1932

Abstract

Ocean metabolism constitutes a complex, multiscale ensemble of biochemical reaction networks harbored within and between the boundaries of a myriad of organisms. Gaining a quantitative understanding of how these networks operate requires mathematical tools capable of solving in silico the resource allocation problem each cell faces in real life. Toward this goal, stoichiometric modeling of metabolism, such as flux balance analysis, has emerged as a powerful computational tool for unraveling the intricacies of metabolic processes in microbes, microbial communities, and multicellular organisms. Here, we provide an overview of this approach and its applications, future prospects, and practical considerations in the context of marine sciences. We explore how flux balance analysis has been employed to study marine organisms, help elucidate nutrient cycling, and predict metabolic capabilities within diverse marine environments, and highlight future prospects for this field in advancing our knowledge of marine ecosystems and their sustainability.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032123-033718
2025-01-16
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-032123-033718.html?itemId=/content/journals/10.1146/annurev-marine-032123-033718&mimeType=html&fmt=ahah

Literature Cited

  1. Agmon E, Spangler RK, Skalnik CJ, Poole W, Peirce SM, et al. 2022.. Vivarium: an interface and engine for integrative multiscale modeling in computational biology. . Bioinformatics 38:(7):197279
    [Crossref] [Google Scholar]
  2. Ahmad A, Pathania R, Srivastava S. 2020a.. Biochemical characteristics and a genome-scale metabolic model of an Indian euryhaline cyanobacterium with high polyglucan content. . Metabolites 10:(5):177
    [Crossref] [Google Scholar]
  3. Ahmad A, Tiwari A, Srivastava S. 2020b.. A genome-scale metabolic model of Thalassiosira pseudonana CCMP 1335 for a systems-level understanding of its metabolism and biotechnological potential. . Microorganisms 8:(9):1396
    [Crossref] [Google Scholar]
  4. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, et al. 2018.. KBase: the United States Department of Energy Systems Biology Knowledgebase. . Nat. Biotechnol. 36:(7):56669
    [Crossref] [Google Scholar]
  5. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. 2008.. The RAST Server: rapid annotations using subsystems technology. . BMC Genom. 9::75
    [Crossref] [Google Scholar]
  6. Baroukh C, Muñoz-Tamayo R, Steyer J-P, Bernard O. 2015.. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production. . Metab. Eng. 30::4960
    [Crossref] [Google Scholar]
  7. Baroukh C, Steyer JP, Bernard O, Chachuat B. 2016.. Dynamic flux balance analysis of the metabolism of microalgae under a diurnal light cycle. . IFAC-PapersOnLine 49:(7):79196
    [Crossref] [Google Scholar]
  8. Bauer E, Zimmermann J, Baldini F, Thiele I, Kaleta C. 2017.. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. . PLOS Comput. Biol. 13:(5):e1005544
    [Crossref] [Google Scholar]
  9. Beard DA, Liang S-D, Qian H. 2002.. Energy balance for analysis of complex metabolic networks. . Biophys. J. 83:(1):7986
    [Crossref] [Google Scholar]
  10. Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, et al. 2007.. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. . PNAS 104:(31):1266368
    [Crossref] [Google Scholar]
  11. Bekiaris PS, Klamt S. 2020.. Automatic construction of metabolic models with enzyme constraints. . BMC Bioinform. 21:(1):19
    [Crossref] [Google Scholar]
  12. Bernstein DB, Akkas B, Price MN, Arkin AP. 2023.. Evaluating E. coli genome-scale metabolic model accuracy with high-throughput mutant fitness data. . Mol. Syst. Biol. 19:(12):e11566
    [Crossref] [Google Scholar]
  13. Bernstein DB, Dewhirst FE, Segrè D. 2019.. Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome. . eLife 8::e39733
    [Crossref] [Google Scholar]
