1932

Abstract

Estrogens are a group of endocrine disruptors that are recognized as a threat to the world's ecosystems and are easily transported through aquatic systems from mainly anthropogenic sources. To illustrate this growing problem, we have compiled a global overview of measured concentrations of natural and synthetic estrogens restricted to freshwater systems (lakes, rivers, and lagoons) and marine coastal and open ocean environments, focusing on estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2). We found that the cumulative risk quotient is high at 65% of 400 sampled sites, highlighting that estrogen pollution is a major environmental concern. Our investigation revealed that almost no information is available on the concentration levels of E1, E2, E3, and EE2 for the open ocean areas. However, their occurrence in all systems, including open seas, suggests that estrogens are not completely degraded during transport to and within the environment and may be more persistent than previously thought.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032123-025855
2025-01-16
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-032123-025855.html?itemId=/content/journals/10.1146/annurev-marine-032123-025855&mimeType=html&fmt=ahah

Literature Cited

  1. Adell M, Song X, Wang Y, Francis D, Yang Y. 2017.. Environmental impact of estrogens on human, animal and plant life: a critical review. . Environ. Int. 99::10719. https://doi.org/10.1016/j.envint.2016.12.010
    [Crossref] [Google Scholar]
  2. Akbari H, Menon S, Rosenfeld A. 2009.. Global cooling: increasing world-wide urban albedos to offset CO2. . Clim. Change 94:(3):27586. https://doi.org/10.1007/s10584-008-9515-9
    [Crossref] [Google Scholar]
  3. Almeida Â, Silva MG, Soares AMVM, Freitas R. 2020.. Concentrations levels and effects of 17α-ethinylestradiol in freshwater and marine waters and bivalves: a review. . Environ. Res. 185::109316. https://doi.org/10.1016/j.envres.2020.109316
    [Crossref] [Google Scholar]
  4. Arditsoglou A, Voutsa D. 2008.. Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. . Environ. Sci. Pollut. Res. 15:(3):22836. https://doi.org/10.1065/espr2007.12.459
    [Crossref] [Google Scholar]
  5. Arditsoglou A, Voutsa D. 2012.. Occurrence and partitioning of endocrine-disrupting compounds in the marine environment of Thermaikos Gulf, Northern Aegean Sea, Greece. . Mar. Pollut. Bull. 64::244352. https://doi.org/10.1016/j.marpolbul.2012.07.048
    [Crossref] [Google Scholar]
  6. Arikon OA, Rice C, Codling E. 2008.. Occurrence of antibiotics and hormones in a major agricultural watershed. . Desalination 226::12133. https://doi.org/10.1016/j.desal.2007.01.238
    [Crossref] [Google Scholar]
  7. Atkinson S, Atkinson MJ, Tarrant AM. 2003.. Estrogens from sewage in coastal marine environments. . Environ. Health Perspect. 111:(4):53135. https://doi.org/10.1289/ehp.5233
    [Crossref] [Google Scholar]
  8. Auriol M, Filali-Meknassi Y, Adams CD, Tyagi RD, Noguerol TN, Pin B. 2008.. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor. . Chemosphere 70::44552. https://doi.org/10.1016/j.chemosphere.2007.06.064
    [Crossref] [Google Scholar]
  9. Avar P, Zrínyi Z, Maász G, Takátsy A, Lovas S, G-Tóth L, Pirger Z. 2016.. β-Estradiol and ethinyl-estradiol contamination in the rivers of the Carpathian Basin. . Environ. Sci. Pollut. Res. Int. 23:(12):1163038. https://doi.org/10.1007/s11356-016-6276-2
    [Crossref] [Google Scholar]
  10. Aydin E, Talinli I. 2013.. Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. . Chemosphere 90::200412. https://doi.org/10.1016/j.chemosphere.2012.10.074
    [Crossref] [Google Scholar]
  11. Bain PA, Gregg A, Pandey AK, Mudiam MKR, Neale PA, Kumar A. 2021.. Using bioanalytical tools to detect and track organic micropollutants in the Ganga River near two major cities. . J. Hazard. Mater. 404::124135. https://doi.org/10.1016/j.jhazmat.2020.124135
    [Crossref] [Google Scholar]
  12. Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A, Samperi R. 2000.. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. . Environ. Sci. Technol. 34:(24):505966. https://doi.org/10.1021/es001359q
    [Crossref] [Google Scholar]
  13. Barreiros L, Queiroz JF, Magalhães LM, Silva AMT, Segundo MA. 2016.. Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices—a review. . Microchem. J. 126::24362. https://doi.org/10.1016/j.microc.2015.12.003
    [Crossref] [Google Scholar]
  14. Beck I-C. 2006.. Estrogene in Küstengewässern—Untersuchungen in der Ostsee mittels chemischer Analytik und einem in vitro-Biotest. PhD Thesis , Univ. Lüneburg, Lüneburg, Ger:.
