1932

Abstract

As climate change drives health declines of tropical reef species, diseases are further eroding ecosystem function and habitat resilience. Coral disease impacts many areas around the world, removing some foundation species to recorded low levels and thwarting worldwide efforts to restore reefs. What we know about coral disease processes remains insufficient to overcome many current challenges in reef conservation, yet cumulative research and management practices are revealing new disease agents (including bacteria, viruses, and eukaryotes), genetic host disease resistance factors, and innovative methods to prevent and mitigate epizootic events (probiotics, antibiotics, and disease resistance breeding programs). The recent outbreak of stony coral tissue loss disease across the Caribbean has reenergized and mobilized the research community to think bigger and do more. This review therefore focuses largely on novel emerging insights into the causes and mechanisms of coral disease and their applications to coral restoration and conservation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-011123-102337
2025-01-16
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-011123-102337.html?itemId=/content/journals/10.1146/annurev-marine-011123-102337&mimeType=html&fmt=ahah

Literature Cited

  1. Aeby GS. 2015.. Porites trematodiasis. . In Diseases of Coral, ed. CM Woodley, CA Downs, AW Bruckner, JW Porter, SB Galloway , pp. 38790. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  2. Aeby GS, Work TM, Runyon CM, Shore-Maggio A, Ushijima B, et al. 2015.. First record of black band disease in the Hawaiian archipelago: response, outbreak status, virulence, and a method of treatment. . PLOS ONE 10:(3):e0120853
    [Crossref] [Google Scholar]
  3. Ahmed N, Mohamed HF, Xu C, Sun X, Huang L. 2022.. Novel antibacterial activity of Sargassum fusiforme extract against coral white band disease. . Electron. J. Biotechnol. 57::1223
    [Crossref] [Google Scholar]
  4. Ainsworth TD, Fordyce AJ, Camp EF. 2017.. The other microeukaryotes of the coral reef microbiome. . Trends Microbiol. 25:(12):98091
    [Crossref] [Google Scholar]
  5. Ainsworth TD, Kramasky-Winter E, Loya Y, Hoegh-Guldberg O, Fine M. 2007.. Coral disease diagnostics: What's between a plague and a band?. Appl. Environ. Microbiol. 73:(3):98192
    [Crossref] [Google Scholar]
  6. Altermatt F, Ebert D. 2008.. Genetic diversity of Daphnia magna populations enhances resistance to parasites. . Ecol. Lett. 11:(9):91828
    [Crossref] [Google Scholar]
  7. Alvarez-Filip L, González-Barrios FJ, Pérez-Cervantes E, Molina-Hernández A, Estrada-Saldívar N. 2022.. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. . Commun. Biol. 5:(1):440
    [Crossref] [Google Scholar]
  8. Andersson ER, Stewart JA, Work TM, Woodley CM, Schock TB, Day RD. 2020.. Morphological, elemental, and boron isotopic insights into pathophysiology of diseased coral growth anomalies. . Sci. Rep. 10:(1):8252
    [Crossref] [Google Scholar]
  9. Aronson RB, Precht WF. 2001.. White-band disease and the changing face of Caribbean coral reefs. . Hydrobiologia 460:(1):2538
    [Crossref] [Google Scholar]
  10. Augustin R, Schröder K, Murillo Rincón AP, Fraune S, Anton-Erxleben F, et al. 2017.. A secreted antibacterial neuropeptide shapes the microbiome of Hydra. . Nat. Commun. 8:(1):698
    [Crossref] [Google Scholar]
  11. Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. 2018.. Climate change promotes parasitism in a coral symbiosis. . ISME J. 12:(3):92130
    [Crossref] [Google Scholar]
  12. Barno AR, Villela HDM, Aranda M, Thomas T, Peixoto RS. 2021.. Host under epigenetic control: a novel perspective on the interaction between microorganisms and corals. . BioEssays 43:(10):e2100068
    [Crossref] [Google Scholar]
  13. Barr JJ, Youle M, Rohwer F. 2013.. Innate and acquired bacteriophage-mediated immunity. . Bacteriophage 3:(3):e25857
    [Crossref] [Google Scholar]
  14. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, et al. 2007.. Herpesvirus latency confers symbiotic protection from bacterial infection. . Nature 447:(7142):32629
    [Crossref] [Google Scholar]
  15. Bayer T, Aranda M, Sunagawa S, Yum LK, Desalvo MK, et al. 2012.. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. . PLOS ONE 7:(4):e35269
    [Crossref] [Google Scholar]
  16. Beavers KM, Van Buren EW, Rossin AM, Emery MA, Veglia AJ, et al. 2023.. Stony coral tissue loss disease induces transcriptional signatures of in situ degradation of dysfunctional Symbiodiniaceae. . Nat. Commun. 14:(1):2915
    [Crossref] [Google Scholar]
  17. Biharee A, Sharma A, Kumar A, Jaitak V. 2020.. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. . Fitoterapia 146::104720
    [Crossref] [Google Scholar]
  18. Borger JL. 2005.. Dark spot syndrome: a scleractinian coral disease or a general stress response?. Coral Reefs 24:(1):13944
    [Crossref] [Google Scholar]
  19. Bosch TCG, Miller DJ. 2016.. Introduction: the holobiont imperative. . In The Holobiont Imperative: Perspectives from Early Emerging Animals, pp. 110. Vienna:: Springer
    [Google Scholar]
  20. Bourne DG, Ainsworth TD, Pollock FJ, Willis BL. 2015.. Towards a better understanding of white syndromes and their causes on Indo-Pacific coral reefs. . Coral Reefs 34:(1):23342