  14. Bernstein DB, Sulheim S, Almaas E, Segrè D. 2021.. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. . Genome Biol. 22:(1):64
    [Crossref] [Google Scholar]
  15. Blazier AS, Papin JA. 2012.. Integration of expression data in genome-scale metabolic network reconstructions. . Front. Physiol. 3::299
    [Crossref] [Google Scholar]
  16. Borer B, Ataman M, Hatzimanikatis V, Or D. 2019.. Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). . PLOS Comput. Biol. 15:(6):e1007127
    [Crossref] [Google Scholar]
  17. Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso J-P, et al. 2018.. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. . Glob. Change Biol. 24:(6):223961
    [Crossref] [Google Scholar]
  18. Boyle NR, Morgan JA. 2009.. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. . BMC Syst. Biol. 3::4
    [Crossref] [Google Scholar]
  19. Brisson V, Mayali X, Bowen B, Golini A, Thelen M, et al. 2021.. Identification of effector metabolites using exometabolite profiling of diverse microalgae. . mSystems 6:(6):e00835-21
    [Crossref] [Google Scholar]
  20. Broddrick JT, Rubin BE, Welkie DG, Du N, Mih N, et al. 2016.. Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis. . PNAS 113:(51):E834453
    [Crossref] [Google Scholar]
  21. Broddrick JT, Welkie DG, Jallet D, Golden SS, Peers G, Palsson BO. 2019.. Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes. . Metab. Eng. 52::4256
    [Crossref] [Google Scholar]
  22. Burgard AP, Pharkya P, Maranas CD. 2003.. OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. . Biotechnol. Bioeng. 84:(6):64757
    [Crossref] [Google Scholar]
  23. Casey JR, Boiteau RM, Engqvist MKM, Finkel ZV, Li G, et al. 2022.. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. . Sci. Adv. 8:(3):eabl4930
    [Crossref] [Google Scholar]
  24. Casey JR, Mardinoglu A, Nielsen J, Karl DM. 2016.. Adaptive evolution of phosphorus metabolism in Prochlorococcus. . mSystems 1:(6):e00065-16
    [Crossref] [Google Scholar]
  25. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, et al. 2020.. The MetaCyc database of metabolic pathways and enzymes—a 2019 update. . Nucleic Acids Res. 48:(D1):D44553
    [Crossref] [Google Scholar]
  26. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, et al. 2019.. Scientists’ warning to humanity: microorganisms and climate change. . Nat. Rev. Microbiol. 17:(9):56986
    [Crossref] [Google Scholar]
  27. Chacón JM, Möbius W, Harcombe WR. 2018.. The spatial and metabolic basis of colony size variation. . ISME J. 12:(3):66980
    [Crossref] [Google Scholar]
  28. Chang RL, Ghamsari L, Manichaikul A, Hom EFY, Balaji S, et al. 2011.. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. . Mol. Syst. Biol. 7:(1):518
    [Crossref] [Google Scholar]
  29. Chapman SP, Paget CM, Johnson GN, Schwartz J-M. 2015.. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii. . Front. Plant Sci. 6::474
    [Crossref] [Google Scholar]
  30. Coppens L, Tschirhart T, Leary DH, Colston SM, Compton JR, et al. 2023.. Vibrio natriegens genome-scale modeling reveals insights into halophilic adaptations and resource allocation. . Mol. Syst. Biol. 19:(4):e10523
    [Crossref] [Google Scholar]
  31. de Oliveira Dal'Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK. 2010.. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. . Plant Physiol. 152:(2):57989
    [Crossref] [Google Scholar]
  32. Dekel E, Alon U. 2005.. Optimality and evolutionary tuning of the expression level of a protein. . Nature 436:(7050):58892
    [Crossref] [Google Scholar]
  33. Domeignoz-Horta LA, Pold G, Liu X-JA, Frey SD, Melillo JM, DeAngelis KM. 2020.. Microbial diversity drives carbon use efficiency in a model soil. . Nat. Commun. 11:(1):3684
    [Crossref] [Google Scholar]
  34. Du H, Pan J, Zou D, Huang Y, Liu Y, Li M. 2022.. Microbial active functional modules derived from network analysis and metabolic interactions decipher the complex microbiome assembly in mangrove sediments. . Microbiome 10:(1):224
    [Crossref] [Google Scholar]