    [Google Scholar]
  15. Beck I-C, Bruhn R, Gandrass J. 2006a.. Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. . Chemosphere 63:(11):187078. https://doi.org/10.1016/j.chemosphere.2005.10.022
    [Crossref] [Google Scholar]
  16. Beck I-C, Bruhn R, Gandrass J. 2006b.. Bioassay-directed fractionation for analyzing estrogens in surface waters of the German Baltic Sea. . Acta Hydrochim. Hydrobiol. 34::56067. https://doi.org/10.1002/aheh.200600654
    [Crossref] [Google Scholar]
  17. Beck I-C, Bruhn R, Gandrass J, Ruck W. 2005.. Liquid chromatography-tandem mass spectrometry analysis of estrogenic compounds in coastal surface water of the Baltic Sea. . J. Chromatogr. A 1090:(1–2):98106. https://doi.org/10.1016/j.chroma.2005.07.013
    [Crossref] [Google Scholar]
  18. Belfroid AC, Van der Horst A, Vethaak AD, Schäfer AJ, Rijs GBJ, et al. 1999.. Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in the Netherlands. . Sci. Total Environ. 225::1018. https://doi.org/10.1016/S0048-9697(98)00336-2
    [Crossref] [Google Scholar]
  19. Bertin A, Inostroza PA, Quiñones RA. 2011.. Estrogen pollution in a highly productive ecosystem off central-south Chile. . Mar. Pollut. Bull. 62::153037. https://doi.org/10.1016/j.marpolbul.2011.04.002
    [Crossref] [Google Scholar]
  20. Brett TK. 2014.. The fate of estrone (E1), 17beta-estradiol (E2), estriol (E3) and 17alpha-ethinylestradiol (EE2) in surface waters. MS Thesis , Univ. B.C. Okanagan, Okanagan, Can:.
    [Google Scholar]
  21. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, et al. 1997.. Molecular basis of agonism and antagonism in the oestrogen receptor. . Nature 389::75358. https://doi.org/10.1038/39645
    [Crossref] [Google Scholar]
  22. Cajthaml T, Křesinová Z, Svobodová K, Sigler K, Řezanka T. 2009.. Microbial transformation of synthetic estrogen 17α-ethinylestradiol. . Environ. Pollut. 157:(12):332535. https://doi.org/10.1016/j.envpol.2009.06.027
    [Crossref] [Google Scholar]
  23. Caldwell DJ, Mastrocco F, Anderson PD, Länge R, Sumpter JP. 2012.. Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. . Environ. Toxicol. Chem. 31:(6):1396406. https://doi.org/10.1002/etc.1825
    [Crossref] [Google Scholar]
  24. Cargouët M, Perdiz D, Mouatassim-Souali A, Tamisier-Karolak S, Levi Y. 2004.. Assessment of river contamination by estrogenic compounds in Paris area (France). . Sci. Total Environ. 324::5566. https://doi.org/10.1016/j.scitotenv.2003.10.035
    [Crossref] [Google Scholar]
  25. Cathum S, Sabik H, 2001.. Determination of steroids and coprostanol in surface water, effluent and mussel using gas chromatography-mass spectrometry. . Chromatographia 53:(Suppl. 1):39499. https://doi.org/10.1007/BF02490364
    [Crossref] [Google Scholar]
  26. Céspedes R, Petrovic M, Raldua D, Saura U, Pina B, et al. 2004.. Integrated procedure for determination of endocrine-disrupting activity in surface waters and sediments by use of the biological technique recombinant yeast assay and chemical analysis by LC-ESI-MS. . Anal. Bioanal. Chem. 378:(3):697708. https://doi.org/10.1007/s00216-003-2303-5
    [Crossref] [Google Scholar]
  27. Chen C-Y, Wen T-Y, Wang G-S, Cheng H-W, Lin Y-H, Lien G-W. 2007.. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. . Sci. Total Environ. 378:(3):35265. https://doi.org/10.1016/j.scitotenv.2007.02.038
    [Crossref] [Google Scholar]
  28. Chen T-S, Chen T-C, Yeh K-JC, Chao H-R, Liaw E-T, et al. 2010.. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. . Sci. Total Environ. 408:(16):322330. https://doi.org/10.1016/j.scitotenv.2010.03.054
    [Crossref] [Google Scholar]
  29. Chen X-W, Zhao J-L, Liu Y-S, Hu L-X, Liu S-S, Ying G-G. 2016.. Evaluation of estrogenic activity in the Pearl River by using effect-directed analysis. . Environ. Sci. Pollut. Res. 23:(21):21692702. https://doi.org/10.1007/s11356-016-7377-7
    [Crossref] [Google Scholar]
  30. Chen Y, Zhang K, Zuo Y. 2013.. Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions. . Sci. Total Environ. 463–64::8029. https://doi.org/10.1016/j.scitotenv.2013.06.026
    [Crossref] [Google Scholar]
  31. Chowdbury RR, Charpentier PA, Ray MB. 2011.. Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: kinetics and influencing water parameters. . J. Photochem. Photobiol. A 219:(1):6775. https://doi.org/10.1016/j.jphotochem.2011.01.019
    [Crossref] [Google Scholar]
  32. Czarny K, Szczukocki D, Krawczyk B, Zielinski M, Miekos E, Gadzala-Kopciuch R. 2017.. The impact of estrogens on aquatic organisms and methods for their determination. . Crit. Rev. Environ. Sci. Technol. 47:(11):90963. https://doi.org/10.1080/10643389.2017.1334458
    [Crossref] [Google Scholar]
  33. de Mes T, Zeeman G, Lettinga G. 2005.. Occurrence and fate of estrone, 17β-estradiol and 17α-ethynylestradiol in STPs for domestic wastewater. . Rev. Environ. Sci. Biol. 4::275311. https://doi.org/10.1007/s11157-005-3216-x