    [Crossref] [Google Scholar]
  21. Bourne DG, Boyett HV, Henderson ME, Muirhead A, Willis BL. 2008.. Identification of a ciliate (Oligohymenophorea: Scuticociliatia) associated with brown band disease on corals of the Great Barrier Reef. . Appl. Environ. Microbiol. 74:(3):88388
    [Crossref] [Google Scholar]
  22. Brandt ME, Ennis RS, Meiling SS, Townsend J, Cobleigh K, et al. 2021.. The emergence and initial impact of stony coral tissue loss disease (SCTLD) in the United States Virgin Islands. . Front. Mar. Sci. 8::715329
    [Crossref] [Google Scholar]
  23. Brandt ME, McManus JW. 2009.. Disease incidence is related to bleaching extent in reef-building corals. . Ecology 90:(10):285967
    [Crossref] [Google Scholar]
  24. Bray RA, Cribb TH. 1989.. Digeneans of the family Opecoelidae Ozaki, 1925 from the southern Great Barrier Reef, including a new genus and three new species. . J. Nat. Hist. 23:(2):42973
    [Crossref] [Google Scholar]
  25. Brown AL, Anastasiou D-E, Schul M, MacVittie S, Spiers LJ, et al. 2022.. Mixtures of genotypes increase disease resistance in a coral nursery. . Sci. Rep. 12:(1):19286
    [Crossref] [Google Scholar]
  26. Bruckner AW. 2015.. History of coral disease research. . In Diseases of Coral, ed. CM Woodley, CA Downs, AW Bruckner, JW Porter, SB Galloway , pp. 5284. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  27. Bruckner AW, Bruckner RJ. 2006.. Consequences of yellow band disease (YBD) on Montastraea annularis (species complex) populations on remote reefs off Mona Island, Puerto Rico. . Dis. Aquat. Organ. 69:(1):6773
    [Crossref] [Google Scholar]
  28. Bruno JF, Petes LE, Harvell CD, Hettinger A. 2003.. Nutrient enrichment can increase the severity of coral diseases. . Ecol. Lett. 6:(12):105661
    [Crossref] [Google Scholar]
  29. Buerger P, Weynberg KD, Wood-Charlson EM, Sato Y, Willis BL, van Oppen MJH. 2019.. Novel T4 bacteriophages associated with black band disease in corals. . Environ. Microbiol. 21:(6):196979
    [Crossref] [Google Scholar]
  30. Bythell J, Pantos O, Richardson L. 2004.. White plague, white band, and other “white” diseases. . In Coral Health and Disease, ed. E Rosenberg, Y Loya , pp. 35165. Berlin:: Springer
    [Google Scholar]
  31. Cervino J, Goreau TJ, Nagelkerken I, Smith GW, Hayes R. 2001.. Yellow band and dark spot syndromes in Caribbean corals: distribution, rate of spread, cytology, and effects on abundance and division rate of zooxanthellae. . Hydrobiologia 460:(1):5363
    [Crossref] [Google Scholar]
  32. Chimetto Tonon LA, Thompson JR, Moreira APB, Garcia GD, Penn K, et al. 2017.. Quantitative detection of active vibrios associated with white plague disease in Mussismilia braziliensis corals. . Front. Microbiol. 8::2272
    [Crossref] [Google Scholar]
  33. Clark AS, Williams SD, Maxwell K, Rosales SM, Huebner LK, et al. 2021.. Characterization of the microbiome of corals with stony coral tissue loss disease along Florida's coral reef. . Microorganisms 9:(11):2181
    [Crossref] [Google Scholar]
  34. Cohen Y, Pollock JF, Rosenberg E, Bourne DG. 2013.. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. . MicrobiologyOpen 2:(1):6474
    [Crossref] [Google Scholar]
  35. Cooney RP, Pantos O, Le Tissier MDA, Barer MR, O'Donnell AG, Bythell JC. 2002.. Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. . Environ. Microbiol. 4:(7):40113
    [Crossref] [Google Scholar]
  36. Correa AMS, Ainsworth TD, Rosales SM, Thurber AR, Butler CR, Vega Thurber RL. 2016.. Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. . Front. Microbiol. 7::127
    [Crossref] [Google Scholar]
  37. Correa AMS, Brandt ME, Smith TB, Thornhill DJ, Baker AC. 2009.. Symbiodinium associations with diseased and healthy scleractinian corals. . Coral Reefs 28:(2):43748
    [Crossref] [Google Scholar]
  38. Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. 2021.. Revisiting the rules of life for viruses of microorganisms. . Nat. Rev. Microbiol. 19:(8):50113
    [Crossref] [Google Scholar]
  39. Correa AMS, Welsh RM, Vega Thurber RL. 2013.. Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. . ISME J. 7:(1):1327
    [Crossref] [Google Scholar]
  40. Coy SR, Utama B, Spurlin JW, Kim JG, Deshmukh H, et al. 2023.. Visualization of RNA virus infection in a marine protist with a universal biomarker. . Sci. Rep. 13:(1):5813
    [Crossref] [Google Scholar]
  41. Croquer A, Weil E. 2009.. Changes in Caribbean coral disease prevalence after the 2005 bleaching event. . Dis. Aquat. Organ. 87:(1–2):3343
    [Crossref] [Google Scholar]
  42. Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, et al. 2023.. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. . PeerJ 11::e15023
    [Crossref] [Google Scholar]
  43. Davy SK, Burchett SG, Dale AL, Davies P, Davy JE, et al. 2006.. Viruses: agents of coral disease?. Dis. Aquat. Organ. 69:(1):10110
    [Crossref] [Google Scholar]
  44. Deutsch JM, Mandelare-Ruiz P, Yang Y, Foster G, Routhu A, et al. 2022.. Metabolomics approaches to dereplicate natural products from coral-derived bioactive bacteria. . J. Nat. Prod. 85:(3):46278
    [Crossref] [Google Scholar]
  45. Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV. 2015.. Genomic determinants of coral heat tolerance across latitudes. . Science 348:(6242):146062
