1932

Abstract

According to some authors, the Messinian salinity crisis was ended by a giant waterfall or megaflood 5.33 million years ago, when the Atlantic Ocean reconnected in a catastrophic way with the desiccated Mediterranean, creating the Strait of Gibraltar. An erosional surface deeply cutting upper Miocene or older rocks and sealed by lower Pliocene sediments is the geological feature that inspired this fascinating hypothesis. The hypothesis, which recalls several ancient myths, is well established in the scientific community and often considered to be a fact. However, several studies are suggesting that the Atlantic–Mediterranean connection through the Strait of Gibraltar was probably active before and during the entire Messinian salinity crisis. This allows us to consider the possibility that long-lived, more gradual physical processes were responsible for the evolution of the strait, opening the idea of a nondesiccated Mediterranean Sea.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-021723-110155
2025-01-16
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-021723-110155.html?itemId=/content/journals/10.1146/annurev-marine-021723-110155&mimeType=html&fmt=ahah

Literature Cited

  1. Achalhi M, Münch P, Cornée JJ, Azdimousa A, Melinte-Dobrinescu M, et al. 2016.. The late Miocene Mediterranean-Atlantic connections through the North Rifian Corridor: new insights from the Boudinar and Arbaa Taourirt basins (northeastern Rif, Morocco). . Palaeogeogr. Palaeoclimatol. Palaeoecol. 459::13152
    [Crossref] [Google Scholar]
  2. Amadori C, Garcia-Castellanos D, Toscani G, Sternai P, Fantoni R, et al. 2018.. Restored topography of the Po Plain-Northern Adriatic region during the Messinian base level drop—implications for the physiography and compartmentalization of the paleo-Mediterranean basin. . Basin Res. 30::124763
    [Crossref] [Google Scholar]
  3. Andreetto F, Aloisi G, Raad F, Heida H, Flecker R, et al. 2021.. Freshening of the Mediterranean Salt Giant: controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian Salinity Crisis. . Earth-Sci. Rev. 216::103577
    [Crossref] [Google Scholar]
  4. Armi L, Farmer DM. 1988.. The flow of Mediterranean water through the Strait of Gibraltar. . Prog. Oceanogr. 21::1105
    [Crossref] [Google Scholar]
  5. Bache F, Popescu SM, Rabineau M, Gorini C, Suc JP, et al. 2012.. A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. . Basin Res. 24::12553
    [Crossref] [Google Scholar]
  6. Benson RH, Rakic-El Bied K, Bonaduce G. 1991.. An important current reversal (influx) in the Rifian Corridor (Morocco) at the Tortonian-Messinian boundary: the end of Tethys Ocean. . Paleoceanography 6::16592
    [Crossref] [Google Scholar]
  7. Betzler C, Braga JC, Martín JM, Sanchez-Almazo IM, Lindhorst S. 2006.. Closure of a seaway: stratigraphic record and facies (Guadix Basin, southern Spain). . Int. J. Earth Sci. 95::90310
    [Crossref] [Google Scholar]
  8. Blanc PL. 2002.. The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm. . Geodin. Acta 15::30317
    [Crossref] [Google Scholar]
  9. Booth-Rea G, Ranero CR, Grevemeyer I. 2018.. The Alboran volcanic-arc modulated the Messinian faunal exchange and salinity crisis. . Sci. Rep. 8::13015
    [Crossref] [Google Scholar]
  10. Bulian F, Jiménez-Espejo FJ, Andersen N, Larrasoana JC, Sierro FJ. 2023.. Mediterranean water in the Atlantic Iberian margin reveals early isolation events during the Messinian Salinity Crisis. . Glob. Planet. Change 231::104297
    [Crossref] [Google Scholar]
