which this occurs and progresses. Lotka's ideas have often been associated with the maximum power principle, but they are more consistent with recent developments in nonequilibrium thermodynamics, which assert that complex systems will organize toward maximum entropy production (MEP). In this review, we explore Lotka's hypothesis within the context of the MEP principle, as well as how this principle can be used to improve marine biogeochemistry models. We need to develop the equivalent of a climate model, as opposed to a weather model, to understand marine biogeochemistry on longer timescales, and adoption of the MEP principle can help create such models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010814-015843
2016-01-03
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-010814-015843.html?itemId=/content/journals/10.1146/annurev-marine-010814-015843&mimeType=html&fmt=ahah

Literature Cited

  1. Adami C. 2004. Information theory in molecular biology. Phys. Life Rev. 1:3–22 [Google Scholar]
  2. Alberty RA. 2003. Thermodynamics of Biochemical Reactions Hoboken, NJ: Wiley & Sons [Google Scholar]
  3. Algar CK, Vallino JJ. 2014. Predicting microbial nitrate reduction pathways in coastal sediments. Aquat. Microb. Ecol. 71:223–38 [Google Scholar]
  4. Annila A, Kuismanen E. 2009. Natural hierarchy emerges from energy dispersal. BioSystems 95:227–33 [Google Scholar]
  5. Aoki I. 2008. Entropy law in aquatic communities and the general entropy principle for the development of living systems. Ecol. Model. 215:89–92 [Google Scholar]
  6. Attard P. 2009. The second entropy: a general theory for non-equilibrium thermodynamics and statistical mechanics. Annu. Rep. Prog. Chem. C 105:63–173 [Google Scholar]
  7. Battley EH. 1993. The thermodynamics of growth of Escherichia coli K-12 on succinic acid. Pure Appl. Chem. 65:1881–86 [Google Scholar]
  8. Battley EH, Putnam RL, Boerio-Goates J. 1997. Heat capacity measurements from 10 to 300 K and derived thermodynamic functions of lyophilized cells of Saccharomyces cerevisiae including the absolute entropy and the entropy of formation at 298.15 K. Thermochim. Acta 298:37–46 [Google Scholar]
  9. Ben-Naim A. 2008. A Farewell to Entropy: Statistical Thermodynamics Based on Information Singapore: World Sci. [Google Scholar]
  10. Bendoricchio G, Jørgensen SE. 1997. Exergy as goal function of ecosystems dynamic. Ecol. Model. 102:5–15 [Google Scholar]
  11. Benton TG, Solan M, Travis JMJ, Sait SM. 2007. Microcosm experiments can inform global ecological problems. Trends Ecol. Evol. 22:516–21 [Google Scholar]
  12. Bestelmeyer BT, Ellison AM, Fraser WR, Gorman KB, Holbrook SJ. et al. 2011. Analysis of abrupt transitions in ecological systems. Ecosphere 2:1–26 [Google Scholar]
  13. Blumenfeld LA. 1981. Problems of Biological Physics Berlin: Springer-Verlag [Google Scholar]
  14. Boltzmann L. 1877. Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Wien. Ber. 76:373–435 [Google Scholar]
  15. Brillouin L. 1962. Science and Information Theory New York: Academic [Google Scholar]
  16. Broecker WS, Denton GH. 1989. The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53:2465–501 [Google Scholar]
  17. Bruers S. 2007. A discussion on maximum entropy production and information theory. J. Phys. A 40:7441–50 [Google Scholar]
  18. Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12:686–98 [Google Scholar]
  19. Burdige DJ. 2006. Geochemistry of Marine Sediments Princeton, NJ: Princeton Univ. Press [Google Scholar]
  20. Cai TT, Montague CL, Davis JS. 2006. The maximum power principle: an empirical investigation. Ecol. Model. 190:317–35 [Google Scholar]
  21. Caswell H, Neubert G. 1998. Chaos and closure terms in plakton food chain models. J. Plankton Res. 20:1837–45 [Google Scholar]