    [Google Scholar]
  34. Deich C, Frazão HC, Appelt JS, Li W, Pohlmann T, Waniek JJ. 2021.. Occurrence and distribution of estrogenic substances in the northern South China Sea. . Sci. Total Environ. 770::145239. https://doi.org/10.1016/j.scitotenv.2021.145239
    [Crossref] [Google Scholar]
  35. Deich C, Kanwischer M, Jähne M, Waniek JJ. 2020.. Patterns of estrogenic activity in the Baltic Sea. . Chemosphere 240::124870. https://doi.org/10.1016/j.chemosphere.2019.124870
    [Crossref] [Google Scholar]
  36. Deich C, Kanwischer M, Zhang R, Waniek JJ. 2023.. Natural and synthetic estrogenic compounds in the Pearl River Estuary and northern shelf of the South China Sea. . Oceanologia 65:(1):3043. https://doi.org/10.1016/j.oceano.2021.08.001
    [Crossref] [Google Scholar]
  37. Demirpence E, Duchesne M-J, Badia E, Gagne D, Pons M. 1993.. MVLN cells: a bioluminescent MCE-7-derived cell line to study the modulation of estrogenic activity. . J. Steroid Biochem. 46:(3):35564. https://doi.org/10.1016/0960-0760(93)90225-l
    [Crossref] [Google Scholar]
  38. Duong CN, Ra JS, Cho J, Kim SD, Choi HK, et al. 2010a.. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. . Chemosphere 78:(3):28693. https://doi.org/10.1016/j.chemosphere.2009.10.048
    [Crossref] [Google Scholar]
  39. Duong CN, Ra JS, Schlenk D, Kim SD, Choi HK, Kim SD. 2010b.. Sorption of estrogens onto different fractions of sediment and its effect on vitellogenin expression in male Japanese medaka. . Arch. Environ. Contam. Toxicol. 59:(1):14756. https://doi.org/10.1007/s00244-009-9429-1
    [Crossref] [Google Scholar]
  40. Eur. Comm. 2012.. Proposal for a Directive of the European Parliament and of the Council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. . Off. J. L 226::117
    [Google Scholar]
  41. Eur. Comm. 2015.. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. . Off. J. L 78::4042
    [Google Scholar]
  42. Eur. Comm. 2018.. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495. . Off. J. L 141::912
    [Google Scholar]
  43. Eur. Parliam. 2008.. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. . Off. J. L 348::8497
    [Google Scholar]
  44. Eur. Parliam. 2013.. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy text with EEA relevance. . Off. J. L 226::117
    [Google Scholar]
  45. Farounbi AI, Ngqwala NP. 2020.. Occurrence of selected endocrine disrupting compounds in the eastern cape province of South Africa. . Environ. Sci. Pollut. Res. 27::1726879. https://doi.org/10.1007/s11356-020-08082-y
    [Crossref] [Google Scholar]
  46. Filby AL, Neuparth T, Thorpe KL, Owen R, Galloway TS, Tyler CR. 2007.. Health impacts of estrogens in the environment, considering complex mixture effects. . Environ. Health Perspect. 115:(12):170410. https://doi.org/10.1289/ehp.10443
    [Crossref] [Google Scholar]
  47. Fonseca AP, Lima DLD, Esteves VI. 2011.. Degradation by solar radiation of estrogenic hormones monitored by UV–visible spectroscopy and capillary electrophoresis. . Water Air Soil Pollut. 215::44147. https://doi.org/10.1007/s11270-010-0489-7
    [Crossref] [Google Scholar]
  48. García-Prieto A, Lunar L, Rubioa S, Pérez-Bendito D. 2006.. Hemimicelle-based solid-phase extraction of estrogens from environmental water samples. . Analyst 131::40714. https://doi.org/10.1039/b514100a
    [Crossref] [Google Scholar]
  49. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, et al. 2015.. Executive summary to EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. . Endocr. Rev. 36:(6):593602. https://doi.org/10.1210/er.2015-1093
    [Crossref] [Google Scholar]
  50. Griffero L, Alcántara-Durán J, Alonso C, Rodríguez-Gallego L, Moreno-González D, et al. 2019.. Basin-scale monitoring and risk assessment of emerging contaminants in South American Atlantic coastal lagoons. . Sci. Total Environ. 697::134058. https://doi.org/10.1016/j.scitotenv.2019.134058
    [Crossref] [Google Scholar]
  51. Griffith DR, Kido Soule MC, Eglinton TI, Kujawinski EB, Gschwend PM. 2016.. Steroidal estrogen sources in a sewage-impacted coastal ocean. . Environ. Sci. Process. Impacts 18:(8):98191. https://doi.org/10.1039/c6em00127k
    [Crossref] [Google Scholar]
  52. Hadibarata T, Kristanti RA, Mahmoud AH. 2020.. Occurrence of endocrine-disrupting chemicals (EDCs) in river water and sediment of the Mahakam River. . J. Water Health 18:(1):3847. https://doi.org/10.2166/wh.2019.100
    [Crossref] [Google Scholar]
  53. Huang B, Wang B, Ren D, Jin W, Liu J, et al. 2013.. Occurrence, removal and bioaccumulation of steroid estrogens in Dianchi Lake catchment, China. . Environ. Int. 59::26273. https://doi.org/10.1016/j.envint.2013.06.018
    [Crossref] [Google Scholar]