  11. Bulian F, Kouwenhoven TJ, Jiménez-Espejo FJ, Krijgsman W, Andersen N, Sierro FJ. 2022.. Impact of the Mediterranean-Atlantic connectivity and the late Miocene carbon shift on deep-sea communities in the Western Alboran Basin. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 589::110841
    [Crossref] [Google Scholar]
  12. Bulian F, Sierro FJ, Santiago L, Jiménez-Espejo FJ, Bassetti MA. 2021.. Messinian West Alboran Sea record in the proximity 1 of Gibraltar: early signs of Atlantic-Mediterranean gateway restriction. . Mar. Geol. 434::104630
    [Crossref] [Google Scholar]
  13. Candela J, Winant CD, Ruiz A. 1990.. Tides in the Strait of Gibraltar. . J. Geophys. Res. 95::731335
    [Crossref] [Google Scholar]
  14. Capella W, Barhoun N, Flecker R, Hilgen FJ, Kouwenhoven TE, et al. 2018.. Palaeogeographic evolution of the Late Miocene Rifian Corridor (Morocco): reconstructions from surface and subsurface data. . Earth-Sci. Rev. 180::3759
    [Crossref] [Google Scholar]
  15. Capella W, Hernández-Molina FJ, Flecker R, Hilgen FJ, Hssain M, et al. 2017.. Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): reconstruction of depositional environments in a foreland-basin seaway. . Sediment. Geol. 355::3157
    [Crossref] [Google Scholar]
  16. Carbone S, Grasso M, Lentini F. 1987.. Lineamenti geologici del plateau ibleo (Sicilia S.E.). Presentazione delle carte geologiche della Sicilia orientale. . Mem. Soc. Geol. Ital. 38::12735
    [Google Scholar]
  17. Carnevale G, Dela Pierre F, Natalicchio M, Landini W. 2018.. Fossil marine fishes and the “Lago Mare” event: Has the Mediterranean ever transformed into a brackish lake?. Newsl. Stratigr. 51::5772
    [Crossref] [Google Scholar]
  18. Cartwright JA, Jackson MPA. 2008.. Initiation of gravitational collapse of an evaporitic basin margin: the Messinian saline giant, Levant Basin, eastern Mediterranean. . Geol. Soc. Am. Bull. 120::399413
    [Crossref] [Google Scholar]
  19. Christeleit EC, Brandon MT, Zhuang G. 2015.. Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis. . Earth Planet. Sci. Lett. 427::22635
    [Crossref] [Google Scholar]
  20. CIESM (Comm. Int. Explor. Sci. Méditerr.). 2008.. The Messinian Salinity Crisis from mega-deposits to microbiology—a consensus report. Worksh. Monogr. 33 , CIESM, Monaco:
    [Google Scholar]
  21. Clauzon G, Suc JP, Gautier F, Berger A, Loutre MF. 1996.. Alternate interpretation of the Messinian salinity crisis, controversy resolved?. Geology 24::36366
    [Crossref] [Google Scholar]
  22. Clauzon G, Suc JP, Popescu SM, Marunteanu M, Rubino JL, et al. 2005.. Influence of Mediterranean sea-level changes on the Dacic Basin (Eastern Paratethys) during the late Neogene: the Mediterranean Lago Mare facies deciphered. . Basin Res. 17::43762
    [Crossref] [Google Scholar]
  23. Comas MC, Platt JP, Soto JI, Watts AB. 1999.. The origin and tectonic history of the Alboran Basin: insights from Leg 161 results. . In Proceedings of the Ocean Drilling Program: Scientific Results, Vol. 161: Mediterranean II—the Western Mediterranean, ed. R Zahn, MC Comas, A Klaus , pp. 55580. College Station, TX:: Ocean Drill. Program
    [Google Scholar]
  24. Dalrymple RW. 2022.. A review of the morphology, physical processes and deposits of modern straits. . Geol. Soc. Lond. Spec. Publ. 523::1783
    [Crossref] [Google Scholar]
  25. Duggen S, Hoernle K, van den Bogaard P, Harris C. 2004.. Magmatic evolution of the Alboran region: the role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis. . Earth Planet. Sci. Lett. 218:(1–2):91108
