1932

Abstract

When President Bill Clinton and Francis Collins, then the director of the National Human Genome Research Institute, celebrated the near completion of the human genome sequence at the White House in the summer of 2000, it is unlikely that they or anyone else could have predicted the blossoming of meta-omics in the following two decades and their applications in modern human microbiome and environmental microbiome research. This transformation was enabled by the development of high-throughput sequencing technologies and sophisticated computational biology tools and bioinformatics software packages. Today, environmental meta-omics has undoubtedly revolutionized our understanding of ocean ecosystems, providing the genetic blueprint of oceanic microscopic organisms. In this review, I discuss the importance of functional genomics in future marine microbiome research and advocate a position for a gene-centric, bottom-up approach in modern oceanography. I propose that a synthesis of multidimensional approaches is required for a better understanding of the true functionality of the marine microbiome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-020123-100931
2025-01-16
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-020123-100931.html?itemId=/content/journals/10.1146/annurev-marine-020123-100931&mimeType=html&fmt=ahah

Literature Cited

  1. Auladell A, Ferrera I, Montiel Fontanet L, Santos Júnior CD, Sebastián M, et al. 2023.. Seasonality of biogeochemically relevant microbial genes in a coastal ocean microbiome. . Environ. Microbiol. 25::146583
    [Crossref] [Google Scholar]
  2. Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. 2015.. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. . PNAS 112::544348
    [Crossref] [Google Scholar]
  3. Babinski KJ, Kanjilal SJ, Raetz CR. 2002a.. Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. . J. Biol. Chem. 277::2594756
    [Crossref] [Google Scholar]
  4. Babinski KJ, Ribeiro AA, Raetz CR. 2002b.. The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. . J. Biol. Chem. 277::2593746
    [Crossref] [Google Scholar]
  5. Bar-On YM, Milo R. 2019.. The biomass composition of the oceans: a blueprint of our blue planet. . Cell 179::145154
    [Crossref] [Google Scholar]
  6. Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, et al. 2012.. Global biogeography of SAR11 marine bacteria. . Mol. Syst. Biol. 17::595
    [Crossref] [Google Scholar]
  7. Browning TJ, Moore CM. 2023.. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. . Nat. Commun. 14::5014
    [Crossref] [Google Scholar]
  8. Carini P, Van Mooy BA, Thrash JC, White A, Zhao Y, et al. 2015.. SAR11 lipid renovation in response to phosphate starvation. . PNAS 112::776772
    [Crossref] [Google Scholar]
  9. Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A, et al. 2019.. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. . Nucleic Acids Res. 47::D66677
    [Crossref] [Google Scholar]
  10. Chen IA, Chu K, Palaniappan K, Ratner A, Huang J, et al. 2022.. The IMG/M data management and analysis system v.7: content update and new features. . Nucleic Acids Res. 51::D72332
    [Crossref] [Google Scholar]
  11. Chen Y, Patel NA, Crombie A, Scrivens JH, Murrell JC. 2011.. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. . PNAS 108::1779196
    [Crossref] [Google Scholar]
  12. Clokie MRJ, Mann NH. 2006.. Marine cyanophages and light. . Environ. Microbiol. 8::207482
    [Crossref] [Google Scholar]
  13. Coleman JE. 1992.. Structure and mechanism of alkaline phosphatase. . Annu. Rev. Biophys. Biomol. Struct. 21::44183
    [Crossref] [Google Scholar]
  14. Copley SD. 2015.. An evolutionary biochemist's perspective on promiscuity. . Trends Biochem. Sci. 40::7278
    [Crossref] [Google Scholar]
  15. Czernecki D, Bonhomme F, Kaminski PA, Delarue M. 2021.. Characterization of a triad of genes in cyanophage S-2l sufficient to replace adenine by 2-aminoadenine in bacterial DNA. . Nat. Commun. 12::4710