  54. Huang Y, Xie X, Zhou LJ, Ji X, Gao B, et al. 2019.. Multi-phase distribution and risk assessment of endocrine disrupting chemicals in the surface water of the Shaying River, Huai River Basin, China. . Ecotoxicol. Environ. Saf. 173::4553. https://doi.org/10.1016/j.ecoenv.2019.02.016
    [Crossref] [Google Scholar]
  55. Huber S, Remberger M, Kaj L, Schlabach M, Jörundsdóttir HO, et al. 2016.. A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water, sludge, recipient water and sediment from Faroe Islands, Iceland and Greenland. . Sci. Total Environ. 562::1325. https://doi.org/10.1016/j.scitotenv.2016.03.063
    [Crossref] [Google Scholar]
  56. Huysman S, Van Meulebroek L, Vanryckeghem F, Van Langenhove H, Demeestere K, Vanhaecke L. 2017.. Development and validation of an ultra-high performance liquid chromatographic high resolution Q-Orbitrap mass spectrometric method for the simultaneous determination of steroidal endocrine disrupting compounds in aquatic matrices. . Anal. Chim. Acta 984::14050. https://doi.org/10.1016/j.aca.2017.07.001
    [Crossref] [Google Scholar]
  57. Ide A, Osawa R, Marcant LO, Rodrigues de Azevedo JC. 2017.. Occurrence of pharmaceutical products, female sex hormones and caffeine in a subtropical region in Brazil. . Clean Soil Air Water 45:(9):1700334. https://doi.org/10.1002/clen.201700334
    [Crossref] [Google Scholar]
  58. Ismail A, Hazizan AF, Zulkifli SZ, Mohamat-Yusuff F, Omar H, Arizono K. 2014.. Determination of 17β-estradiol concentration in aquatic environment of peninsular malaysia using the ELISA technique. . Life Sci. J. 11:(8):6739
    [Google Scholar]
  59. Jarošová B, Javůrek J, Adamovský O, Hilscherová K. 2014.. Phytestrogens and mycestrogens in surface waters—their sources, occurrence, and potential contribution to estrogenic activity. . Environ. Int. 81::2644. https://doi.org/10.1016/j.envint.2015.03.019
    [Crossref] [Google Scholar]
  60. Jin S, Yang F, Tao L, Hui Y, Xu Y. 2008.. Seasonal variations of estrogenic compounds and their estrogenicities in influent and effluent from a municipal sewage treatment plant in China. . Environ. Toxicol. Chem. 27:(1):14653. https://doi.org/10.1897/07-072.1
    [Crossref] [Google Scholar]
  61. Johnson AC, Sumpter JP. 2001.. Removal of endocrine-disrupting chemicals in activated sludge treatment works. . Environ. Sci. Technol. 35:(24):4697703. https://doi.org/10.1021/es010171j
    [Crossref] [Google Scholar]
  62. Jürgens MD, Holthaus KIE, Johnson AC, Smith JJL, Hetheridge M, Williams RJ. 2002.. The potential for estradiol and ethinylestradiol degradation in English rivers. . Environ. Toxicol. Chem. 21:(3):48088. https://doi.org/10.1002/etc.5620210302
    [Crossref] [Google Scholar]
  63. Kawaguchi M, Ishii Y, Sakui N, Okanouchi N, Ito R, Inoue K, Saito K, Nakazawa H. 2004.. Stir bar sorptive extraction with in situ derivatization and thermal desorption–gas chromatography–mass spectrometry in the multi-shot mode for determination of estrogens in river water samples. . J. Chromatogr. A 1049:(1–2):18. https://doi.org/10.1016/j.chroma.2004.08.013
    [Crossref] [Google Scholar]
  64. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, et al. 2007.. Collapse of a fish population after exposure to a synthetic estrogen. . PNAS 104::8897901. https://doi.org/10.1073/pnas.0609568104
    [Crossref] [Google Scholar]
  65. Kolodziej EP, Harter T, Sedlak DL. 2004.. Dairy wastewater, aquaculture, and spawning fish as sources of steroid hormones in the aquatic environment. . Environ. Sci. Technol. 38::637784. https://doi.org/10.1021/es049585d
    [Crossref] [Google Scholar]
  66. Könemann S, Kase R, Eszter S, Swart K, Buchinger S, et al. 2018.. Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. . Trends Anal. Chem. 102::22535. https://doi.org/10.1016/j.trac.2018.02.008
    [Crossref] [Google Scholar]
  67. Koyama J, Imai S, Fujii K, Kawai S-I, Yap CK, Ismail A. 2006.. Pollution by estrogens in river and estuarine waters around Kuala Lumpur, Malaysia, and their effects on the estuarine Java-medaka, Oryzias javanicus. . Jpn. J. Environ. Toxicol. 9:(2):14147. https://doi.org/10.11403/jset.9.141
    [Google Scholar]
  68. Kuhl H. 2005.. Pharmacology of estrogens and progestogens: influence of different routes of administration. . Climacteric 8:(Suppl. 1):363. https://doi.org/10.1080/13697130500148875
    [Crossref] [Google Scholar]
  69. Kumar V, Nakada N, Yamashita N, Johnson AC, Tanaka T. 2011.. How seasonality affects the flow of estrogens and their conjugates in one of Japan's most populous catchments. . Environ. Pollut. 159:(10):290612. https://doi.org/10.1016/j.envpol.2011.04.038
    [Crossref] [Google Scholar]
  70. Kuster M, Azevedo DA, López de Alda MJ, Aquino Neto RF, Barceló D. 2009.. Analysis of phytoestrogens, progestogens and estrogens in environmental waters from Rio de Janeiro (Brazil). . Environ. Int. 35:(7):9971003. https://doi.org/10.1016/j.envint.2009.04.006
    [Crossref] [Google Scholar]