    [Crossref] [Google Scholar]
  26. Duggen S, Hoernle K, van den Bogaard P, Rüpke L, Morgan JP. 2003.. Deep roots of the Messinian salinity crisis. . Nature 422::6026
    [Crossref] [Google Scholar]
  27. Ercilla G, Juan C, Hernández-Molina FJ, Bruno M, Estrada F, et al. 2016.. Significance of bottom currents in deep-sea morphodynamics: an example from the Alboran Sea. . Mar. Geol. 378::15770
    [Crossref] [Google Scholar]
  28. Esteras M, Izquierdo J, Sandoval NG, Bahmad A. 2000.. Evolución morfológica y estratigráfica plio-cuaternaria del umbral de Camarinal (estrecho de Gibraltar) basada en sondeos marinos. . Rev. Soc. Geol. Esp. 13::53950
    [Google Scholar]
  29. Estrada F, Ercilla G, Gorini C, Alonso B, Vazquez JT, et al. 2011.. Impact of pulsed Atlantic water inflow into the Alboran Basin at the time of the Zanclean flooding. . Geo-Mar. Lett. 31::36176
    [Crossref] [Google Scholar]
  30. Flecker R, de Villiers S, Ellam RM. 2002.. Modelling the effect of evaporation on the salinity-87Sr/86Sr relationship in modern and ancient marginal-marine systems: the Mediterranean Messinian Salinity Crisis. . Earth Planet. Sci. Lett. 203::22133
    [Crossref] [Google Scholar]
  31. Flecker R, Krijgsman W, Capella W, de Castro Martíns C, Dmitrieva E, et al. 2015.. Evolution of the late Miocene Mediterranean-Atlantic gateways and their impact on regional and global environmental Change. . Earth-Sci. Rev. 150::36592
    [Crossref] [Google Scholar]
  32. Garcia-Castellanos D, Estrada F, Jiménez-Munt I, Gorini C, Fernández M, et al. 2009.. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. . Nature 462::77881
    [Crossref] [Google Scholar]
  33. Garcia-Castellanos D, Micallef A, Estrada F, Camerlenghi A, Ercilla G, et al. 2020.. The Zanclean megaflood of the Mediterranean—searching for independent evidence. . Earth-Sci. Rev. 201::103061
    [Crossref] [Google Scholar]
  34. Garcia-Castellanos D, Villaseñor A. 2011.. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. . Nature 480::35963
    [Crossref] [Google Scholar]
  35. Garcia-Lafuente J, Sammartino S, Sanchez-Garrido JC, Naranjo C. 2018.. Asymmetric baroclinic response to tidal forcing along the main sill of the Strait of Gibraltar inferred from mooring observations. . In The Ocean in Motion, ed. M Velarde, R Tarakanov, A Marchenko , pp. 193210. Cham, Switz:.: Springer
    [Google Scholar]
  36. Gignoux M. 1936.. Geologie Stratigraphique. Paris:: Masson
    [Google Scholar]
  37. Gladstone R, Flecker R, Valdes PJ, Lunt D, Markwick P. 2007.. The Mediterranean hydrologic budget from a Late Miocene global climate simulation. . Palaeogeogr. Palaeoclim. Palaeoecol. 251::25467
    [Crossref] [Google Scholar]
  38. Govers R. 2009.. Choking the Mediterranean to dehydration: the Messinian salinity crisis. . Geology 37::16770
    [Crossref] [Google Scholar]
  39. Griffin DL. 1999.. The late Miocene climate of northeastern Africa: unravelling the signals in the sedimentary succession. . J. Geol. Soc. Lond. 156::81726
    [Crossref] [Google Scholar]
  40. Grossi F, Cosentino D, Gliozzi E. 2008.. Late Messinian Lago-Mare ostracods and paleoenvironments of the central and eastern Mediterranean Basin. . Boll. Soc. Paleontol. Ital. 47::13146
    [Google Scholar]
  41. Gvirtzman Z, Heida H, Garcia-Castellanos D, Bar O, Zucker E, Enzel Y. 2022.. Limited Mediterranean sea-level drop during the Messinian salinity crisis inferred from the buried Nile canyon. . Commun. Earth Environ. 3::216