  35. Dufault-Thompson K, Jian H, Cheng R, Li J, Wang F, Zhang Y. 2017.. A genome-scale model of Shewanella piezotolerans simulates mechanisms of metabolic diversity and energy conservation. . mSystems 2:(2):e00165-16
    [Crossref] [Google Scholar]
  36. Dukovski I, Bajić D, Chacón JM, Quintin M, Vila JCC, et al. 2021.. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). . Nat. Protoc. 16:(11):503082
    [Crossref] [Google Scholar]
  37. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. 2013.. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. . BMC Syst. Biol. 7::74
    [Crossref] [Google Scholar]
  38. Falkowski PG, Fenchel T, Delong EF. 2008.. The microbial engines that drive Earth's biogeochemical cycles. . Science 320:(5879):103439
    [Crossref] [Google Scholar]
  39. Faure L, Mollet B, Liebermeister W, Faulon J-L. 2023.. A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models. . Nat. Commun. 14:(1):4669
    [Crossref] [Google Scholar]
  40. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ. 2009.. Reconstruction of biochemical networks in microorganisms. . Nat. Rev. Microbiol. 7:(2):12943
    [Crossref] [Google Scholar]
  41. Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R. 2013.. Glycolytic strategy as a tradeoff between energy yield and protein cost. . PNAS 110:(24):1003944
    [Crossref] [Google Scholar]
  42. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. 2007.. Emergent biogeography of microbial communities in a model ocean. . Science 315:(5820):184346
    [Crossref] [Google Scholar]
  43. Fondi M, Maida I, Perrin E, Mellera A, Mocali S, et al. 2015.. Genome-scale metabolic reconstruction and constraint-based modelling of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. . Environ. Microbiol. 17:(3):75166
    [Crossref] [Google Scholar]
  44. Frioux C, Singh D, Korcsmaros T, Hildebrand F. 2020.. From bag-of-genes to bag-of-genomes: metabolic modelling of communities in the era of metagenome-assembled genomes. . Comput. Struct. Biotechnol. J. 18::172234
    [Crossref] [Google Scholar]
  45. Fuentealba P, Aros C, Latorre Y, Martínez I, Marshall S, et al. 2017.. Genome-scale metabolic reconstruction for the insidious bacterium in aquaculture Piscirickettsia salmonis. . Bioresour. Technol. 223::10514
    [Crossref] [Google Scholar]
  46. Gao C, Yang J, Hao T, Li J, Sun J. 2021.. Reconstruction of Litopenaeus vannamei genome-scale metabolic network model and nutritional requirements analysis of different shrimp commercial varieties. . Front. Genet. 12::658109
    [Crossref] [Google Scholar]
  47. Gardner JJ, Boyle NR. 2017.. The use of genome-scale metabolic network reconstruction to predict fluxes and equilibrium composition of N-fixing versus C-fixing cells in a diazotrophic cyanobacterium, Trichodesmium erythraeum. . BMC Syst. Biol. 11:(1):4
    [Crossref] [Google Scholar]
  48. Giannari D, Ho CH, Mahadevan R. 2021.. A gap-filling algorithm for prediction of metabolic interactions in microbial communities. . PLOS Comput. Biol. 17:(11):e1009060
    [Crossref] [Google Scholar]
  49. Goldenfeld N, Woese C. 2011.. Life is physics: evolution as a collective phenomenon far from equilibrium. . Annu. Rev. Condens. Matter Phys. 2::37599
    [Crossref] [Google Scholar]
  50. Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, et al. 2018.. Emergent simplicity in microbial community assembly. . Science 361:(6401):46974
    [Crossref] [Google Scholar]
  51. Gonzalez O, Gronau S, Falb M, Pfeiffer F, Mendoza E, et al. 2008.. Reconstruction, modeling and analysis of Halobacterium salinarum R-1 metabolism. . Mol. Biosyst. 4:(2):14859
    [Crossref] [Google Scholar]
  52. Goyal N, Widiastuti H, Karimi IA, Zhou Z. 2014.. A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. . Mol. Biosyst. 10:(5):104354
    [Crossref] [Google Scholar]
  53. Hanna EM, Zhang X, Eide M, Fallahi S, Furmanek T, et al. 2020.. ReCodLiver0.9: overcoming challenges in genome-scale metabolic reconstruction of a non-model species. . Front. Mol. Biosci. 7::591406