  22. Childress JJ, Fisher CR. 1992. The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. 30:337–441 [Google Scholar]
  23. Chung BJ, McDermid K, Vaidya A. 2014. On the affordances of the MaxEP principle. Eur. Phys. J. B 87:1–14 [Google Scholar]
  24. Clausius R. 1867. The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies London: John van Voorst [Google Scholar]
  25. Cottrell A. 1979. Natural philosophy of engines. Contemp. Phys. 20:1–10 [Google Scholar]
  26. Crofts AR. 2007. Life, information, entropy, and time: vehicles for semantic inheritance. Complexity 13:14–50 [Google Scholar]
  27. Dansgaard W, Clausen HB, Gundestrup N, Hammer CU, Johnsen SF. et al. 1982. A new Greenland deep ice core. Science 218:1273–77 [Google Scholar]
  28. Davis EE, Chapman DS, Forster CB. 1996. Observations concerning the vigor of hydrothermal circulation in young oceanic crust. J. Geophys. Res. 101:2927–42 [Google Scholar]
  29. DeLong JP. 2008. The maximum power principle predicts the outcomes of two-species competition experiments. Oikos 117:1329–36 [Google Scholar]
  30. Dewar RC. 2003. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A 36:631–41 [Google Scholar]
  31. Dewar RC. 2005. Maximum entropy production and the fluctuation theorem. J. Phys. A 38:L371–81 [Google Scholar]
  32. Dewar RC. 2009. Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: Don't shoot the messenger. Entropy 11:931–44 [Google Scholar]
  33. Dewar RC, Lineweaver CH, Niven RK, Regenauer-Lieb K. 2014a. Beyond the second law: an overview. See Dewar et al. 2014b 3–27
  34. Dewar RC, Lineweaver CH, Niven RK, Regenauer-Lieb K. 2014b. Beyond the Second Law: Entropy Production and Non-Equilibrium Systems Berlin: Springer-Verlag [Google Scholar]
  35. Droop MR. 1973. Some thoughts on nutrient limitation in algae. J. Phycol. 9:264–72 [Google Scholar]
  36. Edwards CA, Moore AM, Hoteit I, Cornuelle BD. 2015. Regional ocean data assimilation. Annu. Rev. Mar. Sci. 7:21–42 [Google Scholar]
  37. Elton CS. 1927. Animal Ecology Chicago: Univ. Chicago Press [Google Scholar]
  38. Erickson LE, Minkevich IG, Eroshin VK. 1978. Application of mass and energy balance regularities in fermentation. Biotechnol. Bioeng. 20:1595–621 [Google Scholar]
  39. Erwin DH. 2008. Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol. Evol. 23:304–10 [Google Scholar]
  40. Falkowski PG, Fenchel T, DeLong EF. 2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320:1034–39 [Google Scholar]
  41. Fasham MJR, Ducklow HW, McKelvie SM. 1990. A nitrogen-based model of plankton dynamics in the ocean mixed layer. J. Mar. Res. 48:591–639 [Google Scholar]
  42. Fasham MJR, Sarmiento JL, Slater RD, Ducklow HW, Williams R. 1993. Ecosystem behavior at Bermuda station “S” and ocean weather station “India”: a general circulation model and observational analysis. Glob. Biogeochem. Cycles 7:379–415 [Google Scholar]
  43. Fath BD, Patten BC, Choi JS. 2001. Complementarity of ecological goal functions. J. Theor. Biol. 208:493–506 [Google Scholar]
  44. Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR. et al. 2010. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 76:7482–90 [Google Scholar]
  45. Follows MJ, Dutkiewicz S. 2011. Modeling diverse communities of marine microbes. Annu. Rev. Mar. Sci. 3:427–51 [Google Scholar]
  46. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. 2007. Emergent biogeography of microbial communities in a model ocean. Science 315:1843–46 [Google Scholar]
  47. Follows MJ, Ito T, Dutkiewicz S. 2006. On the solution of the carbonate chemistry system in ocean biogeochemistry models. Ocean Model. 12:290–301 [Google Scholar]
  48. Franks PJS, Wroblewski JS, Flierl GR. 1986. Behavior of a simple plankton model with food-level acclimation by herbivores. Mar. Biol. 91:121–29 [Google Scholar]