    [Crossref] [Google Scholar]
  42. Gvirtzman Z, Manzi V, Calvo R, Gavrieli I, Gennari R, et al. 2017.. Intra-Messinian truncation surface in the Levant Basin explained by subaqueous dissolution. . Geology 45::91518
    [Crossref] [Google Scholar]
  43. Hardie LA, Lowenstein TK. 2004.. Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A cores. . J. Sediment. Res. 74::45361
    [Crossref] [Google Scholar]
  44. Heida H, Garcia-Castellanos D, Jiménez-Munt I, Estrada F, Ercilla G, et al. 2024.. Seaway restriction, sea level drop and erosion in the Alboran Basin from a paleotopographic reconstruction for the Messinian Salinity Crisis. . Mar. Geol. 474::107300
    [Crossref] [Google Scholar]
  45. Hernández-Molina FJ, Llave E, Preu B, Ercilla G, Fontan A, et al. 2014.. Contourite processes associated to the Mediterranean outflow water after its exit from the Gibraltar strait: global and conceptual implications. . Geology 42::22730
    [Crossref] [Google Scholar]
  46. Hernández-Molina FJ, Llave E, Sierro FJ, Roque C, van der Schee M, et al. 2016.. Evolution of the Gulf of Cadiz Margin and west Portugal contourite depositional system: tectonic, sedimentary and paleoceanographic implications from IODP Expedition 339. . Mar. Geol. 377::739
    [Crossref] [Google Scholar]
  47. Hilgen FJ, Kuiper K, Krijgsman W, Snel E, van der Laan E. 2007.. Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis. . Stratigraphy 4::23138
    [Crossref] [Google Scholar]
  48. Hsü KJ. 1972.. Origin of saline giants: a critical review after the discovery of the Mediterranean evaporite. . Earth-Sci. Rev. 8::37196
    [Crossref] [Google Scholar]
  49. Hsü KJ, Ryan WBF, Cita MB. 1973.. Late Miocene desiccation of the Mediterranean. . Nature 242::24044
    [Crossref] [Google Scholar]
  50. Iaccarino S, Bossio A. 1999.. Paleoenvironment of uppermost Messinian sequences in the western Mediterranean (sites 974, 975 and 978). . In Proceedings of the Ocean Drilling Program: Scientific Results, Vol. 161: Mediterranean II—the Western Mediterranean, ed. R Zahn, MC Comas, A Klaus , pp. 52941. College Station, TX:: Ocean Drill. Program
    [Google Scholar]
  51. Jiménez-Bonilla A, Balanya JC, Exposito I, Crespo-Blanc A, Torvela T, et al. 2016.. Miocene deformation front propagation and strain partitioning within the fold-and-thrust belt of the Central Betics. . Geogaceta 59::2326
    [Google Scholar]
  52. Juan C, Ercilla G, Estrada F, Alonso B, Casas D, et al. 2020.. Multiple factors controlling the deep marine sedimentation of the Alboran Sea (SW Mediterranean) after the Zanclean Atlantic Mega-flood. . Mar. Geol. 423::106138
    [Crossref] [Google Scholar]
  53. Kartveit KH, Heidrun BU, Ståle EJ. 2019.. Evidence of sea level drawdown at the end of the Messinian salinity crisis and seismic investigation of the Nahr Menashe unit in the northern Levant Basin, offshore Lebanon. . Basin Res. 31::82740
    [Crossref] [Google Scholar]
  54. Kastens KA, Mascle J, Auroux C, Bonatti E, Brogila C, et al. 1987.. Proceedings of the Ocean Drilling Program, Vol. 107. College Station, TX:: Ocean Drill. Program
    [Google Scholar]
  55. Kouwenhoven TJ, Hilgen FJ, van der Zwaan GJ. 2003.. Late Tortonian–early Messinian stepwise disruption of the Mediterranean–Atlantic connections: constraints from benthic foraminiferal and geochemical data. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 198::30319
    [Crossref] [Google Scholar]
  56. Krijgsman W, Capella W, Simon D, Hilgen FJ, Kouwenhoven TJ, et al. 2018.. The Gibraltar Corridor: watergate of the Messinian Salinity Crisis. . Mar. Geol. 403::23846