    [Crossref] [Google Scholar]
  54. Harcombe WR, Delaney NF, Leiby N, Klitgord N, Marx CJ. 2013.. The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum. . PLOS Comput. Biol. 9:(6):e1003091
    [Crossref] [Google Scholar]
  55. Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, et al. 2014.. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. . Cell Rep. 7:(4):110415
    [Crossref] [Google Scholar]
  56. He L, Wu SG, Wan N, Reding AC, Tang YJ. 2015.. Simulating cyanobacterial phenotypes by integrating flux balance analysis, kinetics, and a light distribution function. . Microb. Cell Fact. 14::206
    [Crossref] [Google Scholar]
  57. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, et al. 2019.. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. . Nat. Protoc. 14:(3):639702
    [Crossref] [Google Scholar]
  58. Hellweger FL, Clegg RJ, Clark JR, Plugge CM, Kreft J-U. 2016.. Advancing microbial sciences by individual-based modelling. . Nat. Rev. Microbiol. 14:(7):46171
    [Crossref] [Google Scholar]
  59. Henry CS, Bernstein HC, Weisenhorn P, Taylor RC, Lee J-Y, et al. 2016.. Microbial community metabolic modeling: a community data-driven network reconstruction. . J. Cell. Physiol. 231:(11):233945
    [Crossref] [Google Scholar]
  60. Herrmann HA, Dyson BC, Vass L, Johnson GN, Schwartz J-M. 2019.. Flux sampling is a powerful tool to study metabolism under changing environmental conditions. . npj Syst. Biol. Appl. 5::32
    [Crossref] [Google Scholar]
  61. Hill PR, Kumar A, Temimi M, Bull DR. 2020.. HABNet: machine learning, remote sensing-based detection of harmful algal blooms. . IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13::322939
    [Crossref] [Google Scholar]
  62. Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, et al. 2015.. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. . Mol. Syst. Biol. 11:(1):784
    [Crossref] [Google Scholar]
  63. Ibarra RU, Edwards JS, Palsson BO. 2002.. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. . Nature 420:(6912):18689
    [Crossref] [Google Scholar]
  64. Iffland-Stettner A, Okano H, Gralka M, Guessous G, Amarnath K, et al. 2023.. A genome-scale metabolic model of marine heterotroph Vibrio splendidus strain 1A01. . mSystems 8:(2):e00377-22
    [Crossref] [Google Scholar]
  65. Imam S, Schäuble S, Valenzuela J, López García de Lomana A, Carter W, et al. 2015.. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. . Plant J. 84:(6):123956
    [Crossref] [Google Scholar]
  66. Inomura K, Omta AW, Talmy D, Bragg J, Deutsch C, Follows MJ. 2020.. A mechanistic model of macromolecular allocation, elemental stoichiometry, and growth rate in phytoplankton. . Front. Microbiol. 11::86
    [Crossref] [Google Scholar]
  67. Japhalekar K, Srinivasan S, Viswanathan G, Venkatesh KV. 2022.. Flux balance analysis for overproduction of organic acids by Synechocystis sp. PCC 6803 under dark anoxic condition. . Biochem. Eng. J. 178::108297
    [Crossref] [Google Scholar]
  68. Jing LS, Shah FFM, Mohamad MS, Hamran NL, Salleh AHM, et al. 2014.. Database and tools for metabolic network analysis. . Biotechnol. Bioprocess Eng. 19:(4):56885
    [Crossref] [Google Scholar]
  69. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016.. KEGG as a reference resource for gene and protein annotation. . Nucleic Acids Res. 44:(D1):D45762
    [Crossref] [Google Scholar]
  70. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, et al. 2012.. A whole-cell computational model predicts phenotype from genotype. . Cell 150:(2):389401
    [Crossref] [Google Scholar]
  71. Kaste JAM, Shachar-Hill Y. 2024.. Model validation and selection in metabolic flux analysis and flux balance analysis. . Biotechnol. Prog. 40:(1):e3413
    [Crossref] [Google Scholar]
  72. Khandelwal RA, Olivier BG, Röling WFM, Teusink B, Bruggeman FJ. 2013.. Community flux balance analysis for microbial consortia at balanced growth. . PLOS ONE 8:(5):e64567