  49. Friedrichs MAM, Dusenberry JA, Anderson LA, Armstrong RA, Chai F. et al. 2007. Assessment of skill and portability in regional marine biogeochemical models: role of multiple planktonic groups. J. Geophys. Res. 112:C08001 [Google Scholar]
  50. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR. et al. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43:1075–90 [Google Scholar]
  51. Gibbs JW. 1902. Elementary Principles of Statistical Mechanics New Haven, CT: Scribner's Sons [Google Scholar]
  52. Glansdorff P, Prigogine I. 1971. Thermodynamic Theory of Structure, Stability and Fluctuations New York: Wiley & Sons [Google Scholar]
  53. Glenn CP. 2011. Comment on an information theoretic approach to the study of non-equilibrium steady states. J. Phys. A 44:368001 [Google Scholar]
  54. Gloag ES, Javed MA, Wang H, Gee ML, Wade SA. et al. 2013. Stigmergy: a key driver of self-organization in bacterial biofilms. Commun. Integr. Biol. 6:e27331 [Google Scholar]
  55. Gruber N, Sarmiento JL. 1997. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11:235–66 [Google Scholar]
  56. Hartmann DL. 1994. Global Physical Climatology San Diego, CA: Academic [Google Scholar]
  57. Havens KE, Carlson RE. 1998. Functional complementarity in plankton communities along a gradient of acid stress. Environ. Pollut. 101:427–36 [Google Scholar]
  58. Hellingwerf KJ, Lolkema JS, Otto R, Neijssel OM, Stouthamer AH. et al. 1982. Energetics of microbial growth: an analysis of the relationship between growth and its mechanistic basis by mosaic non-equilibrium thermodynamics. FEMS Microbiol. Lett. 15:7–17 [Google Scholar]
  59. Hmelo LR, Mincer TJ, Van Mooy BAS. 2011. Possible influence of bacterial quorum sensing on the hydrolysis of sinking particulate organic carbon in marine environments. Environ. Microbiol. Rep. 3:682–88 [Google Scholar]
  60. Inoue T, Iseri Y. 2012. Diel vertical migration and nutrient transport of the dinoflagellate Peridinium bipes f. occultatum in a thermally stratified reservoir. Water Sci. Technol. 66:1212–19 [Google Scholar]
  61. Jaynes ET. 2003. Probability Theory: The Logic of Science Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  62. Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A. et al. 2004. Big questions, small worlds: microbial model systems in ecology. Trends Ecol. Evol. 19:189–97 [Google Scholar]
  63. Jia C, Jing C, Liu J. 2014. The character of entropy production in Rayleigh–Bénard convection. Entropy 16:4960–73 [Google Scholar]
  64. Jin Q, Bethke CM. 2003. A new rate law describing microbial respiration. Appl. Environ. Microbiol. 69:2340–48 [Google Scholar]
  65. Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69:373–86 [Google Scholar]
  66. Jørgensen SE. 1992. Exergy and ecology. Ecol. Model. 63:185–214 [Google Scholar]
  67. Jørgensen SE, Mejer H. 1979. A holistic approach to ecological modelling. Ecol. Model. 7:169–89 [Google Scholar]
  68. Kagan BA, Sündermann J. 1996. Dissipation of tidal energy, paleotides, and evolution of the Earth–Moon system. Advances in Geophysics 38 R Dmowska, B Saltzman 179–266 San Diego, CA: Academic [Google Scholar]
  69. Karstensen J, Stramma L, Visbeck M. 2008. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77:331–50 [Google Scholar]
  70. Kleidon A. 2010. Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys. Life Rev. 7:424–60 [Google Scholar]
  71. Kleidon A, Fraedrich K, Kunz T, Lunkeit F. 2003. The atmospheric circulation and states of maximum entropy production. Geophys. Res. Lett. 30:1–4 [Google Scholar]
  72. Kleidon A, Zehe E, Ehret U, Scherer U. 2013. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale. Hydrol. Earth Syst. Sci. 17:225–51 [Google Scholar]
  73. Kondepudi D, Prigogine I. 1998. Modern Thermodynamics: From Heat Engines to Dissipative Structures New York: Wiley & Sons [Google Scholar]