    [Crossref] [Google Scholar]
  57. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS. 1999.. Chronology, causes and progression of the Messinian salinity crisis. . Nature 400::65255
    [Crossref] [Google Scholar]
  58. Krijgsman W, Rohling EJ, Palcu DV, Raad F, Amarathunga U, et al. 2024.. Causes and consequences of the Messinian salinity crisis. . Nat. Rev. Earth Environ. 3::33550
    [Crossref] [Google Scholar]
  59. Ligi M, Bortoluzzi G. 1989.. PLOTMAP: geophysical and geological applications of good standard quality cartographic software. . Comput. Geosci. 15::51985
    [Crossref] [Google Scholar]
  60. Lofi J, Gorini C, Berné S, Clauzon G, Tadeu Dos Reis A, et al. 2005.. Erosional processes and paleo-environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. . Mar. Geol. 217::130
    [Crossref] [Google Scholar]
  61. Lofi J, Sage F, Deverchere J, Loncke L, Maillard A, et al. 2011.. Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi-site seismic analysis. . Bull. Soc. Geol. Fr. 182::16380
    [Crossref] [Google Scholar]
  62. Loget N, Van Den Driessche J. 2006.. On the origin of the Strait of Gibraltar. . Sediment. Geol. 18::34156
    [Crossref] [Google Scholar]
  63. Longhitano SG. 2018.. Between Scylla and Charybdis (part 2): the sedimentary dynamics of the ancient, Early Pleistocene Messina Strait (central Mediterranean) based on its modern analogue. . Earth-Sci. Rev. 179::24886
    [Crossref] [Google Scholar]
  64. Lugli S, Bassetti MA, Manzi V, Barbieri M, Longinelli A, Roveri M. 2007.. The Messinian “Vena del Gesso” evaporites revisited: characterization of isotopic composition and organic matter. . Geol. Soc. Lond. Spec. Publ. 285::14354
    [Crossref] [Google Scholar]
  65. Lugli S, Gennari R, Gvirtzman Z, Manzi V, Roveri M, Schreiber BC. 2013.. Evidence of clastic evaporites in the canyons of the Levant Basin (Israel): implications for the Messinian Salinity Crisis. . J. Sediment. Res. 83::94254
    [Crossref] [Google Scholar]
  66. Lugli S, Manzi V, Roveri M, Schreiber BC. 2010.. The primary lower gypsum in the Mediterranean: a new facies interpretation for the first stage of the Messinian salinity crisis. . Palaeogeogr. Palaeoclim. Palaeoecol. 297::8399
    [Crossref] [Google Scholar]
  67. Lugli S, Manzi V, Roveri M, Schreiber BC. 2015.. The deep record of the Messinian salinity crisis: evidence of a non-desiccated Mediterranean Sea. . Palaeogeogr. Palaeoclim. Palaeoecol. 433::20118
    [Crossref] [Google Scholar]
  68. Luján M, Crespo-Blanc A, Comas M. 2011.. Morphology and structure of the Camarinal Sill from high-resolution bathymetry: evidence of fault zones in the Gibraltar Strait. . Geo-Mar. Lett. 31::16374
    [Crossref] [Google Scholar]
  69. Madof AS, Bertoni C, Lofi J. 2019.. Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. . Geology 47::17174
    [Crossref] [Google Scholar]
  70. Manzi V, Gennari R, Hilgen F, Krijgsman W, Lugli S, et al. 2013.. Age refinement of the Messinian salinity crisis onset in the Mediterranean. . Terra Nova 25::31522
    [Crossref] [Google Scholar]
  71. Manzi V, Gennari R, Lugli S, Persico D, Reghizzi M, et al. 2018.. The onset of the Messinian salinity crisis in the deep Eastern Mediterranean basin. . Terra Nova 30::18998
    [Crossref] [Google Scholar]
  72. Manzi V, Lugli S, Roveri M, Schreiber BC. 2009.. A new facies model for the Upper Gypsum of Sicily (Italy): chronological and palaeoenvironmental constraint for the Messinian salinity crisis in the Mediterranean. . Sedimentology 56::193760