    [Crossref] [Google Scholar]
  46. Dobbelaere T, Muller EM, Gramer LJ, Holstein DM, Hanert E. 2020.. Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly coral disease in Florida. . Front. Mar. Sci. 7::591881
    [Crossref] [Google Scholar]
  47. Doering T, Wall M, Putchim L, Rattanawongwan T, Schroeder R, et al. 2021.. Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. . Microbiome 9:(1):102
    [Crossref] [Google Scholar]
  48. Drappier M, Michiels T. 2015.. Inhibition of the OAS/RNase L pathway by viruses. . Curr. Opin. Virol. 15::1926
    [Crossref] [Google Scholar]
  49. Dustan P. 1977.. Vitality of reef coral populations off Key Largo, Florida: recruitment and mortality. . Environ. Geol. 2::5158
    [Crossref] [Google Scholar]
  50. Eaton KR, Clark AS, Curtis K, Favero M, Hanna Holloway N, et al. 2022.. A highly effective therapeutic ointment for treating corals with black band disease. . PLOS ONE 17:(10):e0276902
    [Crossref] [Google Scholar]
  51. Eddy TD, Cheung WWL, Bruno JF. 2018.. Historical baselines of coral cover on tropical reefs as estimated by expert opinion. . PeerJ 6::e4308
    [Crossref] [Google Scholar]
  52. Efrony R, Atad I, Rosenberg E. 2009.. Phage therapy of coral white plague disease: properties of phage BA3. . Curr. Microbiol. 58:(2):13945
    [Crossref] [Google Scholar]
  53. Epstein HE, Brown T, Akinrinade AO, McMinds R, Pollock FJ, et al. 2023.. Evidence for microbially-mediated tradeoffs between growth and defense throughout coral evolution. . bioRxiv 2023.04.26.538152. https://doi.org/10.1101/2023.04.26.538152
  54. Foley JE, Sokolow SH, Girvetz E, Foley CW, Foley P. 2005.. Spatial epidemiology of Caribbean yellow band syndrome in Montastrea spp. coral in the eastern Yucatan, Mexico. . Hydrobiologia 548:(1):3340
    [Crossref] [Google Scholar]
  55. Forrester GE, Arton L, Horton A, Nickles K, Forrester LM. 2022.. Antibiotic treatment ameliorates the impact of stony coral tissue loss disease (SCTLD) on coral communities. . Front. Mar. Sci. 9::859740
    [Crossref] [Google Scholar]
  56. Francini-Filho RB, Moura RL, Thompson FL, Reis RM, Kaufman L, et al. 2008.. Diseases leading to accelerated decline of reef corals in the largest South Atlantic reef complex (Abrolhos Bank, eastern Brazil). . Mar. Pollut. Bull. 56:(5):100814
    [Crossref] [Google Scholar]
  57. Fraune S, Anton-Erxleben F, Augustin R, Franzenburg S, Knop M, et al. 2014.. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. . ISME J. 9:(7):154356
    [Crossref] [Google Scholar]
  58. Frias-Lopez J, Klaus JS, Bonheyo GT, Fouke BW. 2004.. Bacterial community associated with black band disease in corals. . Appl. Environ. Microbiol. 70:(10):595562
    [Crossref] [Google Scholar]
  59. Gignoux-Wolfsohn SA, Vollmer SV. 2015.. Identification of candidate coral pathogens on white band disease-infected staghorn coral. . PLOS ONE 10:(8):e0134416
    [Crossref] [Google Scholar]
  60. Gil-Agudelo DL, Smith GW, Weil E. 2006.. The white band disease type II pathogen in Puerto Rico. . Rev. Biol. Trop. 54::5967
    [Google Scholar]
  61. Goreau T, Cervino J, Goreau M, Hayes R, Hayes M, et al. 1998.. Rapid spread of diseases in Caribbean coral reefs. . Rev. Biol. Trop. 46::15171
    [Google Scholar]
  62. Gove JM, Williams GJ, Lecky J, Brown E, Conklin E, et al. 2023.. Coral reefs benefit from reduced land-sea impacts under ocean warming. . Nature 621:(7979):53642
    [Crossref] [Google Scholar]
  63. Grasis JA. 2017.. The intra-dependence of viruses and the holobiont. . Front. Immunol. 8::1501
    [Crossref] [Google Scholar]
  64. Griffin SP. 1998.. The effects of sunlight on the progression of black band disease. . Rev. Biol. Trop. 46::17579
    [Google Scholar]
  65. Grupstra CGB, Howe-Kerr LI, van der Meulen JA, Veglia AJ, Coy SR, Correa A. 2022a.. Consumer feces impact coral health in guild-specific ways. . Front. Mar. Sci. 10::1110346
    [Crossref] [Google Scholar]
  66. Grupstra CGB, Howe-Kerr LI, Veglia AJ, Bryant RL, Coy SR, et al. 2022b.. Thermal stress triggers productive viral infection of a key coral reef symbiont. . ISME J. 16:(5):143041
    [Crossref] [Google Scholar]
  67. Heinz JM, Sommer M, Rosales SM, Lu J, Huebner LK, Salzberg SL. 2024.. Novel metagenomics analysis suggests a species is associated with stony coral tissue loss disease. . bioRxiv 2024.01.02.573916. https://doi.org/10.1101/2024.01.02.573916
  68. Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. 2024.. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. . Biol. Rev. Camb. Philos. Soc. 99:(3):71552
    [Crossref] [Google Scholar]
  69. Howe-Kerr LI, Grupstra CGB, Rabbitt KM, Conetta D, Coy SR, et al. 2023a.. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. . ISME Commun. 3:(1):27
    [Crossref] [Google Scholar]
  70. Howe-Kerr LI, Knochel AM, Meyer MD, Sims JA, Karrick CE, et al. 2023b.. Filamentous virus-like particles are present in coral dinoflagellates across genera and ocean basins. . ISME J. 17:(12):2389402
    [Crossref] [Google Scholar]
  71. Hudson JH. 2000.. First aid for massive corals infected with black band disease, Phormidium corallyticum: an underwater aspirator and post-treatment sealant to curtail reinfection. . In Diving for Science in the 21st Century, ed. P Hallock, L French , pp. 1011. Nahant, MA:: Am. Acad. Underw. Sci.