  74. Konopka A. 2009. What is microbial community ecology?. ISME J. 3:1223–30 [Google Scholar]
  75. Lambert FL. 1999. Shuffled cards, messy desks, and disorderly dorm rooms: examples of entropy increase? Nonsense!. J. Chem. Educ. 76:1385–87 [Google Scholar]
  76. Landauer R. 1961. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5:183–91 [Google Scholar]
  77. Lawton JH. 1995. Ecological experiments with model systems. Science 269:328–31 [Google Scholar]
  78. Lay T, Hernlund J, Buffett BA. 2008. Core-mantle boundary heat flow. Nat. Geosci. 1:25–32 [Google Scholar]
  79. Lindeman RL. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399–417 [Google Scholar]
  80. Lineweaver CH, Egan CA. 2008. Life, gravity and the second law of thermodynamics. Phys. Life Rev. 5:225–42 [Google Scholar]
  81. Loreau M. 1995. Consumers as maximizers of matter and energy flow in ecosystems. Am. Nat. 145:22–42 [Google Scholar]
  82. Lorenz RD. 2003. Full steam ahead—probably. Science 299:837–38 [Google Scholar]
  83. Lorenz RD, Lunine JI, Withers PG. 2001. Titan, Mars and Earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28:415–18 [Google Scholar]
  84. Lotka AJ. 1909. Contribution to the theory of periodic reactions. J. Phys. Chem. 14:271–74 [Google Scholar]
  85. Lotka AJ. 1920. Analytical note on certain rhythmic relations in organic systems. PNAS 6:410–15 [Google Scholar]
  86. Lotka AJ. 1922a. Contribution to the energetics of evolution. PNAS 8:147–51 [Google Scholar]
  87. Lotka AJ. 1922b. Natural selection as a physical principle. PNAS 8:151–54 [Google Scholar]
  88. Lucia U. 2012. Maximum or minimum entropy generation for open systems?. Phys. A 391:3392–98 [Google Scholar]
  89. Lucia U, Sciubba E. 2013. From Lotka to the entropy generation approach. Phys. A 392:3634–39 [Google Scholar]
  90. Margalef R. 1961. Communication of structure in planktonic populations. Limnol. Oceanogr. 6:124–28 [Google Scholar]
  91. Marotzke J, Willebrand J. 1991. Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr. 21:1372–85 [Google Scholar]
  92. Martyushev LM. 2007. Some interesting consequences of the maximum entropy production principle. J. Exp. Theor. Phys. 104:651–54 [Google Scholar]
  93. Martyushev LM. 2013. Entropy and entropy production: old misconceptions and new breakthroughs. Entropy 15:1152–70 [Google Scholar]
  94. Martyushev LM, Seleznev VD. 2006. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426:1–45 [Google Scholar]
  95. Martyushev LM, Seleznev VD. 2014. The restrictions of the maximum entropy production principle. Phys. A 410:17–21 [Google Scholar]
  96. Mazancourt DC, Loreau M. 2000. Grazing optimization, nutrient cycling, and spatial heterogeneity of plant-herbivore interactions: Should a palatable plant evolve?. Evolution 54:81–92 [Google Scholar]
  97. McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR. et al. 2010. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. PNAS 107:16420–27 [Google Scholar]
  98. McCollom TM, Seewald JS. 2001. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65:3769–78 [Google Scholar]
  99. Mejer H, Jørgensen SE. 1979. Exergy and ecological buffer capacity. State-of-the-Art in Ecological Modelling SE Jørgensen 829–46 London: Pergamon [Google Scholar]
  100. Meysman FJR, Bruers S. 2007. A thermodynamic perspective on food webs: quantifying entropy production within detrital-based ecosystems. J. Theor. Biol. 249:124–39 [Google Scholar]
  101. Minkevich IG, Eroshin VK. 1973. Productivity and heat generation of fermentation under oxygen limitation. Folia Microbiol. 18:376–85 [Google Scholar]
  102. Mitchell A, Romano GH, Groisman B, Yona A, Dekel E. et al. 2009. Adaptive prediction of environmental changes by microorganisms. Nature 460:220–24 [Google Scholar]