    [Crossref] [Google Scholar]
  73. Manzi V, Roveri M, Argnani A, Cowan D, Lugli S. 2021.. Large-scale mass-transport deposits recording the collapse of an evaporitic platform during the Messinian salinity crisis (Caltanissetta Basin, Sicily). . Sediment. Geol. 424::106003
    [Crossref] [Google Scholar]
  74. Martín JM, Braga JC, Aguirre J, Puga-Bernabéu Á. 2009.. History and evolution of the North-Betic Strait (Prebetic Zone, Betic Cordillera): a narrow, early Tortonian, tidal-dominated, Atlantic-Mediterranean marine passage. . Sediment. Geol. 216::8090
    [Crossref] [Google Scholar]
  75. Martín JM, Braga JC, Betzler C. 2001.. The Messinian Guadalhorce corridor: the last northern, Atlantic–Mediterranean gateway. . Terra Nova 13::41824
    [Crossref] [Google Scholar]
  76. Martín JM, Puga-Bernabéu Á, Aguirre J, Braga JC. 2014.. Miocene Atlantic-Mediterranean seaways in the Betic Cordillera (southern Spain). . Rev. Soc. Geol. Esp. 27::17586
    [Google Scholar]
  77. Marzocchi A, Flecker R, Van Baak CG, Lunt DJ, Krijgsman W. 2016.. Mediterranean outflow pump: an alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis. . Geology 44::52326
    [Crossref] [Google Scholar]
  78. Marzocchi A, Lunt DJ, Flecker R, Bradshaw CD, Farnsworth A, Hilgen FJ. 2015.. Orbital control on late Miocene climate and the North African monsoon: insight from an ensemble of sub-precessional simulations. . Clim. Past 11::127195
    [Crossref] [Google Scholar]
  79. Mascle G, Mascle J. 2019.. The Messinian salinity legacy: 50 years later. . Mediterr. Geosci. Rev. 1::515
    [Crossref] [Google Scholar]
  80. Meijer PT, Krijgsman W. 2005.. A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis. . Earth Planet. Sci. Lett. 240::51020
    [Crossref] [Google Scholar]
  81. Meilijson A, Hilgen F, Sepúlveda J, Steinberg J, Fairbank V, et al. 2019.. Chronology with a pinch of salt: integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity. . Earth-Sci. Rev. 194::37498
    [Crossref] [Google Scholar]
  82. Meilijson A, Steinberg J, Hilgen F, Bialik OM, Waldmann ND, Makovsky Y. 2018.. Deep-basin evidence resolves a 50-year-old debate and demonstrates synchronous onset of Messinian evaporite deposition in a non-desiccated. . Mediterr. Geol. 46::24346
    [Crossref] [Google Scholar]
  83. Micallef A, Camerlenghi A, Garcia-Castellanos D, Cunarro Otero D, Gutscher MA, et al. 2018.. Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. . Sci. Rep. 8::1078
    [Crossref] [Google Scholar]
  84. Millot C. 2009.. Another description of the Mediterranean Sea outflow. . Prog. Oceanogr. 82::10124
    [Crossref] [Google Scholar]
  85. Moneron J, Gvirtzman Z. 2022.. Late Messinian submarine channel systems in the Levant Basin: challenging the desiccation scenario. . Geology 50::136671
    [Crossref] [Google Scholar]
  86. Ochoa D, Sierro FJ, Lofi J, Maillard A, Flores JA, Suarez M. 2015.. Synchronous onset of the Messinian evaporite precipitation: first Mediterranean offshore evidence. . Earth Planet. Sci. Lett. 427::11224
    [Crossref] [Google Scholar]
  87. Omodeo Salé S, Gennari R, Lugli S, Manzi V, Roveri M. 2012.. Tectonic and climatic control on the sedimentary evolution of the Nijar Basin (Betic Cordillera, Southern Spain). . Basin Res. 24::31437
    [Crossref] [Google Scholar]
  88. Orszag-Sperber F. 2006.. Changing perspectives in the concept of “Lago-Mare” in Mediterranean late Miocene evolution. . Sediment. Geol. 188–89::25977
    [Crossref] [Google Scholar]