    [Crossref] [Google Scholar]
  73. Kim HH, Laufkötter C, Lovato T, Doney SC, Ducklow HW. 2023.. Projected 21st-century changes in marine heterotrophic bacteria under climate change. . Front. Microbiol. 14::1049579
    [Crossref] [Google Scholar]
  74. Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, et al. 2011.. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. . Mol. Syst. Biol. 7:(1):460
    [Crossref] [Google Scholar]
  75. Kim J, Fabris M, Baart G, Kim MK, Goossens A, et al. 2016.. Flux balance analysis of primary metabolism in the diatom Phaeodactylum tricornutum. . Plant J. 85:(1):16176
    [Crossref] [Google Scholar]
  76. Kim M, Rai N, Zorraquino V, Tagkopoulos I. 2016.. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. . Nat. Commun. 7:(1):13090
    [Crossref] [Google Scholar]
  77. King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO. 2015.. Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. . PLOS Comput. Biol. 11:(8):e1004321
    [Crossref] [Google Scholar]
  78. Klanchui A, Khannapho C, Phodee A, Cheevadhanarak S, Meechai A. 2012.. iAK692: a genome-scale metabolic model of Spirulina platensis C1. . BMC Syst. Biol. 6::71
    [Crossref] [Google Scholar]
  79. Klitgord N, Segrè D. 2010a.. Environments that induce synthetic microbial ecosystems. . PLOS Comput. Biol. 6:(11):e1001002
    [Crossref] [Google Scholar]
  80. Klitgord N, Segrè D. 2010b.. The importance of compartmentalization in metabolic flux models: yeast as an ecosystem of organelles. . Genome Inform. 22::4155
    [Google Scholar]
  81. Knies D, Wittmüß P, Appel S, Sawodny O, Ederer M, Feuer R. 2015.. Modeling and simulation of optimal resource management during the diurnal cycle in Emiliania huxleyi by genome-scale reconstruction and an extended flux balance analysis approach. . Metabolites 5:(4):65976
    [Crossref] [Google Scholar]
  82. Knoop H, Zilliges Y, Lockau W, Steuer R. 2010.. The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. . Plant Physiol. 154:(1):41022
    [Crossref] [Google Scholar]
  83. Kotte O, Zaugg JB, Heinemann M. 2010.. Bacterial adaptation through distributed sensing of metabolic fluxes. . Mol. Syst. Biol. 6::355
    [Crossref] [Google Scholar]
  84. Labena AA, Gao Y-Z, Dong C, Hua H-L, Guo F-B. 2018.. Metabolic pathway databases and model repositories. . Quant. Biol. 6:(1):3039
    [Crossref] [Google Scholar]
  85. Lavoie M, Saint-Béat B, Strauss J, Guérin S, Allard A, et al. 2020.. Genome-scale metabolic reconstruction and in silico perturbation analysis of the polar diatom Fragilariopsis cylindrus predicts high metabolic robustness. . Biology 9:(2):30
    [Crossref] [Google Scholar]
  86. Lennon JT, Abramoff RZ, Allison SD, Burckhardt RM, DeAngelis KM, et al. 2024.. Priorities, opportunities, and challenges for integrating microorganisms into Earth system models for climate change prediction. . mBio 15:(5):e0045524
    [Crossref] [Google Scholar]
  87. Levering J, Broddrick J, Dupont CL, Peers G, Beeri K, et al. 2016.. Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom. . PLOS ONE 11:(5):e0155038
    [Crossref] [Google Scholar]
  88. Lewis LA, Perisin MA, Tobias AV. 2020.. Metabolic modeling of Pseudomonas putida to understand and improve the breakdown of plastic waste. Rep. ARL-TR-9097 , CCDC Army Res. Lab., Adelphi, MD:
    [Google Scholar]
  89. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, et al. 2010.. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. . Mol. Syst. Biol. 6::390
    [Crossref] [Google Scholar]
  90. Li F, Xie W, Yuan Q, Luo H, Li P, et al. 2018.. Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. . AMB Express 8:(1):106
    [Crossref] [Google Scholar]
  91. Li S, Pozhitkov A, Ryan RA, Manning CS, Brown-Peterson N, Brouwer M. 2010.. Constructing a fish metabolic network model. . Genome Biol. 11:(11):R115
    [Crossref] [Google Scholar]