    [Crossref] [Google Scholar]
  16. Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, et al. 2007.. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. . Ecol. Lett. 10::113542
    [Crossref] [Google Scholar]
  17. Gao C, Zhang N, He XY, Wang N, Zhang XY, et al. 2022.. Characterization of the trimethylamine N-oxide transporter from Pelagibacter strain HTCC1062 reveals its oligotrophic niche adaption. . Front. Microbiol. 13::838608
    [Crossref] [Google Scholar]
  18. Garczarek L, Guyet U, Doré H, Farrant GK, Hoebeke M, et al. 2021.. Cyanorak v2.1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. . Nucleic Acids Res. 49::D66776
    [Crossref] [Google Scholar]
  19. González JM, Hernández L, Manzano I, Pedrós-Alió C. 2019.. Functional annotation of orthologs in metagenomes: a case study of genes for the transformation of oceanic dimethylsulfoniopropionate. . ISME J. 13::118397
    [Crossref] [Google Scholar]
  20. Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, et al. 2016.. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?. Front. Microbiol. 7::214
    [Google Scholar]
  21. Gross M, Marianovsky I, Glaser G. 2006.. MazG—a regulator of programmed cell death in Escherichia coli. . Mol. Microbiol. 59::590601
    [Crossref] [Google Scholar]
  22. Grossart HP, Massana R, McMahon K, Walsh DA. 2020.. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. . Limnol. Oceanogr. 65::S220
    [Crossref] [Google Scholar]
  23. Hadadi N, MohammadiPeyhani H, Miskovic L, Seijo M, Hatzimanikatis V. 2019.. Enzyme annotation for orphan and novel reactions using knowledge of substrate reactive sites. . PNAS 116:(15):7298307
    [Crossref] [Google Scholar]
  24. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, et al. 2018.. RefSeq: an update on prokaryotic genome annotation and curation. . Nucleic Acids Res. 46::D85160
    [Crossref] [Google Scholar]
  25. Hanson AD, Pribat A, Waller JC, de Crécy-Lagard V. 2009.. “ Unknown” proteins and “orphan” enzymes: the missing half of the engineering part list—and how to find it. . Biochem. J. 425::111
    [Google Scholar]
  26. Karl DM. 2015.. Microbial oceanography: the challenge of the sea. . International Balzan Prize Foundation. https://www.balzan.org/en/prizewinners/david-karl/the-challenge-of-the-sea
    [Google Scholar]
  27. Karp PD, Paley S, Caspi R, Kothari A, Krummenacker M, et al. 2023.. The EcoCyc database. . EcoSal Plus 11::eesp00022023
    [Crossref] [Google Scholar]
  28. Kathuria S, Martiny AC. 2011.. Prevalence of a calcium-based phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria. . Environ. Microbiol. 13::7483
    [Crossref] [Google Scholar]
  29. Kollmar M, Mühlhausen S. 2017.. Nuclear codon reassignments in the genomics era and mechanisms behind their evolution. . BioEssays 39::1600221
    [Crossref] [Google Scholar]
  30. Lapidus A, Korobeynikov AI. 2021.. Metagenomic data assembly—the way of decoding unknown microorganisms. . Front. Microbiol. 12::613791
    [Crossref] [Google Scholar]
  31. Li CY, Chen XL, Shao X, Wei TD, Wang P, et al. 2015.. Mechanistic insight into trimethylamine N-oxide recognition by the marine bacterium Ruegeria pomeroyi DSS-3. . J. Bacteriol. 197::337887
    [Crossref] [Google Scholar]
  32. Li CY, Chen XL, Zhang D, Wang P, Sheng Q, et al. 2017.. Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide. . Mol. Microbiol. 103::9921003
    [Crossref] [Google Scholar]
  33. Li CY, Mausz MA, Murphy A, Zhang N, Chen XL, et al. 2023.. Ubiquitous occurrence of a dimethylsulfoniopropionate ABC transporter in abundant marine bacteria. . ISME J. 17::57987
    [Crossref] [Google Scholar]
  34. Lidbury I, Murrell JC, Chen Y. 2014.. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. . PNAS 111::271015
    [Crossref] [Google Scholar]
  35. Martiny A, Huang Y, Li WZ. 2011.. Adaptation to nutrient availability in marine microorganisms by gene gain and loss. . In Handbook of Molecular Microbial Ecology, ed. FJ de Bruijn , pp. 26976. Hoboken, NJ:: Wiley-Blackwell