  89. Pilade F, Vasiliev I, Birgel D, Dela Pierre F, Natalicchio M, et al. 2023.. Deciphering the termination of the Messinian salinity crisis: the alkenone record of the Miocene-Pliocene transition in the northern Mediterranean. . Palaeogeogr. Palaeoclim. Palaeoecol. 631::111831
    [Crossref] [Google Scholar]
  90. Popescu SM, Melinte MC, Suc JP, Clauzon G, Quillevere F, Süto-Szentai M. 2007.. Earliest Zanclean age for the Colombacci and uppermost Di Tetto formations of the “latest Messinian” northern Apennines: new paleoenvironmental data from the Maccarone section (Marche Province, Italy). . Geobios 40::35973
    [Crossref] [Google Scholar]
  91. Reghizzi M, Lugli S, Manzi V, Rossi FP, Roveri M. 2018.. Orbitally forced hydrological balance during the Messinian salinity crisis: insights from strontium isotopes (87Sr/86Sr) in the Vena del Gesso Basin (northern Apennines, Italy). . Paleocean. Paleoclim. 33::71631
    [Crossref] [Google Scholar]
  92. Rossi VM, Longhitano SG, Olariu S, Chiocci FL. 2022.. Straits and seaways: end members within the continuous spectrum of the dynamic connection between basins. . Geol. Soc. Lond. Spec. Publ. 523::85109
    [Crossref] [Google Scholar]
  93. Rouchy JM, Caruso A. 2006.. The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. . Sediment. Geol. 188::3567
    [Crossref] [Google Scholar]
  94. Roustan JB, Bortois L, Dumas F Auclair F, Carton X. 2023.. In situ observations of the small-scale dynamics at Camarinal Sill—Strait of Gibraltar. . J. Geophys. Res. Oceans 128::e2023JC019738
    [Crossref] [Google Scholar]
  95. Roveri M, Bertini A, Cosentino D, Di Stefano A, Gennari R, et al. 2008a.. A high-resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. . Stratigraphy 5:(3–4):32342
    [Crossref] [Google Scholar]
  96. Roveri M, Flecker R, Krijgsman W, Lofi J, Lugli S, et al. 2014a.. The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. . Mar. Geol. 349::11325
    [Crossref] [Google Scholar]
  97. Roveri M, Gennari R, Ligi M, Lugli S, Manzi V, Reghizzi M. 2019.. The synthetic seismic expression of the Messinian salinity crisis from onshore records: implications for shallow- to deep-water correlations. . Basin Res. 31::112152
    [Crossref] [Google Scholar]
  98. Roveri M, Gennari R, Lugli S, Manzi V, Minelli N, et al. 2016.. The Messinian salinity crisis: open problems and possible implications for Mediterranean petroleum system. . Petrol. Geosci. 22::28390
    [Crossref] [Google Scholar]
  99. Roveri M, Lugli S, Manzi V, Gennari R, Schreiber BC. 2014b.. High-resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: implications for marginal to central basins correlation. . Mar. Geol. 349::11325
    [Crossref] [Google Scholar]
  100. Roveri M, Lugli S, Manzi V, Schreiber BC, Briand F. 2008b.. The shallow-to deep-water record of the Messinian Salinity Crisis: new insights from Sicily, Calabria and Apennine basins. . See CIESM 2008 , pp. 7382
  101. Roveri M, Manzi V. 2006.. The Messinian salinity crisis: looking for a new paradigm?. Palaeogeogr. Palaeoclim. Palaeoecol. 238::38698
    [Crossref] [Google Scholar]
  102. Roveri M, Manzi V, Bergamasco A, Falcieri FM, Gennari R, et al. 2014c.. Dense shelf water cascading and Messinian Canyons: a new scenario for the Mediterranean salinity crisis. . Am. J. Sci. 314::75184
    [Crossref] [Google Scholar]
  103. Ruggieri G. 1967.. The Miocene and later evolution of the Mediterranean Sea. . In Aspects of Tethyan Biogeography, ed. CG Adams, AV Ager , pp. 28390. London:: Syst. Assoc.