  92. Lipsman V, Shlakhter O, Rocha J, Segev E. 2024.. Bacteria contribute exopolysaccharides to an algal-bacterial joint extracellular matrix. . npj Biofilms Microbiomes 10:(1):36
    [Crossref] [Google Scholar]
  93. Long CP, Antoniewicz MR. 2019.. High-resolution 13C metabolic flux analysis. . Nat. Protoc. 14:(10):285677
    [Crossref] [Google Scholar]
  94. Ma J, Yu MK, Fong S, Ono K, Sage E, et al. 2018.. Using deep learning to model the hierarchical structure and function of a cell. . Nat. Methods 15:(4):29098
    [Crossref] [Google Scholar]
  95. Maarleveld TR, Khandelwal RA, Olivier BG, Teusink B, Bruggeman FJ. 2013.. Basic concepts and principles of stoichiometric modeling of metabolic networks. . Biotechnol. J. 8:(9):9971008
    [Crossref] [Google Scholar]
  96. Machado D, Herrgård M. 2014.. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. . PLOS Comput. Biol. 10:(4):e1003580
    [Crossref] [Google Scholar]
  97. Mahadevan R, Edwards JS, Doyle FJ III. 2002.. Dynamic flux balance analysis of diauxic growth in Escherichia coli. . Biophys. J. 83:(3):133140
    [Crossref] [Google Scholar]
  98. Mahadevan R, Schilling CH. 2003.. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. . Metab. Eng. 5:(4):26476
    [Crossref] [Google Scholar]
  99. Manzoni S, Čapek P, Porada P, Thurner M, Winterdahl M, et al. 2018.. Reviews and syntheses: carbon use efficiency from organisms to ecosystems—definitions, theories, and empirical evidence. . Biogeosciences 15:(19):592949
    [Crossref] [Google Scholar]
  100. Marsland R III, Cui W, Mehta P. 2020.. A minimal model for microbial biodiversity can reproduce experimentally observed ecological patterns. . Sci. Rep. 10:(1):3308
    [Crossref] [Google Scholar]
  101. Martins Conde PDR, Sauter T, Pfau T. 2016.. Constraint based modeling going multicellular. . Front. Mol. Biosci. 3::3
    [Crossref] [Google Scholar]
  102. Mayerhofer MM, Eigemann F, Lackner C, Hoffmann J, Hellweger FL. 2021.. Dynamic carbon flux network of a diverse marine microbial community. . ISME Commun. 1:(1):50
    [Crossref] [Google Scholar]
  103. McDonald AG, Boyce S, Tipton KF. 2009.. ExplorEnz: the primary source of the IUBMB enzyme list. . Nucleic Acids Res. 37:(Suppl. 1):D59397
    [Crossref] [Google Scholar]
  104. Molversmyr H, Øyås O, Rotnes F, Vik JO. 2023.. Extracting functionally accurate context-specific models of Atlantic salmon metabolism. . npj Syst. Biol. Appl. 9:(1):19
    [Crossref] [Google Scholar]
  105. Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, et al. 2022.. Microbial metabolites in the marine carbon cycle. . Nat. Microbiol. 7:(4):50823
    [Crossref] [Google Scholar]
  106. Mori M, Hwa T, Martin OC, De Martino A, Marinari E. 2016.. Constrained allocation flux balance analysis. . PLOS Comput. Biol. 12:(6):e1004913
    [Crossref] [Google Scholar]
  107. Mori M, Marinari E, De Martino A. 2019.. A yield-cost tradeoff governs Escherichia coli’s decision between fermentation and respiration in carbon-limited growth. . npj Syst. Biol. Appl. 5::16
    [Crossref] [Google Scholar]
  108. Morowitz HJ. 1979.. Energy Flow in Biology. Woodbridge, CT:: Ox Bow
    [Google Scholar]
  109. Nadell CD, Drescher K, Foster KR. 2016.. Spatial structure, cooperation and competition in biofilms. . Nat. Rev. Microbiol. 14:(9):589600
    [Crossref] [Google Scholar]
  110. Nguyen TTH, Zakem EJ, Ebrahimi A, Schwartzman J, Caglar T, et al. 2022.. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. . Nat. Commun. 13:(1):1657
    [Crossref] [Google Scholar]
  111. Nielsen J. 2003.. It is all about metabolic fluxes. . J. Bacteriol. 185:(24):703135
    [Crossref] [Google Scholar]
  112. Novak M, Pfeiffer T, Lenski RE, Sauer U, Bonhoeffer S. 2006.. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. . Am. Nat. 168:(2):24251
    [Crossref] [Google Scholar]
  113. O'Brien EJ, Monk JM, Palsson BO. 2015.. Using genome-scale models to predict biological capabilities. . Cell 161:(5):97187
    [Crossref] [Google Scholar]