    [Google Scholar]
  72. Jacquemot L, Bettarel Y, Monjol J, Corre E, Halary S, et al. 2018.. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen. . Front. Microbiol. 9::2501
    [Crossref] [Google Scholar]
  73. Jones RJ, Bowyer J, Hoegh-Guldberg O, Blackall LL. 2004.. Dynamics of a temperature-related coral disease outbreak. . Mar. Ecol. Prog. Ser. 281::6377
    [Crossref] [Google Scholar]
  74. Jutkina J, Marathe NP, Flach C-F, Larsson DGJ. 2018.. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. . Sci. Total Environ. 616–17::17278
    [Crossref] [Google Scholar]
  75. Kellogg CA, Piceno YM, Tom LM, DeSantis TZ, Gray MA, Andersen GL. 2014.. Comparing bacterial community composition of healthy and dark spot-affected Siderastrea siderea in Florida and the Caribbean. . PLOS ONE 9:(10):e108767
    [Crossref] [Google Scholar]
  76. Kiel PM, Formel N, Jankulak M, Baker A, Cunning R, et al. 2023.. Acropora cervicornis Data Coordination Hub, an open access database for evaluating genet performance. . Bull. Mar. Sci. 99:(2):11936
    [Crossref] [Google Scholar]
  77. Kim HJ, Jun JW, Giri SS, Chi C, Yun S, et al. 2019.. Application of the bacteriophage pVco-14 to prevent Vibrio coralliilyticus infection in Pacific oyster (Crassostrea gigas) larvae. . J. Invertebr. Pathol. 167::107244
    [Crossref] [Google Scholar]
  78. Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, et al. 2011.. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. . ISME J. 6:(4):83546
    [Crossref] [Google Scholar]
  79. Klein AM, Sturm AB, Eckert RJ, Walker BK, Neely KL, Voss JD. 2024.. Algal symbiont genera but not coral host genotypes correlate to stony coral tissue loss disease susceptibility among Orbicella faveolata colonies in South Florida. . Front. Mar. Sci. 11::1287457
    [Crossref] [Google Scholar]
  80. Klepac CN, Petrik CG, Karabelas E, Owens J, Hall ER, Muller EM. 2024.. Assessing acute thermal assays as a rapid screening tool for coral restoration. . Sci. Rep. 14:(1):1898
    [Crossref] [Google Scholar]
  81. Kline DI, Vollmer SV. 2011.. White band disease (type I) of endangered Caribbean acroporid corals is caused by pathogenic bacteria. . Sci. Rep. 1:(1):7
    [Crossref] [Google Scholar]
  82. Klinges JG, Patel SH, Duke WC, Muller EM, Vega Thurber RL. 2022.. Phosphate enrichment induces increased dominance of the parasite Aquarickettsia in the coral Acropora cervicornis. . FEMS Microbiol. Ecol. 98:(2):fiac013
    [Crossref] [Google Scholar]
  83. Klinges JG, Patel SH, Duke WC, Muller EM, Vega Thurber RL. 2023.. Microbiomes of a disease-resistant genotype of Acropora cervicornis are resistant to acute, but not chronic, nutrient enrichment. . Sci. Rep. 13:(1):3617
    [Crossref] [Google Scholar]
  84. Koch HR, Azu Y, Bartels E, Muller EM. 2022a.. No apparent cost of disease resistance on reproductive output in Acropora cervicornis genets used for active coral reef restoration in Florida. . Front. Mar. Sci. 9::958500
    [Crossref] [Google Scholar]
  85. Koch HR, Matthews B, Leto C, Engelsma C, Bartels E. 2022b.. Assisted sexual reproduction of Acropora cervicornis for active restoration on Florida's Coral Reef. . Front. Mar. Sci. 9::959520
    [Crossref] [Google Scholar]
  86. Lawrence SA, Davy JE, Wilson WH, Hoegh-Guldberg O, Davy SK. 2015.. Porites white patch syndrome: associated viruses and disease physiology. . Coral Reefs 34:(1):24957
    [Crossref] [Google Scholar]
  87. Lee Hing C, Guifarro Z, Dueñas D, Ochoa G, Nunez A, et al. 2022.. Management responses in Belize and Honduras, as stony coral tissue loss disease expands its prevalence in the Mesoamerican reef. . Front. Mar. Sci. 9::883062
    [Crossref] [Google Scholar]
  88. Levin RA, Voolstra CR, Weynberg KD, van Oppen MJH. 2017.. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. . ISME J. 11:(3):80812
    [Crossref] [Google Scholar]
  89. Li J, Zou Y, Li Q, Zhang J, Bourne DG, et al. 2023.. A coral-associated actinobacterium mitigates coral bleaching under heat stress. . Environ. Microbiome 18:(1):83
    [Crossref] [Google Scholar]
  90. Littman R, Willis BL, Bourne DG. 2011.. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. . Environ. Microbiol. Rep. 3:(6):65160
    [Crossref] [Google Scholar]
  91. MacKnight NJ, Cobleigh K, Lasseigne D, Chaves-Fonnegra A, Gutting A, et al. 2021.. Microbial dysbiosis reflects disease resistance in diverse coral species. . Commun. Biol. 4:(1):679
    [Crossref] [Google Scholar]
  92. MacKnight NJ, Dimos BA, Beavers KM, Muller EM, Brandt ME, Mydlarz LD. 2022.. Disease resistance in coral is mediated by distinct adaptive and plastic gene expression profiles. . Sci. Adv. 8:(39):eabo6153
    [Crossref] [Google Scholar]
  93. Malone TC, Newton A. 2020.. The globalization of cultural eutrophication in the coastal ocean: causes and consequences. . Front. Mar. Sci. 7::670
    [Crossref] [Google Scholar]
  94. Mao-Jones J, Ritchie KB, Jones LE, Ellner SP. 2010.. How microbial community composition regulates coral disease development. . PLOS Biol. 8:(3):e1000345
    [Crossref] [Google Scholar]
  95. Marhaver KL, Edwards RA, Rohwer F. 2008.. Viral communities associated with healthy and bleaching corals. . Environ. Microbiol. 10:(9):227786
    [Crossref] [Google Scholar]
  96. Martinand C, Salehzada T, Silhol M, Lebleu B, Bisbal C. 1998.. RNase L inhibitor (RLI) antisense constructions block partially the down regulation of the 2–5A/RNase L pathway in encephalomyocarditis-virus-(EMCV)-infected cells. . Eur. J. Biochem. 254:(2):24855
    [Crossref] [Google Scholar]
  97. Martínez-Castillo M, Pacheco-Yepez J, Flores-Huerta N, Guzmán-Téllez P, Jarillo-Luna RA, et al. 2018.. Flavonoids as a natural treatment against Entamoeba histolytica. . Front. Cell. Infect. Microbiol. 8::209
    [Crossref] [Google Scholar]