  71. Lange A, Katsu Y, Ichikawa R, Paull GC, Chidgey LL, et al. 2008.. Altered sexual development in roach (Rutilus rutilus) exposed to environmental concentrations of the pharmaceutical 17α-ethinylestradiol and associated expression dynamics of aromatases and estrogen receptors. . Toxicol. Sci. 106:(1):11323. https://doi.org/10.1093/toxsci/kfn151
    [Crossref] [Google Scholar]
  72. Lee B-C, Ohno K, Kamei T, Magara Y, Lee S-H, Lee C-H. 2003.. Estrogenic activity level of Nakdong River basin and its control by water treatment processes. . J. Water Environ. Technol. 11:(2):2038. https://doi.org/10.2965/jwet.2003.203
    [Crossref] [Google Scholar]
  73. Liao T, Guo QL, Jin SW, Cheng W, Xu Y. 2009.. Comparative responses in rare minnow exposed to 17β-estradiol during different life stages. . Fish Physiol. Biochem. 35:(3):34149. https://doi.org/10.1007/s10695-008-9247-9
    [Crossref] [Google Scholar]
  74. Lisboa NS, Fahning CS, Cotrim G, dos Anjos JP, de Andrade JB, et al. 2013.. A simple and sensitive UFLC-fluorescence method for endocrine disrupters determination in marine waters. . Talanta 117::16875. https://doi.org/10.1016/j.talanta.2013.08.006
    [Crossref] [Google Scholar]
  75. Liu B, Wu F, Deng N-S. 2003.. UV-light induced photodegradation of 17α-ethynylestradiol in aqueous solutions. . J. Hazard. Mater. 98:(1–3):31116. https://doi.org/10.1016/S0304-3894(02)00321-7
    [Crossref] [Google Scholar]
  76. Liu W, Chen Q, He N, Sun K, Sun D, et al. 2018.. Removal and biodegradation of 17β-estradiol and diethylstilbestrol by the freshwater microalgae Raphidocelis subcapitata. . Int. J. Environ. Res. Public Health 15:(3):452. https://doi.org/10.3390/ijerph15030452
    [Crossref] [Google Scholar]
  77. Liu Y, Guan Y, Tam NFY, Mizuno T, Tsuno H, Zhu W. 2010.. Influence of rainfall and basic water quality parameters on the distribution of endocrine-disrupting chemicals in coastal area. . Water Air Soil Pollut. 209::33343. https://doi.org/10.1007/s11270-009-0202-x
    [Crossref] [Google Scholar]
  78. Loos R. 2012.. Analytical methods relevant to the European Commission's 2012 proposal on Priority Substances under the Water Framework Directive. Rep., Joint Res. Cent., Eur. Comm. , Ispra, Italy:. https://doi.org/10.2788/51497
    [Google Scholar]
  79. Loos R, Marinov D, Sanseverino I, Napierska D, Lettieri T. 2018.. Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List. Rep., Joint Res. Cent., Eur. Comm. , Ispra, Italy:. https://doi.org/10.2760/614367
    [Google Scholar]
  80. Lu GH, Song WT, Wang C, Yan ZH. 2010.. Assessment of in vivo estrogenic response and the identification of environmental estrogens in the Yangtze River (Nanjing section). . Chemosphere 80::98290. https://doi.org/10.1016/j.chemosphere.2010.05.038
    [Crossref] [Google Scholar]
  81. Lugaro G, Carrea G, Cremonesi P, Casellato MM, Antonini E. 1973.. The oxidation of steroid hormones by fungal laccase in emulsion of water and organic solvents. . Arch. Biochem. Biophys. 1::16. https://doi.org/10.1016/0003-9861(73)90422-0
    [Crossref] [Google Scholar]
  82. Luigi V, Mascolo G, Roscioli C. 2015.. Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy). . Environ. Sci. Pollut. Res. 22::1405066. https://doi.org/10.1007/s11356-015-4388-8
    [Crossref] [Google Scholar]
  83. Machado KS. 2010.. Determinação de hormônios sexuais femininos na bacia do Alto Iguaçú, Região Metropolitana de Curitiba-PR. MS Thesis , Univ. Fed. Paraná, Curitiba, Braz.:
    [Google Scholar]
  84. Maes HM, Maletz SX, Ratte HT, Hollender J, Schaeffer A. 2014.. Uptake, elimination, and biotransformation of 17α-ethinylestradiol by the freshwater alga Desmodesmus subspicatus. . Environ. Sci. Technol. 48:(20):1235461. https://doi.org/10.1021/es503574z
    [Crossref] [Google Scholar]
  85. Mboula VM, Héquet V, Andrès Y, Gru Y, Colin R, et al. 2015.. Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity. . Appl. Catal. B 162::43744. https://doi.org/10.1016/j.apcatb.2014.05.026
    [Crossref] [Google Scholar]
  86. Minh TLT, Puoc DN, Quoc TD, Ngo HH, Lan CDH. 2016.. Presence of e-EDCs in surface water and effluents of pollution sources in Sai Gon and Dong Nai river basin. . Sustain. Environ. Res. 26:(1):2027. https://doi.org/10.1016/j.serj.2015.09.001
    [Crossref] [Google Scholar]
  87. Morthorst JE, Brande-Lavridsen N, Korsgaard B, Bjerregaard P. 2014.. 17β-Estradiol causes abnormal development in embryos of the viviparous eelpout. . Environ. Sci. Technol. 48::1466876. https://doi.org/10.1021/es5046698
    [Crossref] [Google Scholar]
  88. Nazari E, Suja F. 2016.. Effects of 17β-estradiol (E2) on aqueous organisms and its treatment problem: a review. . Rev. Environ. Health 31:(4):46591. https://doi.org/10.1515/reveh-2016-0040
    [Crossref] [Google Scholar]