  103. Moloney CL, Field JG, Lucas MI. 1991. The size-based dynamics of plankton food webs. II. Simulations of three contrasting southern Benguela food webs. J. Plankton Res. 13:1039–92 [Google Scholar]
  104. Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY. 2002. An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res. II 49:403–62 [Google Scholar]
  105. Morowitz HJ. 1955. Some order-disorder considerations in living systems. Bull. Math. Biol. 17:81–86 [Google Scholar]
  106. Morowitz HJ. 1968. Energy Flow in Biology: Biological Organization as a Problem in Thermal Physics New York: Academic [Google Scholar]
  107. Moroz A. 2008. On a variational formulation of the maximum energy dissipation principle for non-equilibrium chemical thermodynamics. Chem. Phys. Lett. 457:448–52 [Google Scholar]
  108. Morrison P. 1964. A thermodynamic characterization of self-reproduction. Rev. Mod. Phys. 36:517–24 [Google Scholar]
  109. Müller F. 1997. State-of-the-art in ecosystem theory. Ecol. Model. 100:135–61 [Google Scholar]
  110. Müller F, Leupelt M. 1998. Eco Targets, Goal Functions, and Orientors Berlin: Springer [Google Scholar]
  111. Niven RK. 2012. Maximum entropy analysis of steady-state flow systems (and extremum entropy production principles). AIP Conf. Proc. 1443:270–81 [Google Scholar]
  112. Nunes F, Norris RD. 2006. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature 439:60–63 [Google Scholar]
  113. Odum EP. 1964. The new ecology. BioScience 14:14–16 [Google Scholar]
  114. Odum EP. 1968. Energy flow in ecosystems: a historical review. Am. Zool. 8:11–18 [Google Scholar]
  115. Odum EP. 1969. The strategy of ecosystem development. Science 164:262–70 [Google Scholar]
  116. Odum HT. 1983. Systems Ecology Toronto: Wiley [Google Scholar]
  117. Odum HT, Pinkerton RC. 1955. Time's speed regulator: the optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 43:321–43 [Google Scholar]
  118. Ozawa H, Ohmura A, Lorenz RD, Pujol T. 2003. The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev. Geophys. 41:1–24 [Google Scholar]
  119. Paillard D, Herbert C. 2013. Maximum entropy production and time varying problems: the seasonal cycle in a conceptual climate model. Entropy 15:2846–60 [Google Scholar]
  120. Palsson BO. 2006. Systems Biology: Properties of Reconstructed Networks Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  121. Paltridge GW. 1975. Global dynamics and climate: a system of minimum entropy exchange. Q. J. R. Meterol. Soc. 104:927–45 [Google Scholar]
  122. Patten BC. 1966. Systems ecology: a course sequence in mathematical ecology. BioScience 16:593–98 [Google Scholar]
  123. Payn RA, Helton AM, Poole GC, Izurieta C, Burgin AJ, Bernhardt ES. 2014. A generalized optimization model of microbially driven aquatic biogeochemistry based on thermodynamic, kinetic, and stoichiometric ecological theory. Ecol. Model. 294:1–18 [Google Scholar]
  124. Peixoto JP, Oort AH. 1992. Physics of Climate New York: Am. Inst. Phys. [Google Scholar]
  125. Power ME. 1992. Top-down and bottom-up forces in food webs: Do plants have primacy?. Ecology 73:733–46 [Google Scholar]
  126. Prigogine I, Nicolis G. 1967. On symmetry-breaking instabilities in dissipative systems. J. Chem. Phys. 46:354250 [Google Scholar]
  127. Prigogine I, Nicolis G, Babloyantz A. 1972. Thermodynamics of evolution. Phys. Today 25:23–28 [Google Scholar]
  128. Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ. et al. 2008. Abiogenic hydrocarbon production at lost city hydrothermal field. Science 319:604–7 [Google Scholar]
  129. Quijano J, Lin H. 2014. Entropy in the critical zone: a comprehensive review. Entropy 16:3482–536 [Google Scholar]
  130. Rayleigh L. 1916. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 32:529–46 [Google Scholar]
  131. Reed DC, Algar CK, Huber JA, Dick GJ. 2014. Gene-centric approach to integrating environmental genomics and biogeochemical models. PNAS 111:1879–84 [Google Scholar]