    [Google Scholar]
  36. May G, Faatz E, Villarejo M, Bremer E. 1986.. Binding protein dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K12. . Mol. Gen. Genet. 205::22533
    [Crossref] [Google Scholar]
  37. Muratore D, Boysen AK, Harke MJ, Becker KW, Casey JR, et al. 2022.. Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. . Nat. Ecol. Evol. 6::21829
    [Crossref] [Google Scholar]
  38. Noell SE, Giovannoni SJ. 2019.. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. . Environ. Microbiol. 21::255975
    [Crossref] [Google Scholar]
  39. Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD. 2006.. Genetic diversity among five T4-like bacteriophages. . Virol. J. 3::30
    [Crossref] [Google Scholar]
  40. Opiyo SO, Pardy RL, Moriyama H, Moriyama EN. 2010.. Evolution of the Kdo2-lipid A biosynthesis in bacteria. . BMC Evol. Biol. 10::362
    [Crossref] [Google Scholar]
  41. Ostrowski M, Mazard S, Tetu SG, Phillippy K, Johnson A, et al. 2010.. PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus. . ISME J. 4::90821
    [Crossref] [Google Scholar]
  42. Ottesen EA, Marin R III, Preston CM, Young CR, Ryan JP, et al. 2011.. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. . ISME J. 5::188195
    [Crossref] [Google Scholar]
  43. Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, et al. 2013.. Pattern and synchrony of gene expression among sympatric marine microbial populations. . PNAS 110::E48897
    [Crossref] [Google Scholar]
  44. Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM, et al. 2019.. Charting the complexity of the marine microbiome through single cell genomics. . Cell 179::162335
    [Crossref] [Google Scholar]
  45. Pavlopoulos GA, Baltoumas FA, Liu S, Selvitopi O, Camargo AP, et al. 2023.. Unraveling the functional dark matter through global metagenomics. . Nature 622::594602
    [Crossref] [Google Scholar]
  46. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017.. Shotgun metagenomics, from sampling to analysis. . Nat. Biotechnol. 35::83344
    [Crossref] [Google Scholar]
  47. Reed DC, Algar CK, Huber JA, Dick GJ. 2014.. Gene-centric approach to integrating environmental genomics and biogeochemical models. . PNAS 111::187984
    [Crossref] [Google Scholar]
  48. Rihtman B, Bowman-Grahl S, Millard A, Corrigan RM, Clokie MRJ, Scanlan DJ. 2019.. Cyanophage MazG is a pyropohsphohydrolase but unable to hydrolyse magic spot nucleotides. . Environ. Microbiol. Rep. 11::44855
    [Crossref] [Google Scholar]
  49. Rihtman B, Puxty RJ, Hapeshi A, Lee YJ, Zhan YC, et al. 2021.. A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution. . Curr. Biol. 31::3199206
    [Crossref] [Google Scholar]
  50. Saier MH Jr., Tran CV, Barabote RD. 2006.. TCDB: the transporter classification database for membrane transport protein analyses and information. . Nucleic Acids Res. 34::D18186
    [Crossref] [Google Scholar]
  51. Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ, et al. 2019.. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. . Cell 179::106883
    [Crossref] [Google Scholar]
  52. Schroer WF, Kepner HE, Uchimiya M, Mejia C, Rodriguez LT, et al. 2023.. Functional annotation and importance of marine bacterial transporters of plankton exometabolites. . ISME Commun. 3::37
    [Crossref] [Google Scholar]
  53. Sebastian M, Ammerman JW. 2009.. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. . ISME J. 3::56372
    [Crossref] [Google Scholar]
  54. Sebastian M, Smith AF, Gonzalez JM, Fredricks HF, Van Mooy B, et al. 2016.. Lipid remodeling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. . ISME J. 10::96878
    [Crossref] [Google Scholar]
  55. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, et al. 2020.. Improved protein structure prediction using potentials from deep learning. . Nature 577::70610
    [Crossref] [Google Scholar]