  114. Ofaim S, Sulheim S, Almaas E, Sher D, Segrè D. 2021.. Dynamic allocation of carbon storage and nutrient-dependent exudation in a revised genome-scale model of Prochlorococcus. . Front. Genet. 12::586293
    [Crossref] [Google Scholar]
  115. Ong WK, Vu TT, Lovendahl KN, Llull JM, Serres MH, et al. 2014.. Comparisons of Shewanella strains based on genome annotations, modeling, and experiments. . BMC Syst. Biol. 8::31
    [Crossref] [Google Scholar]
  116. Orth JD, Palsson BØ. 2010.. Systematizing the generation of missing metabolic knowledge. . Biotechnol. Bioeng. 107:(3):40312
    [Crossref] [Google Scholar]
  117. Pacheco AR, Moel M, Segrè D. 2019.. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. . Nat. Commun. 10:(1):103
    [Crossref] [Google Scholar]
  118. Pacheco AR, Segrè D. 2021.. An evolutionary algorithm for designing microbial communities via environmental modification. . J. R. Soc. Interface 18:(179):20210348
    [Crossref] [Google Scholar]
  119. Pandey V, Hadadi N, Hatzimanikatis V. 2019.. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models. . PLOS Comput. Biol. 15:(5):e1007036
    [Crossref] [Google Scholar]
  120. Papoutsakis ET. 1984.. Equations and calculations for fermentations of butyric acid bacteria. . Biotechnol. Bioeng. 26:(2):17487
    [Crossref] [Google Scholar]
  121. Papp B, Pál C, Hurst LD. 2004.. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. . Nature 429:(6992):66164
    [Crossref] [Google Scholar]
  122. Pardelha F, Albuquerque MGE, Reis MAM, Dias JML, Oliveira R. 2012.. Flux balance analysis of mixed microbial cultures: application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty acids. . J. Biotechnol. 162:(2–3):33645
    [Crossref] [Google Scholar]
  123. Pfeiffer T, Schuster S, Bonhoeffer S. 2001.. Cooperation and competition in the evolution of ATP-producing pathways. . Science 292:(5516):5047
    [Crossref] [Google Scholar]
  124. Phalak P, Chen J, Carlson RP, Henson MA. 2016.. Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species. . BMC Syst. Biol. 10:(1):90
    [Crossref] [Google Scholar]
  125. Pharkya P, Burgard AP, Maranas CD. 2004.. OptStrain: a computational framework for redesign of microbial production systems. . Genome Res. 14:(11):236776
    [Crossref] [Google Scholar]
  126. Pinchuk GE, Hill EA, Geydebrekht OV, De Ingeniis J, Zhang X, et al. 2010.. Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. . PLOS Comput. Biol. 6:(6):e1000822
    [Crossref] [Google Scholar]
  127. Pramanik J, Keasling JD. 1997.. Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. . Biotechnol. Bioeng. 56:(4):398421
    [Crossref] [Google Scholar]
  128. Qian X, Kim MK, Kumaraswamy GK, Agarwal A, Lun DS, Dismukes GC. 2017.. Flux balance analysis of photoautotrophic metabolism: uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. . Biochim. Biophys. Acta Bioenerg. 1858:(4):27687
    [Crossref] [Google Scholar]
  129. Rajala P, Cheng D-Q, Rice SA, Lauro FM. 2022.. Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study. . Microbiome 10:(1):4
    [Crossref] [Google Scholar]
  130. Ranganathan S, Suthers PF, Maranas CD. 2010.. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. . PLOS Comput. Biol. 6:(4):e1000744
    [Crossref] [Google Scholar]
  131. Regimbeau A, Aumont O, Bowler C, Guidi L, Jackson GA, et al. 2023.. Towards modeling genome-scale knowledge in the global ocean. . bioRxiv 2023.11.23.568447. https://doi.org/10.1101/2023.11.23.568447
  132. Reimers A-M, Knoop H, Bockmayr A, Steuer R. 2017.. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth. . PNAS 114:(31):E645765
    [Crossref] [Google Scholar]
  133. Ren Q, Kang KH, Paulsen IT. 2004.. TransportDB: a relational database of cellular membrane transport systems. . Nucleic Acids Res. 32:(Suppl. 1):D28488
    [Crossref] [Google Scholar]
  134. Roberts K, Granum E, Leegood RC, Raven JA. 2007.. Carbon acquisition by diatoms. . Photosynth. Res. 93:(1–3):7988
    [Crossref] [Google Scholar]