  132. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:1098–101 [Google Scholar]
  133. Reichert P, Omlin M. 1997. On the usefulness of overparameterized ecological models. Ecol. Model. 95:289–99 [Google Scholar]
  134. Riley GA. 1946. Factors controlling phytoplankton population on Georges Bank. J. Mar. Res. 6:54–73 [Google Scholar]
  135. Roels JA. 1983. Energetics and Kinetics in Biotechnology New York: Elsevier [Google Scholar]
  136. Rombouts I, Beaugrand G, Artigas LF, Dauvin JC, Gevaert F. et al. 2013. Evaluating marine ecosystem health: case studies of indicators using direct observations and modelling methods. Ecol. Indic. 24:353–65 [Google Scholar]
  137. Russell JB, Cook GM. 1995. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol. Mol. Biol. Rev. 59:48–62 [Google Scholar]
  138. Ryrie SC, Prentice IC. 2011. Herbivores enable plant survival under nutrient limited conditions in a model grazing system. Ecol. Model. 222:381–97 [Google Scholar]
  139. Saito MA, McIlvin MR, Moran DM, Goepfert TJ, DiTullio GR. et al. 2014. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345:1173–77 [Google Scholar]
  140. Schauer R, Risgaard-Petersen N, Kjeldsen KU, Tataru Bjerg JJ, B Jørgensen BB. et al. 2014. Succession of cable bacteria and electric currents in marine sediment. ISME J. 8:1314–22 [Google Scholar]
  141. Schmitz OJ, Hawlena D, Trussell GC. 2010. Predator control of ecosystem nutrient dynamics. Ecol. Lett. 13:1199–209 [Google Scholar]
  142. Schneider ED, Kay JJ. 1994a. Complexity and thermodynamics: towards a new ecology. Futures 26:626–47 [Google Scholar]
  143. Schneider ED, Kay JJ. 1994b. Life as a manifestation of the second law of thermodynamics. Math. Comput. Model. 19:25–48 [Google Scholar]
  144. Schrödinger E. 1944. What Is Life? Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  145. Schulz HN, Brinkhoff T, Ferdelman TG, Hernández Mariné M, Teske A, Jørgensen BB. 1999. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–95 [Google Scholar]
  146. Sciubba E. 2011. What did Lotka really say? A critical reassessment of the “maximum power principle.”. Ecol. Model. 222:1347–53 [Google Scholar]
  147. Seleznev V, Martyushev L. 2014. Fluctuations, trajectory entropy and Ziegler's maximum entropy production principle. See Dewar et al. 2014b 97–112
  148. Shannon CE. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27:379–423 [Google Scholar]
  149. Shimokawa S, Ozawa H. 2001. On the thermodynamics of the oceanic general circulation: entropy increase rate of an open dissipative system and its surroundings. Tellus A 53:266–77 [Google Scholar]
  150. Shimokawa S, Ozawa H. 2002. On the thermodynamics of the ocean general circulation: irreversible transition to a state with higher rate of entropy production. Q. J. R. Meteorol. Soc. 128:2115–28 [Google Scholar]
  151. Shimokawa S, Ozawa H. 2007. Thermodynamics of irreversible transitions in the oceanic general circulation. Geophys. Res. Lett. 34:1–5 [Google Scholar]
  152. Smith E. 2008. Thermodynamics of natural selection III: Landauer's principle in computation and chemistry. J. Theor. Biol. 252:213–20 [Google Scholar]
  153. Smith WO Jr, Demaster DJ. 1996. Phytoplankton biomass and productivity in the Amazon River plume: correlation with seasonal river discharge. Cont. Shelf Res. 16:291–319 [Google Scholar]
  154. Steele JH, Henderson EW. 1992. The role of predation in plankton models. J. Plankton Res. 14:157–72 [Google Scholar]
  155. Stocker R, Seymour JR. 2012. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 76:792–812 [Google Scholar]
  156. Stommel H. 1961. Thermohaline convection with two stable regimes of flow. Tellus 13:224–30 [Google Scholar]
  157. Swenson R. 1989. Emergent attractors and the law of maximum entropy production: foundations to a theory of general evolution. Syst. Res. 6:187–97 [Google Scholar]