  89. Nkoom M, Lu G, Liu J. 2018.. Occurrence and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake, China: a review. . Environ. Sci. Process. Impacts 20::164048. https://doi.org/10.1039/C8EM00327K
    [Crossref] [Google Scholar]
  90. Pawlowski S, Ternes TA, Bonerz M, Rastall AC, Erdinger L, Braunbeck T. 2004.. Estrogenicity of solid phase-extracted water samples from two municipal sewage treatment plant effluents and river Rhine water using the yeast estrogen screen. . Toxicol. In Vitro 18::12938. https://doi.org/10.1016/j.tiv.2003.08.006
    [Crossref] [Google Scholar]
  91. Pelayo S, López-Roldán R, González S, Casado M, Raldúa D, et al. 2011.. A zebrafish scale assay to monitor dioxin-like activity in surface water samples. . Anal. Bioanal. Chem. 401::186169. https://doi.org/10.1007/s00216-011-5288-5
    [Crossref] [Google Scholar]
  92. Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z. 2008.. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. . Sci. Total Environ. 397:(1–3):15866. https://doi.org/10.1016/j.scitotenv.2008.02.059
    [Crossref] [Google Scholar]
  93. Pojana G, Bonfa A, Busetti F, Collarin A, Marcomini A. 2004.. Estrogenic potential of the Venice, Italy, lagoon waters. . Environ. Toxicol. Chem. 23:(8):187480. https://doi.org/10.1897/03-222
    [Crossref] [Google Scholar]
  94. Pojana G, Gomiero A, Jonkers N, Marcomini A. 2007.. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. . Environ. Int. 33:(7):92936. https://doi.org/10.1016/j.envint.2007.05.003
    [Crossref] [Google Scholar]
  95. Purdom CE, Hardiman PA, Bye VVJ, Eno NC, Tyler CR, Sumpter JP. 1994.. Estrogenic effects of effluents from sewage treatment works. . Chem. Ecol. 8:(4):27585. https://doi.org/10.1080/02757549408038554
    [Crossref] [Google Scholar]
  96. Ra JS, Lee SH, Lee J, Kim HY, Lim BJ, et al. 2011.. Occurrence of estrogenic chemicals in South Korean surface waters and municipal wastewaters. . J. Environ. Monit. 13::1019. https://doi.org/10.1039/c0em00204f
    [Crossref] [Google Scholar]
  97. Ray P, Zhao Z, Knowlton K. 2013.. Emerging contaminants in livestock manure: hormones, antibiotics and antibiotic resistance genes. . In Sustainable Animal Agriculture, ed. E Kebreab , pp. 26883. Boston:: CAB Int. https://doi.org/10.1079/9781780640426.0268
    [Google Scholar]
  98. Ribeiro C, Tiritan ME, Rocha E, Rocha MJ. 2009.. Seasonal and spatial distribution of several endocrine-disrupting compounds in the Douro River estuary, Portugal. . Arch. Environ. Contam. Toxicol. 56:(1):111. https://doi.org/10.1007/s00244-008-9158-x
    [Crossref] [Google Scholar]
  99. Robinson BJ, Hui JPM, Soo EC, Hellou J. 2009.. Estrogenic compounds in seawater and sediment from Halifax Harbour, Nova Scotia, Canada. . Environ. Toxicol. Chem. 28:(1):1825. https://doi.org/10.1897/08-203.1
    [Crossref] [Google Scholar]
  100. Rocha MJ, Cruzeiro C, Reis M, Pardal MA, Rocha E. 2014.. Spatial and seasonal distribution of 17 endocrine disruptor compounds in an urban estuary (Mondego River, Portugal): evaluation of the estrogenic load of the area. . Environ. Monit. Assess. 186::333750. https://doi.org/10.1007/s10661-014-3621-0
    [Crossref] [Google Scholar]
  101. Rocha MJ, Cruzeiro C, Reis M, Pardal MA, Rocha E. 2016.. Pollution by endocrine disruptors in a southwest European temperate coastal lagoon (Ria de Aveiro, Portugal). . Environ. Monit. Assess. 188::101. https://doi.org/10.1007/s10661-016-5114-9
    [Crossref] [Google Scholar]
  102. Saeed T, Al-Jandal N, Abusam A, Taqi H, Al-Khabbaz A, Zafar J. 2017.. Sources and levels of endocrine disrupting compounds (EDCs) in Kuwait's coastal areas. . Mar. Pollut. Bull. 118:(1-2):40712. https://doi.org/10.1016/j.marpolbul.2017.03.010
    [Crossref] [Google Scholar]
  103. Schneider A, Friedl M, Potere D. 2009.. A new map of global urban extent from MODIS satellite data. . Environ. Res. Lett. 4:(4):044003. https://doi.org/10.1088/1748-9326/4/4/044003
    [Crossref] [Google Scholar]
  104. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, et al. 2014.. Identifying small molecules via high resolution mass spectrometry: communicating confidence. . Environ. Sci. Technol. 48:(4):209798. https://doi.org/10.1021/es5002105
    [Crossref] [Google Scholar]
  105. Seitzinger SP, Svedin U, Crumley CL, Steffen W, Abdullah SA, et al. 2012.. Planetary stewardship in an urbanizing world: beyond city limits. . Ambio 41:(8):78794. https://doi.org/10.1007/s13280-012-0353-7
    [Crossref] [Google Scholar]
  106. Seto KC, Reenberg A, Boone CG, Fragkias M, Haase D, et al. 2012.. Urban land teleconnections and sustainability. . PNAS 109:(20):768792. https://doi.org/10.1073/pnas.1117622109
    [Crossref] [Google Scholar]
  107. Seto KC, Sánchez-Rodríguez R, Fragkias M. 2010.. The new geography of contemporary urbanization and the environment. . Annu. Rev. Environ. Res. 35:(1):16794. https://doi.org/10.1146/annurev-environ-100809-125336
    [Crossref] [Google Scholar]