  98. Martins BT, Correia da Silva M, Pinto M, Cidade H, Kijjoa A. 2019.. Marine natural flavonoids: chemistry and biological activities. . Nat. Prod. Res. 33:(22):326072
    [Crossref] [Google Scholar]
  99. Maynard J, van Hooidonk R, Eakin CM, Puotinen M, Garren M, et al. 2015.. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. . Nat. Clim. Change 5:(7):68894
    [Crossref] [Google Scholar]
  100. Messyasz A, Rosales SM, Mueller RS, Sawyer T, Correa AMS, et al. 2020.. Coral bleaching phenotypes associated with differential abundances of nucleocytoplasmic large DNA viruses. . Front. Mar. Sci. 7::555474
    [Crossref] [Google Scholar]
  101. Meyer JL, Rodgers JM, Dillard BA, Paul VJ, Teplitski M. 2016.. Epimicrobiota associated with the decay and recovery of Orbicella corals exhibiting dark spot syndrome. . Front. Microbiol. 7::893
    [Crossref] [Google Scholar]
  102. Miller AW, Richardson LL. 2011.. A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals. . FEMS Microbiol. Ecol. 75:(2):23141
    [Crossref] [Google Scholar]
  103. Miller J, Muller EM, Rogers C, Waara R, Atkinson A, et al. 2009.. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. . Coral Reefs 28:(4):92537
    [Crossref] [Google Scholar]
  104. Miller MW, Lohr KE, Cameron CM, Williams DE, Peters EC. 2014.. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis. . PeerJ 2::e541
    [Crossref] [Google Scholar]
  105. Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. 2023.. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. . FEMS Microbiol. Rev. 47:(2):fuad005
    [Crossref] [Google Scholar]
  106. Montalvo-Proaño J, Buerger P, Weynberg KD, van Oppen MJH. 2017.. A PCR-based assay targeting the major capsid protein gene of a dinorna-like ssRNA virus that infects coral photosymbionts. . Front. Microbiol. 8::1665
    [Crossref] [Google Scholar]
  107. Morais J, Cardoso APLR, Santos BA. 2022.. A global synthesis of the current knowledge on the taxonomic and geographic distribution of major coral diseases. . Environ. Adv. 8::100231
    [Crossref] [Google Scholar]
  108. Moriarty T, Leggat W, Huggett MJ, Ainsworth TD. 2020.. Coral disease causes, consequences, and risk within coral restoration. . Trends Microbiol. 28:(10):793807
    [Crossref] [Google Scholar]
  109. Muller EM, Sartor C, Alcaraz NI, van Woesik R. 2020.. Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. . Front. Mar. Sci. 7::163
    [Crossref] [Google Scholar]
  110. Muller EM, van Woesik R. 2012.. Caribbean coral diseases: primary transmission or secondary infection?. Glob. Change Biol. 18:(12):352935
    [Crossref] [Google Scholar]
  111. Muller-Parker G, D'Elia CF, Cook CB. 2015.. Interactions between corals and their symbiotic algae. . In Coral Reefs in the Anthropocene, ed. C Birkeland , pp. 99116. Dordrecht, Neth:.: Springer
    [Google Scholar]
  112. Mydlarz LD, Couch CS, Weil E, Smith G, Harvell CD. 2009.. Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event. . Dis. Aquat. Organ. 87:(1–2):6778
    [Crossref] [Google Scholar]
  113. Mydlarz LD, Muller EM. 2023.. Genetics of coral resilience. . Science 381:(6665):141415
    [Crossref] [Google Scholar]
  114. NASEM (Natl. Acad. Sci. Eng. Med.). 2019.. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  115. Neely KL, Shea CP, Macaulay KA, Hower EK, Dobler MA. 2021.. Short- and long-term effectiveness of coral disease treatments. . Front. Mar. Sci. 8::675349
    [Crossref] [Google Scholar]
  116. Nguyen-Kim H, Bettarel Y, Bouvier T, Bouvier C, Doan-Nhu H, et al. 2015.. Coral mucus is a hot spot for viral infections. . Appl. Environ. Microbiol. 81:(17):577383
    [Crossref] [Google Scholar]
  117. Nielsen DA, Petrou K, Gates RD. 2018.. Coral bleaching from a single cell perspective. . ISME J. 12:(6):155867
    [Crossref] [Google Scholar]
  118. Oechslin F. 2018.. Resistance development to bacteriophages occurring during bacteriophage therapy. . Viruses 10:(7):351
    [Crossref] [Google Scholar]
  119. Page CA, Croquer A, Bastidas C, Rodríguez S, Neale SJ, et al. 2015.. Halofolliculina ciliate infections on corals (skeletal eroding disease). . In Diseases of Coral, ed. CM Woodley, CA Downs, AW Bruckner, JW Porter, SB Galloway , pp. 36175. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  120. Page CA, Willis BL. 2008.. Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. . Coral Reefs 27:(2):25772
    [Crossref] [Google Scholar]
  121. Page CE, Leggat W, Egan S, Ainsworth TD. 2023.. A coral disease outbreak highlights vulnerability of remote high-latitude lagoons to global and local stressors. . iScience 26:(3):106205
    [Crossref] [Google Scholar]
  122. Palmer CV, Bythell JC, Willis BL. 2010.. Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. . FASEB J. 24:(6):193546
    [Crossref] [Google Scholar]
  123. Palmer CV, Gates RD. 2010.. Skeletal eroding band in Hawaiian corals. . Coral Reefs 29:(2):469
    [Crossref] [Google Scholar]
  124. Papke E, Carreiro A, Dennison C, Deutsch JM, Isma LM, et al. 2024.. Stony coral tissue loss disease: a review of emergence, impacts, etiology, diagnostics, and intervention. . Front. Mar. Sci. 10::1321271
    [Crossref] [Google Scholar]
  125. Peixoto RS, Rosado PM, Leite DCA, Rosado AS, Bourne DG. 2017.. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. . Front. Microbiol. 8::341
    [Crossref] [Google Scholar]
  126. Peixoto RS, Sweet M, Villela HDM, Cardoso P, Thomas T, et al. 2021.. Coral probiotics: premise, promise, prospects. . Annu. Rev. Anim. Biosci. 9::26588
    [Crossref] [Google Scholar]
  127. Pinzón JH, Kamel B, Burge CA, Harvell CD, Medina M, et al. 2015.. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. . R. Soc. Open Sci. 2:(4):140214
    [Crossref] [Google Scholar]
  128. Pogoreutz C, Ziegler M. 2023.. Frenemies on the reef? Resolving the coral–Endozoicomonas association. . Trends Microbiol. 32:(5):42234
    [Crossref] [Google Scholar]