  158. Szilard L. 1964. On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Behav. Sci. 9:301–10 [Google Scholar]
  159. Tagkopoulos I, Liu YC, Tavazoie S. 2008. Predictive behavior within microbial genetic networks. Science 320:1313–17 [Google Scholar]
  160. Tansley AG. 1935. The use and abuse of vegetational concepts and terms. Ecology 16:284–307 [Google Scholar]
  161. Taylor JR, Stocker R. 2012. Trade-offs of chemotactic foraging in turbulent water. Science 338:675–79 [Google Scholar]
  162. Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M. 2010. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6:988–92 [Google Scholar]
  163. Tribus M, McIrvine EC. 1971. Energy and information. Sci. Am. 225:179–88 [Google Scholar]
  164. Ulanowicz RE. 1986. Growth and Development: Ecosystems Phenomenology New York: Springer-Verlag [Google Scholar]
  165. Ulanowicz RE. 1989. Energy flow and productivity in the oceans. Toward a More Exact Ecology PJ Grubb, JB Whittaker 327–51 Oxford, UK: Blackwell [Google Scholar]
  166. Ulanowicz RE. 1997. Ecology, the Ascendent Perspective New York: Columbia Univ. Press [Google Scholar]
  167. Ulanowicz RE, Hannon BM. 1987. Life and the production of entropy. Proc. R. Soc. Lond. B 232:181–92 [Google Scholar]
  168. Vallino JJ. 2010. Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. Philos. Trans. R. Soc. B 365:1417–27 [Google Scholar]
  169. Vallino JJ. 2011. Differences and implications in biogeochemistry from maximizing entropy production locally versus globally. Earth Syst. Dyn. 2:69–85 [Google Scholar]
  170. Vallino JJ, Algar CK, González NF, Huber JA. 2014. Use of receding horizon optimal control to solve MaxEP-based biogeochemistry problems. See Dewar et al. 2014b 337–59
  171. Vallino JJ, Hopkinson CS, Hobbie JE. 1996. Modeling bacterial utilization of dissolved organic matter: Optimization replaces Monod growth kinetics. Limnol. Oceanogr. 41:1591–609 [Google Scholar]
  172. van de Leemput IA, Veraart AJ, Dakos V, de Klein JJM, Strous M, Scheffer M. 2011. Predicting microbial nitrogen pathways from basic principles. Environ. Microbiol. 13:1477–87 [Google Scholar]
  173. Volterra V. 1928. Variations and fluctuations of the number of individuals in animal species living together. J. Cons. Int. Explor. Mer 3:3–51 [Google Scholar]
  174. Vraspir JM, Butler A. 2009. Chemistry of marine ligands and siderophores. Annu. Rev. Mar. Sci. 1:43–63 [Google Scholar]
  175. Wang J, Bras RL. 2011. A model of evapotranspiration based on the theory of maximum entropy production. Water Resour. Res. 47:1–10 [Google Scholar]
  176. Watson JD, Crick FHC. 1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–38 [Google Scholar]
  177. West G, Brown JH, Enquist BJ. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:122–26 [Google Scholar]
  178. Westerhoff HV, Lolkema JS, Otto R, Hellingwerf KJ. 1982. Thermodynamics of growth non-equilibrium thermodynamics of bacterial growth the phenomenological and the Mosaic approach. Biochim. Biophys. Acta 683:181–220 [Google Scholar]
  179. Willis AJ. 1997. The ecosystem: an evolving concept viewed historically. Funct. Ecol. 11:268–71 [Google Scholar]
  180. Yen JDL, Paganin DM, Thomson JR, Mac Nally R. 2014. Thermodynamic extremization principles and their relevance to ecology. Aust. Ecol. 39:619–32 [Google Scholar]
  181. Ziegler H. 1983. An Introduction to Thermomechanics Amsterdam: North Holland [Google Scholar]
  182. Zomorrodi AR, Islam MM, Maranas CD. 2014. d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol. 3:247–57 [Google Scholar]
/content/journals/10.1146/annurev-marine-010814-015843
Loading
/content/journals/10.1146/annurev-marine-010814-015843
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error