  108. Shargil D, Gerstl Z, Fine P, Nitsan I, Kurtzman D. 2015.. Impact of biosolids and wastewater effluent application to agricultural land on steroidal hormone content in lettuce plants. . Sci. Total Environ. 505::35766. https://doi.org/10.1016/j.scitotenv.2014.09.100
    [Crossref] [Google Scholar]
  109. Shi J, Fujisawa S, Nakai S, Hosomi M. 2004.. Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. . Water Res. 38::232330. https://doi.org/10.1016/j.watres.2004.02.022
    [Crossref] [Google Scholar]
  110. Shi J, Liu X, Chen Q, Zhang H. 2014.. Spatial and seasonal distributions of estrogens and bisphenol A in the Yangtze River Estuary and the adjacent East China Sea. . Chemosphere 111::33643. https://doi.org/10.1016/j.chemosphere.2014.04.046
    [Crossref] [Google Scholar]
  111. Shore LS, Shemesh M. 2003.. Naturally produced steroid hormones and their release into the environment. . Pure Appl. Chem. 75:(11–12):185971. https://doi.org/10.1351/pac200375111859
    [Crossref] [Google Scholar]
  112. Snyder SA, Keith TL, Verbrugge DA, Snyder EM, Gross TS, et al. 1999.. Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. . Environ. Sci. Technol. 33::281420. https://doi.org/10.1021/es981294f
    [Crossref] [Google Scholar]
  113. Sodré FF, Montagner CC, Locatelli MAF, Jardim WF. 2007.. Ocorrência de interferentes endócrinos e produtos farmacêuticos em águas superficiais da região de Campinas (SP, Brasil). . J. Braz. Soc. Ecotoxicol. 2:(2):18796
    [Google Scholar]
  114. Sornalingam K, McDonagh AM, Zhou J. 2016.. Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: progress and future challenges. . Sci. Total Environ. 550::20924. https://doi.org/10.1016/j.scitotenv.2016.01.086
    [Crossref] [Google Scholar]
  115. Sosa-Ferrera Z, Mahugo-Santana C, Santana-Rodríguez JJ. 2013.. Analytical methodologies for the determination of endocrine disrupting compounds in biological and environmental samples. . BioMed. Res. Int. 2013::674838. https://doi.org/10.1155/2013/674838
    [Crossref] [Google Scholar]
  116. Sun L, Yong W, Chu X, Lin JM. 2009.. Simultaneous determination of 15 steroidal oral contraceptives in water using solid-phase disk extraction followed by high performance liquid chromatography–tandem mass spectrometry. . J. Chromatogr. A 1216:(28):541623. https://doi.org/10.1016/j.chroma.2009.05.041
    [Crossref] [Google Scholar]
  117. Tan R, Liu R, Li B, Liu X, Lo Z. 2018.. Typical endocrine disrupting compounds in rivers of northeast china: occurrence, partitioning, and risk assessment. . Arch. Environ. Contam. Toxicol. 75::21323. https://doi.org/10.1007/s00244-017-0482-x
    [Crossref] [Google Scholar]
  118. Tang P, Sun Q, Suo Z, Zhao L, Yang H, et al. 2018.. Rapid and efficient removal of estrogenic pollutants from water by using beta- and gamma-cyclodextrin polymers. . Chem. Eng. J. 344::51423. https://doi.org/10.1016/j.cej.2018.03.127
    [Crossref] [Google Scholar]
  119. Tang Z, Liu Z, Wang H, Dang Z, Liu Y. 2021.. A review of 17α-ethynylestradiol (EE2) in surface water across 32 countries: sources, concentrations, and potential estrogenic effects. . J. Environ. Manag. 292::112804. https://doi.org/10.1016/j.jenvman.2021.112804
    [Crossref] [Google Scholar]
  120. Torres NH, Aguiar MM, Ferreira LF-R, Americo JHP, Machado AM, et al. 2015.. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna. . Environ. Monit. Assess. 187::379. https://doi.org/10.1007/s10661-015-4626-z
    [Crossref] [Google Scholar]
  121. Truter JC, van Wyl JH, Oberholster PJ, Botha A-M, de Klerk AR. 2016.. An in vitro and in vivo assessment of endocrine disruptive activity in a major South African river. . Water Air Soil Pollut. 227::54. https://doi.org/10.1007/s11270-016-2748-8
    [Crossref] [Google Scholar]
  122. Tsuchiya Y, Nakajima M, Yokoi T. 2005.. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. . Cancer Lett. 227:(2):11524. https://doi.org/10.1016/j.canlet.2004.10.007
    [Crossref] [Google Scholar]
  123. UN. 2015.. World population prospects: the 2015 revision, key findings and advance tables. Rep. ESA/P/WP.241, 2015 Rev. , Popul. Div., Dep. Econ. Soc. Aff., UN, New York:
    [Google Scholar]
  124. Valdés ME, Marino DJ, Wunderlin DA, Somoza GM, Ronco AE, Carriquiriborde P. 2015.. Screening concentration of E1, E2 and EE2 in sewage effluents and surface waters of the ``Pampas'' region and the ``Río de la Plata'' estuary (Argentina). . Bull. Environ. Contam. Toxicol. 94:(1):2933. https://doi.org/10.1007/s00128-014-1417-0
    [Crossref] [Google Scholar]
  125. Vallejo A, Prieto A, Moeder M, Usobiaga A, Zuloaga O, et al. 2013.. Calibration and field test of the Polar Organic Chemical Integrative Samplers for the determination of 15 endocrine disrupting compounds in wastewater and river water with special focus on performance reference compounds (PRC). . Water Res. 47:(8):285162. https://doi.org/10.1016/j.watres.2013.02.049