  129. Pollock FJ, Lamb JB, van de Water JAJM, Smith HA, Schaffelke B, et al. 2019.. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. . R. Soc. Open Sci. 6:(6):190355
    [Crossref] [Google Scholar]
  130. Quistad SD, Grasis JA, Barr JJ, Rohwer FL. 2017.. Viruses and the origin of microbiome selection and immunity. . ISME J. 11:(4):83540
    [Crossref] [Google Scholar]
  131. Rädecker N, Escrig S, Spangenberg JE, Voolstra CR, Meibom A. 2023.. Coupled carbon and nitrogen cycling regulates the cnidarian-algal symbiosis. . Nat. Commun. 14:(1):6948
    [Crossref] [Google Scholar]
  132. Randall CJ, van Woesik R. 2015.. Contemporary white-band disease in Caribbean corals driven by climate change. . Nat. Clim. Change 5:(4):37579
    [Crossref] [Google Scholar]
  133. Randall CJ, Whitcher EM, Code T, Pollock C, Lundgren I, et al. 2018.. Testing methods to mitigate Caribbean yellow-band disease on Orbicella faveolata. . PeerJ 6::e4800
    [Crossref] [Google Scholar]
  134. Raymundo LJ. 2008.. Coral Disease Handbook: Guidelines for Assessment, Monitoring and Management. St. Lucia, Aust.: Coral Reef Target. Res. Capacity Build. Manag. Program:
    [Google Scholar]
  135. Reeves L. 1994.. Newly discovered: yellow band disease strikes keys reefs. . Underw. USA 11:(8):16
    [Google Scholar]
  136. Reshef L, Koren O, Loya Y, Rosenberg I, Rosenberg E. 2006.. The coral probiotic hypothesis. . Environ. Microbiol. 8:(12):206873
    [Crossref] [Google Scholar]
  137. Ricci F, Leggat W, Page CE, Ainsworth TD. 2022.. Coral growth anomalies, neoplasms, and tumors in the Anthropocene. . Trends Microbiol. 30:(12):116073
    [Crossref] [Google Scholar]
  138. Rich LP, Arnot C, Dennis MM. 2021.. Pathology of growth anomalies in massive Caribbean corals of the family Faviidae. . Vet. Pathol. 58:(6):111930
    [Crossref] [Google Scholar]
  139. Richardson LL. 1996.. Horizontal and vertical migration patterns of Phormidium corallyticum and Beggiatoa spp. associated with black-band disease of corals. . Microb. Ecol. 32:(3):32335
    [Crossref] [Google Scholar]
  140. Richardson LL. 1998.. Coral diseases: What is really known?. Trends Ecol. Evol. 13:(11):43843
    [Crossref] [Google Scholar]
  141. Richardson LL. 2012.. Arnfried Antonius, coral diseases, and the AMLC. . Rev. Biol. Trop. 60::1320
    [Crossref] [Google Scholar]
  142. Richardson LL, Kuta KG. 2003.. Ecological physiology of the black band disease cyanobacterium Phormidium corallyticum. . FEMS Microbiol. Ecol. 43:(3):28798
    [Crossref] [Google Scholar]
  143. Ritchie KB, Smith GW. 1998.. Type II white-band disease. . Rev. Biol. Trop. 46::199203
    [Google Scholar]
  144. Roberts JA, Kruger P, Paterson DL, Lipman J. 2008.. Antibiotic resistance—what's dosing got to do with it?. Crit. Care Med. 36:(8):243340
    [Crossref] [Google Scholar]
  145. Rosado PM, Leite DCA, Duarte GAS, Chaloub RM, Jospin G, et al. 2019.. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. . ISME J. 13:(4):92136
    [Crossref] [Google Scholar]
  146. Rosales SM, Huebner LK, Clark AS, McMinds R, Ruzicka RR, Muller EM. 2022.. Bacterial metabolic potential and micro-eukaryotes enriched in stony coral tissue loss disease lesions. . Front. Mar. Sci. 8::776859
    [Crossref] [Google Scholar]
  147. Rosales SM, Huebner LK, Evans JS, Apprill A, Baker AC, et al. 2023.. A meta-analysis of the stony coral tissue loss disease microbiome finds key bacteria in unaffected and lesion tissue in diseased colonies. . ISME Commun. 3:(1):19
    [Crossref] [Google Scholar]
  148. Rosenberg E, Loya Y, eds. 2004.. Coral Health and Disease. Berlin:: Springer
    [Google Scholar]
  149. Rouzé H, Lecellier G, Saulnier D, Berteaux-Lecellier V. 2016.. Symbiodinium clades A and D differentially predispose Acropora cytherea to disease and Vibrio spp. colonization. . Ecol. Evol. 6:(2):56072
    [Crossref] [Google Scholar]
  150. Rubio-Portillo E, Yarza P, Peñalver C, Ramos-Esplá AA, Antón J. 2014.. New insights into Oculinapatagonica coral diseases and their associated Vibrio spp. communities. . ISME J. 8:(9):1794807
    [Crossref] [Google Scholar]
  151. Rutzler K, Santavy DL, Antonius A. 1983.. The black band disease of Atlantic reef corals. . Mar. Ecol. 4:(4):32958
    [Crossref] [Google Scholar]
  152. Sachs JL, Wilcox TP. 2006.. A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. . Proc. R. Soc. B 273:(1585):42529
    [Crossref] [Google Scholar]
  153. Santoro EP, Borges RM, Espinoza JL, Freire M, Messias CSMA, et al. 2021.. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. . Sci. Adv. 7:(33):eabg3088
    [Crossref] [Google Scholar]
  154. Seveso D, Montano S, Reggente MA, Orlandi I, Galli P, Vai M. 2015.. Modulation of Hsp60 in response to coral brown band disease. . Dis. Aquat. Organ. 115:(1):1523
    [Crossref] [Google Scholar]
  155. Shilling EN, Combs IR, Voss JD. 2021.. Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa. . Sci. Rep. 11:(1):8566
    [Crossref] [Google Scholar]
  156. Silva-Lima AW, Froes AM, Garcia GD, Tonon LAC, Swings J, et al. 2021.. Mussismilia braziliensis white plague disease is characterized by an affected coral immune system and dysbiosis. . Microb. Ecol. 81:(3):795806
    [Crossref] [Google Scholar]
  157. Silverstein RN, Correa AMS, Baker AC. 2012.. Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. . Proc. R. Soc. B 279:(1738):260918
    [Crossref] [Google Scholar]
  158. Soffer N, Brandt ME, Correa AMS, Smith TB, Thurber RV. 2013.. Potential role of viruses in white plague coral disease. . ISME J. 8:(2):27183
    [Crossref] [Google Scholar]
  159. Solano OD, Navas Suarez G, Moreno-Forero SK. 1993.. Blanqueamiento coralino de 1990 en el Parque Nacional Natural Corales del Rosario (Caribe, colombiano). . Bol. Investig. Mar. Costeras 22:(1):97111
    [Google Scholar]