  56. Shulgina Y, Eddy SR. 2021.. A computational screen for alternative genetic codes in over 250,000 genomes. . eLife 10::e71402
    [Crossref] [Google Scholar]
  57. Smith AF, Silvano E, Päuker O, Guillonneau R, Quareshy M, et al. 2021.. A novel class of sulfur-containing aminolipids widespread in marine roseobacters. . ISME J. 15::244053
    [Crossref] [Google Scholar]
  58. Sosa OA, Repeta DJ, Delong EF, Ashkezari MD, Karl DM. 2019.. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation. . Environ. Microbiol. 21::240214
    [Crossref] [Google Scholar]
  59. Sowell SM, Abraham PE, Shah M, Verberkmoes NC, Smith DP, et al. 2011.. Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. . ISME J. 5::85665
    [Crossref] [Google Scholar]
  60. Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, et al. 2009.. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. . ISME J. 3::93105
    [Crossref] [Google Scholar]
  61. Srivastava A, Saavedra DEM, Thomson B, Garcia JAL, Zhao ZH, et al. 2021.. Enzyme promiscuity in natural environments: alkaline phosphatase in the ocean. . ISME J. 15::337583
    [Crossref] [Google Scholar]
  62. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, et al. 2015.. Structure and function of the global ocean microbiome. . Science 348::1261359
    [Crossref] [Google Scholar]
  63. Tas N, de Jong AE, Li YM, Trubl G, Xue YX, Dove NC. 2021.. Metagenomics tools in microbial ecology research. . Curr. Opin. Biotechnol. 67::18491
    [Crossref] [Google Scholar]
  64. Teng ZJ, Qin QL, Zhang WP, Li J, Fu HH, et al. 2021.. Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans. . Microbiome 9::207
    [Crossref] [Google Scholar]
  65. Todd AE, Orengo CA, Thornton JM. 2001.. Evolution of function in protein superfamilies, from a structural perspective. . J. Mol. Biol. 307::111343
    [Crossref] [Google Scholar]
  66. Torcello-Requena A, Murphy ARJ, Lidbury IDEA, Pitt FD, Stark R, et al. 2024.. A distinct, high-affinity, alkaline phosphatase facilitates occupation of P-depleted environments by marine picocyanobacteria. . PNAS 121::e2312892121
    [Crossref] [Google Scholar]
  67. Wagner-Döbler I, Biebl H. 2006.. Environmental biology of the marine Roseobacter lineage. . Annu. Rev. Microbiol. 60::25580
    [Crossref] [Google Scholar]
  68. Wanner BL. 1996.. Phosphorus assimilation and control of the phosphate regulon. . In Escherichia coli and Salmonella, Vol. 1, ed. FC Neidhard , pp. 135781. Washington, DC:: Am. Soc. Microbiol.
    [Google Scholar]
  69. Wei T, Quareshy M, Zhang Y, Scanlan DJ, Chen Y. 2018.. Manganese is essential for PlcP metallophosphoesterase activity involved in lipid remodeling in abundant marine heterotrophic bacteria. . Appl. Environ. Microbiol. 84::e01109-18
    [Google Scholar]
  70. Westermann LM, Lidbury IDE, Li CY, Wang N, Murphy ARJ, et al. 2023.. Bacterial catabolism of membrane phospholipids links marine biogeochemical cycles. . Sci. Adv. 9::eadf5122
    [Crossref] [Google Scholar]
  71. Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM, et al. 2012.. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. . ISME J. 6::1883900
    [Crossref] [Google Scholar]
  72. Yong SC, Roversi P, Lillington J, Rodriguez F, Krehenbrink M, et al. 2014.. A complex iron-calcium cofactor catalyzing phosphotransfer chemistry. . Science 345::117073
    [Crossref] [Google Scholar]
  73. Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan ZQ, Zaheer R, et al. 2010.. Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. . PNAS 107::3027
    [Crossref] [Google Scholar]
  74. Zhang WP, Sun J, Cao HL, Tian RM, Cai L, et al. 2016.. Post-translational modifications are enriched within protein functional groups important to bacterial adaptation within a deep-sea hydrothermal vent environment. . Microbiome 49::49
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-020123-100931
Loading
/content/journals/10.1146/annurev-marine-020123-100931
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error