    [Crossref] [Google Scholar]
  126. Voloshenko-Rossin A, Gasser G, Cohen K, Gun J, Cumbal-Flores L, et al. 2015.. Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro-Guayllabamba-Esmeraldas Rivers. . Environ. Sci. Process. Impacts 17:(1):4153. https://doi.org/10.1039/c4em00394b
    [Crossref] [Google Scholar]
  127. Wang L, Ying G-G, Zhao J-L, Liu S, Yang B, et al. 2011.. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. . Environ. Pollut. 159:(1):14856. https://doi.org/10.1016/j.envpol.2010.09.017
    [Crossref] [Google Scholar]
  128. Wang S, Zhu Z, He J, Yue X, Pan J, Wang Z. 2018.. Steroidal and phenolic endocrine disrupting chemicals (EDCs) in surface water of Bahe River, China: distribution, bioaccumulation, risk assessment and estrogenic effect on Hemiculter leucisculus. . Environ. Pollut. 243:(Part A):10314. https://doi.org/10.1016/j.envpol.2018.08.063
    [Crossref] [Google Scholar]
  129. Wang Y, Wang Q, Hu L, Lu G, Li Y. 2015.. Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China. . Environ. Geochem. Health 37::14756. https://doi.org/10.1007/s10653-014-9637-0
    [Crossref] [Google Scholar]
  130. Whidbey CM, Daumit KE, Nguyen T-H, Ashworth DD, Davis JCC, Latch DE. 2012.. Photochemical induced changes of in vitro estrogenic activity of steroid hormones. . Water Res. 46:(16):528796. https://doi.org/10.1016/j.watres.2012.07.016
    [Crossref] [Google Scholar]
  131. Williams M, Kookana RS, Mehta A, Yadav SK, Tailor BL, Maheshwari B. 2019.. Emerging contaminants in a river receiving untreated wastewater from an Indian urban centre. . Sci. Total Environ. 647::125665. https://doi.org/10.1016/j.scitotenv.2018.08.084
    [Crossref] [Google Scholar]
  132. Xu W, Yan W, Huang W, Miao L, Zhong L. 2014.. Endocrine-disrupting chemicals in the Pearl River Delta and coastal environment: sources, transfer, and implications. . Environ. Geochem. Health 36:(6):1095104. https://doi.org/10.1007/s10653-014-9618-3
    [Crossref] [Google Scholar]
  133. Xu Y, Luo F, Pal A, Gin KY-H, Reinhard M. 2011.. Occurrence of emerging organic contaminants in a tropical urban catchment in Singapore. . Chemosphere 83:(7):96369. https://doi.org/10.1016/j.chemosphere.2011.02.029
    [Crossref] [Google Scholar]
  134. Ying G-G, Kookana RS, Kumar A. 2008.. Fate of estrogens and xenestrogens in four sewage treatment plants with different technologies. . Environ. Toxicol. Chem. 27:(1):8794. https://doi.org/10.1897/07-046.1
    [Crossref] [Google Scholar]
  135. Ying G-G, Kookana RS, Ru Y-J. 2002.. Occurrence and fate of hormone steroids in the environment. . Environ. Int. 28:(6):54551. https://doi.org/10.1016/S0160-4120(02)00075-2
    [Crossref] [Google Scholar]
  136. Yu Y, Huang Q, Wang Z, Zhang K, Tang C, et al. 2011.. Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. . J. Environ. Monit. 13::87178. https://doi.org/10.1039/c0em00602e
    [Crossref] [Google Scholar]
  137. Zhang C, Wang C, Niu L, Cai W. 2016.. Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: a review. . Crit. Rev. Environ. Sci. Technol. 468:(1):159. https://doi.org/10.1080/10643389.2015.1061881
    [Crossref] [Google Scholar]
  138. Zhang L-P, Wang X-H, Ya M-L, Wu Y-L, Li Y-Y, Zhang Z. 2014.. Levels of endocrine disrupting compounds in South China Sea. . Mar. Pollut. Bull. 85:(2):62833. https://doi.org/10.1016/j.marpolbul.2013.12.040
    [Crossref] [Google Scholar]
  139. Zhang Y, Zhou JL, Ning B. 2007.. Photodegradation of estrone and 17β-estradiol in water. . Water Res. 41:(1):1926. https://doi.org/10.1016/j.watres.2006.09.020
    [Crossref] [Google Scholar]
  140. Zhao J-L, Ying G-G, Chen F, Liu Y-S, Wang L, et al. 2011.. Estrogenic activity profiles and risks in surface waters and sediments of the Pearl River system in South China assessed by chemical analysis and in vitro bioassay. . J. Environ. Monit. 13::81321. https://doi.org/10.1039/c0em00473a
    [Crossref] [Google Scholar]
  141. Zhou X, Lian Z, Wang J, Tan L, Zhao Z. 2011.. Distribution of estrogens along Licun River in Qingdao, China. . Procedia Environ. Sci. 10:(C):187680. https://doi.org/10.1016/j.proenv.2011.09.293
    [Crossref] [Google Scholar]
  142. Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, et al. 2012.. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. . Endocrinology 153::4097110. https://doi.org/10.1210/en.2012-1422
    [Crossref] [Google Scholar]
  143. Zuo Y, Zhang K, Zhou S. 2013.. Determination of estrogenic steroids and microbial and photochemical degradation of 17α-ethinylestradiol (EE2) in lake surface, water, a case study. . Environ. Sci. Process. Impacts 15::152935. https://doi.org/10.1039/c3em00239j
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-032123-025855
Loading
/content/journals/10.1146/annurev-marine-032123-025855
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error