  160. Spies NP, Takabayashi M. 2013.. Expression of galaxin and oncogene homologs in growth anomaly in the coral Montipora capitata. . Dis. Aquat. Organ. 104:(3):24956
    [Crossref] [Google Scholar]
  161. Studivan MS, Eckert RJ, Shilling E, Soderberg N, Enochs IC, Voss JD. 2023.. Stony coral tissue loss disease intervention with amoxicillin leads to a reversal of disease-modulated gene expression pathways. . Mol. Ecol. 32:(19):53945413
    [Crossref] [Google Scholar]
  162. Sutherland KP, Porter JW, Torres C. 2004.. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. . Mar. Ecol. Prog. Ser. 266::273302
    [Crossref] [Google Scholar]
  163. Sweet M, Andradi-Brown DA, Voolstra CR, Head CEI, Curnick D, et al., eds. 2020.. Coral Reefs in the Anthropocene. Lausanne, Switz.:: Front. Media
    [Google Scholar]
  164. Sweet M, Burn D, Croquer A, Leary P. 2013a.. Characterisation of the bacterial and fungal communities associated with different lesion sizes of dark spot syndrome occurring in the coral Stephanocoenia intersepta. . PLOS ONE 8:(4):e62580
    [Crossref] [Google Scholar]
  165. Sweet M, Bythell JC. 2012.. Ciliate and bacterial communities associated with white syndrome and brown band disease in reef-building corals. . Environ. Microbiol. 14:(8):218499
    [Crossref] [Google Scholar]
  166. Sweet M, Bythell JC, Nugues MM. 2013b.. Algae as reservoirs for coral pathogens. . PLOS ONE 8:(7):e69717
    [Crossref] [Google Scholar]
  167. Sweet M, Croquer A, Bythell JC. 2014.. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis. . Proc. R. Soc. B 281:(1788):20140094
    [Crossref] [Google Scholar]
  168. Sweet M, Villela H, Keller-Costa T, Costa R, Romano S, et al. 2021.. Insights into the cultured bacterial fraction of corals. . mSystems 6:(3):01249-20
    [Crossref] [Google Scholar]
  169. Tavares-Carreon F, De Anda-Mora K, Rojas-Barrera IC, Andrade A. 2023.. Serratia marcescens antibiotic resistance mechanisms of an opportunistic pathogen: a literature review. . PeerJ 11::e14399
    [Crossref] [Google Scholar]
  170. Thompson FL, Barash Y, Sawabe T, Sharon G, Swings J, Rosenberg E. 2006.. Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. . Int. J. Syst. Evol. Microbiol. 56:(2):36568
    [Crossref] [Google Scholar]
  171. Toller WW, Rowan R, Knowlton N. 2001.. Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. . Biol. Bull. 201:(3):34859
    [Crossref] [Google Scholar]
  172. Tomaru Y, Katanozaka N, Nishida K, Shirai Y, Tarutani K, et al. 2004.. Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalga Heterocapsa circularisquama. . Aquat. Microb. Ecol. 34::20718
    [Crossref] [Google Scholar]
  173. Tomaru Y, Mizumoto H, Nagasaki K. 2009.. Virus resistance in the toxic bloom-forming dinoflagellate Heterocapsa circularisquama to single-stranded RNA virus infection. . Environ. Microbiol. 11:(11):291523
    [Crossref] [Google Scholar]
  174. Ulstrup KE, Kühl M, Bourne DG. 2007.. Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent. . Appl. Environ. Microbiol. 73:(6):196875
    [Crossref] [Google Scholar]
  175. Ushijima B, Gunasekera SP, Meyer JL, Tittl J, Pitts KA, et al. 2023.. Chemical and genomic characterization of a potential probiotic treatment for stony coral tissue loss disease. . Commun. Biol. 6:(1):248
    [Crossref] [Google Scholar]
  176. van Oppen MJH, Leong J-A, Gates RD. 2009.. Coral-virus interactions: a double-edged sword?. Symbiosis 47:(1):18
    [Crossref] [Google Scholar]
  177. van Woesik R, Randall CJ. 2017.. Coral disease hotspots in the Caribbean. . Ecosphere 8:(5):e01814
    [Crossref] [Google Scholar]
  178. Vega Thurber RL, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, et al. 2008.. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. . PNAS 105:(47):1841318
    [Crossref] [Google Scholar]
  179. Vega Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR. 2014.. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. . Glob. Change Biol. 20:(2):54454
    [Crossref] [Google Scholar]
  180. Vega Thurber RL, Correa AMS. 2023.. Meta-transcriptomics to determine if and how viruses are involved in SCTLD infection status and/or disease susceptibility. Rep. , Fla. Dep. Environ. Prot., Miami:
    [Google Scholar]
  181. Vega Thurber RL, Mydlarz LD, Brandt M, Harvell CD, Weil E, et al. 2020.. Deciphering coral disease dynamics: integrating host, microbiome, and the changing environment. . Front. Ecol. Evol. 8::575927
    [Crossref] [Google Scholar]
  182. Vega Thurber RL, Payet JP, Thurber AR, Correa AMS. 2017.. Virus-host interactions and their roles in coral reef health and disease. . Nat. Rev. Microbiol. 15:(4):20516
    [Crossref] [Google Scholar]
  183. Vega Thurber RL, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, et al. 2009.. Metagenomic analysis of stressed coral holobionts. . Environ. Microbiol. 11:(8):214863
    [Crossref] [Google Scholar]
  184. Veglia AJ. 2023.. Detecting and interpreting viral dynamics in marine invertebrate holobionts. PhD Thesis , Rice Univ., Houston, TX:
    [Google Scholar]
  185. Veglia AJ, Beavers K, Van Buren EW, Meiling SS, Muller EM, et al. 2022.. Alphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands. . Microbiol. Resour. Announc. 11:(2):e0119921
    [Crossref] [Google Scholar]
  186. Veglia AJ, Bistolas KSI, Voolstra CR, Hume BCC, Ruscheweyh H-J, et al. 2023.. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. . Commun. Biol. 6:(1):566
    [Crossref] [Google Scholar]
  187. Veglia AJ, Milford CR, Schizas NV. 2021.. Isolation and genotyping of novel T4 cyanophages associated with diverse coral reef invertebrates. . Coral Reefs 40:(2):485504
    [Crossref] [Google Scholar]
  188. Veglia AJ, Rivera-Vicéns RE, Grupstra CGB, Howe-Kerr LI, Correa AMS. 2024.. vAMPirus: a versatile amplicon processing and analysis program for studying viruses. . Mol. Ecol. Resour. 24:(6):e13978
    [Crossref] [Google Scholar]