    [Google Scholar]
  104. Ryan WBF. 2008.. Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis. . Stratigraphy 5::22743
    [Crossref] [Google Scholar]
  105. Ryan WBF. 2009.. Decoding the Mediterranean salinity crisis. . Sedimentology 56::95136
    [Crossref] [Google Scholar]
  106. Ryan WBF. 2023.. 50th anniversary review of the Mediterranean desiccation hypothesis. . Riv. Nuovo Cimento 46::163291
    [Crossref] [Google Scholar]
  107. Ryan WBF, Cita MB. 1978.. The nature and distribution of Messinian erosion surfaces, indicators of a several-kilometer-deep Mediterranean in the Miocene. . Mar. Geol. 27::193230
    [Crossref] [Google Scholar]
  108. Ryan WBF, Pitman WC III. 1998.. Noah's Flood: The New Scientific Discoveries About the Event That Changed History. New York:: Simon & Schuster
    [Google Scholar]
  109. Ryan WBF, Pitman WC III, Major CO, Shimkus K, Moskalenko V, et al. 1997.. An abrupt drowning of the Black Sea shelf. . Mar. Geol. 138::11926
    [Crossref] [Google Scholar]
  110. Sanchez-Garrido JC, Garcia-Lafuente J, Aldeanueva FC, Baquerizo A, Sannino G. 2008.. Time-spatial variability observed in velocity of propagation of the internal bore in the Strait of Gibraltar. . J. Geophys. Res. Oceans 113::C07034
    [Crossref] [Google Scholar]
  111. Sannino G, Carillo A, Pisacane G, Naranjo C. 2015.. On the relevance of tidal forcing in modelling the Mediterranean thermohaline circulation. . Prog. Oceanogr. 134::30429
    [Crossref] [Google Scholar]
  112. Selli R. 1954.. Il Bacino del Metauro. Fano, Italy:: Cassa Risparm. Fano
    [Google Scholar]
  113. Serv. Geol. Ital. 1972.. Carta geologica d'Italia alla scala 1:50.000. , F. 652 Capo Passero. INFN Open Access Repos. 143347. http://doi.org/10.15161/oar.it/143347
  114. Simon D, Meijer P. 2015.. Dimensions of the Atlantic-Mediterranean connection that caused the Messinian Salinity Crisis. . Mar. Geol. 364::5364
    [Crossref] [Google Scholar]
  115. Stoica M, Krijgsman W, Fortuin A, Gliozzi E. 2016.. Paratethyan ostracods in the Spanish Lago-Mare: more evidence for interbasinal exchange at high Mediterranean Sea level. . Palaeogeogr. Palaeoclim. Palaeoecol. 441::85470
    [Crossref] [Google Scholar]
  116. Suc JP, Fauquette S, Warny S, Jiménez-Moren G, Do Couto D. 2023.. Climate and Atlantic sea-level recorded in southwestern Spain from 63 to 52 Ma. Inferences on the Messinian Crisis in the Mediterranean. . Bull. Soc. Geol. Fr. 194::15
    [Crossref] [Google Scholar]
  117. Urgeles R, Camerlenghi A, Garcia-Castellanos D, De Mol B, Garces M, et al. 2011.. New constraints on the Messinian sea level drawdown from 3D seismic data of the Ebro margin, western Mediterranean. . Basin Res. 23::12345
    [Crossref] [Google Scholar]
  118. Van Couvering JA, Castradori D, Cita MB, Hilgen FJ, Rio D. 2000.. The base of the Zanclean Stage and of the Pliocene Series. . Episodes 23::17986
    [Crossref] [Google Scholar]
  119. van der Schee M, Sierro F, Jiménez-Espejo F, Hernández-Molina F, Flecker R, et al. 2016.. Evidence of early bottom water current flow after the Messinian Salinity Crisis in the Gulf of Cadiz. . Mar. Geol. 380::31529
    [Crossref] [Google Scholar]
  120. van Dijk G, Maars J, Andreetto F, Hernández-Molina FJ, Rodriguez-Tovar FJ, Krijgsman W. 2023.. A terminal Messinian flooding of the Mediterranean evidenced by contouritic deposits on Sicily. . Sedimentology 70::1195223
    [Crossref] [Google Scholar]
  121. Vasiliev I, Mezger EM, Lugli S, Reichar GJ, Manzi V, Roveri M. 2017.. How dry was the Mediterranean during the Messinian salinity crisis?. Palaeogeogr. Palaeoclim. Palaeoecol. 471::12033
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-021723-110155
Loading
/content/journals/10.1146/annurev-marine-021723-110155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error