  189. Viehman S, Mills DK, Meichel GW, Richardson LL. 2006.. Culture and identification of Desulfovibrio spp. from corals infected by black band disease on Dominican and Florida Keys reefs. . Dis. Aquat. Organ. 69:(1):11927
    [Crossref] [Google Scholar]
  190. Vollmer SV, Selwyn JD, Despard BA, Roesel CL. 2023.. Genomic signatures of disease resistance in endangered staghorn corals. . Science 381:(6665):145154
    [Crossref] [Google Scholar]
  191. Vompe AD, Epstein HE, Speare KE, Schmeltzer ER, Adam TC, et al. 2024.. Microbiome ecological memory and responses to repeated marine heatwaves clarify variation in coral bleaching and mortality. . Glob. Change Biol. 30:(1):e17088
    [Crossref] [Google Scholar]
  192. Voolstra CR, Raina J-B, Dörr M, Cárdenas A, Pogoreutz C, et al. 2024.. The coral microbiome in sickness, in health and in a changing world. . Nat. Rev. Microbiol. 22:(8):46076
    [Crossref] [Google Scholar]
  193. Voolstra CR, Suggett DJ, Peixoto RS, Parkinson JE, Quigley KM, et al. 2021.. Extending the natural adaptive capacity of coral holobionts. . Nat. Rev. Earth Environ. 2:(11):74762
    [Crossref] [Google Scholar]
  194. Voss JD, Richardson LL. 2006.. Nutrient enrichment enhances black band disease progression in corals. . Coral Reefs 25:(4):56976
    [Crossref] [Google Scholar]
  195. Walker BK, Turner NR, Noren HKG, Buckley SF, Pitts KA. 2021.. Optimizing stony coral tissue loss disease (SCTLD) intervention treatments on Montastraea cavernosa in an endemic zone. . Front. Mar. Sci. 8::666224
    [Crossref] [Google Scholar]
  196. Wang L, Shantz AA, Payet JP, Sharpton T, Foster A, et al. 2018.. Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly. . Front. Mar. Sci. 5::101
    [Crossref] [Google Scholar]
  197. Ward JR. 2006.. Ecology of marine diseases: coral reef community diversity, host resistance, and climate change. PhD Thesis , Cornell Univ., Ithaca, NY:
    [Google Scholar]
  198. Weil E, Croquer A, Urreiztieta I. 2009a.. Temporal variability and impact of coral diseases and bleaching in La Parguera, Puerto Rico from 2003–2007. . Caribb. J. Sci. 45:(2–3):22146
    [Crossref] [Google Scholar]
  199. Weil E, Croquer A, Urreiztieta I. 2009b.. Yellow band disease compromises the reproductive output of the Caribbean reef-building coral Montastraea faveolata (Anthozoa, Scleractinia). . Dis. Aquat. Organ. 87:(1–2):4555
    [Crossref] [Google Scholar]
  200. Welsh RM, Rosales SM, Zaneveld JR, Payet JP, McMinds R, et al. 2017.. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. . PeerJ 5::e3315
    [Crossref] [Google Scholar]
  201. Welsh RM, Zaneveld JR, Rosales SM, Payet JP, Burkepile DE, Thurber RV. 2016.. Bacterial predation in a marine host-associated microbiome. . ISME J. 10:(6):154044
    [Crossref] [Google Scholar]
  202. Weynberg KD, Laffy PW, Wood-Charlson EM, Turaev D, Rattei T, et al. 2017a.. Coral-associated viral communities show high levels of diversity and host auxiliary functions. . PeerJ 5::e4054
    [Crossref] [Google Scholar]
  203. Weynberg KD, Neave M, Clode PL, Voolstra CR, Brownlee C, et al. 2017b.. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. . Coral Reefs 36:(3):77384
    [Crossref] [Google Scholar]
  204. Weynberg KD, Wood-Charlson EM, Suttle CA, van Oppen MJH. 2014.. Generating viral metagenomes from the coral holobiont. . Front. Microbiol. 5::206
    [Crossref] [Google Scholar]
  205. Wiedenmann J, D'Angelo C, Mardones ML, Moore S, Benkwitt CE, et al. 2023.. Reef-building corals farm and feed on their photosynthetic symbionts. . Nature 620:(7976):101824
    [Crossref] [Google Scholar]
  206. Williams SD, Walter CS, Muller EM. 2021.. Fine scale temporal and spatial dynamics of the stony coral tissue loss disease outbreak within the lower Florida Keys. . Front. Mar. Sci. 8::631776
    [Crossref] [Google Scholar]
  207. Willis BL, Page CA, Dinsdale EA. 2004.. Coral disease on the Great Barrier Reef. . In Coral Health and Disease, ed. E Rosenberg, Y Loya , pp. 69104. Berlin:: Springer
    [Google Scholar]
  208. Wilson WH, Francis I, Ryan K, Davy S. 2001.. Temperature induction of viruses in symbiotic dinoflagellates. . Aquat. Microb. Ecol. 25::99102
    [Crossref] [Google Scholar]
  209. Winkler R, Antonius A, Renegar DA. 2004.. The skeleton eroding band disease on coral reefs of Aqaba, Red Sea. . Mar. Ecol. 25:(2):12944
    [Crossref] [Google Scholar]
  210. Wood-Charlson EM, Weynberg KD, Suttle CA, Roux S, van Oppen MJH. 2015.. Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. . Environ. Microbiol. 17:(10):344049
    [Crossref] [Google Scholar]
  211. Woodley CM, Downs CA, Bruckner AW, Porter JW, Galloway SB, eds. 2015.. Diseases of Coral. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  212. Work TM, Aeby GS. 2006.. Systematically describing gross lesions in corals. . Dis. Aquat. Org. 70:(1–2):15560
    [Crossref] [Google Scholar]
  213. Work TM, Meteyer C. 2014.. To understand coral disease, look at coral cells. . EcoHealth 11:(4):61018
    [Crossref] [Google Scholar]
  214. Work TM, Weatherby TM, Landsberg JH, Kiryu Y, Cook SM, Peters EC. 2021.. Viral-like particles are associated with endosymbiont pathology in Florida corals affected by stony coral tissue loss disease. . Front. Mar. Sci. 8::750658
    [Crossref] [Google Scholar]
  215. Zhang Y, Yang Q, Ling J, Long L, Huang H, et al. 2021.. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. . BMC Microbiol. 21:(1):130
    [Crossref] [Google Scholar]
  216. Zvuloni A, Artzy-Randrup Y, Stone L, Kramarsky-Winter E, Barkan R, Loya Y. 2009.. Spatio-temporal transmission patterns of black-band disease in a coral community. . PLOS ONE 4:(4):e4993
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-011123-102337
Loading
/content/journals/10.1146/annurev-marine-011123-102337
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error