  135. Roth-Rosenberg D, Aharonovich D, Luzzatto-Knaan T, Vogts A, Zoccarato L, et al. 2020.. Prochlorococcus cells rely on microbial interactions rather than on chlorotic resting stages to survive long-term nutrient starvation. . mBio 11:(4):01846-20
    [Crossref] [Google Scholar]
  136. Roth-Rosenberg D, Aharonovich D, Omta AW, Follows MJ, Sher D. 2021.. Dynamic macromolecular composition and high exudation rates in Prochlorococcus. . Limnol. Oceanogr. 66:(5):175973
    [Crossref] [Google Scholar]
  137. Rowe E, Palsson BO, King ZA. 2018.. Escher-FBA: a web application for interactive flux balance analysis. . BMC Syst. Biol. 12:(1):84
    [Crossref] [Google Scholar]
  138. Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD. 2012.. Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. . PLOS ONE 7:(10):e48285
    [Crossref] [Google Scholar]
  139. Sahu A, Blätke M-A, Szymański JJ, Töpfer N. 2021.. Advances in flux balance analysis by integrating machine learning and mechanism-based models. . Comput. Struct. Biotechnol. J. 19::462640
    [Crossref] [Google Scholar]
  140. Saifuddin M, Bhatnagar JM, Segrè D, Finzi AC. 2019.. Microbial carbon use efficiency predicted from genome-scale metabolic models. . Nat. Commun. 10:(1):3568
    [Crossref] [Google Scholar]
  141. Salvy P, Fengos G, Ataman M, Pathier T, Soh KC, Hatzimanikatis V. 2019.. pyTFA and matTFA: a Python package and a Matlab toolbox for thermodynamics-based flux analysis. . Bioinformatics 35:(1):16769
    [Crossref] [Google Scholar]
  142. Santos-Merino M, Gargantilla-Becerra Á, de la Cruz F, Nogales J. 2023.. Highlighting the potential of Synechococcus elongatus PCC 7942 as platform to produce α-linolenic acid through an updated genome-scale metabolic modeling. . Front. Microbiol. 14::1126030
    [Crossref] [Google Scholar]
  143. Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD. 2019.. A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. . PLOS Comput. Biol. 15:(1):e1006692
    [Crossref] [Google Scholar]
  144. Schellenberger J, Park JO, Conrad TM, Palsson BØ. 2010.. BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. . BMC Bioinform. 11::213
    [Crossref] [Google Scholar]
  145. Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U. 2012.. Multidimensional optimality of microbial metabolism. . Science 336:(6081):6014
    [Crossref] [Google Scholar]
  146. Schulze D, Kohlstedt M, Becker J, Cahoreau E, Peyriga L, et al. 2022.. GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. . Microb. Cell Fact. 21:(1):69
    [Crossref] [Google Scholar]
  147. Seaver SMD, Liu F, Zhang Q, Jeffryes J, Faria JP, et al. 2021.. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. . Nucleic Acids Res. 49:(D1):D57588
    [Crossref] [Google Scholar]
  148. Seemann T. 2014.. Prokka: rapid prokaryotic genome annotation. . Bioinformatics 30:(14):206869
    [Crossref] [Google Scholar]
  149. Segrè D, Vitkup D, Church GM. 2002.. Analysis of optimality in natural and perturbed metabolic networks. . PNAS 99:(23):1511217
    [Crossref] [Google Scholar]
  150. Seif Y, Palsson BØ. 2021.. Path to improving the life cycle and quality of genome-scale models of metabolism. . Cell Syst. 12:(9):84259
    [Crossref] [Google Scholar]
  151. Shah AR, Ahmad A, Srivastava S, Jaffar Ali BM. 2017.. Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana. . Algal Res. 26::35464
    [Crossref] [Google Scholar]
  152. Shene C, Paredes P, Flores L, Leyton A, Asenjo JA, Chisti Y. 2020.. Dynamic flux balance analysis of biomass and lipid production by Antarctic thraustochytrid Oblongichytrium sp. RT2316-13. . Biotechnol. Bioeng. 117:(10):300617
    [Crossref] [Google Scholar]
  153. Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, et al. 2012.. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. . Science 336:(6085):115760
    [Crossref] [Google Scholar]
  154. Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, et al. 2019.. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. . Nat. Commun. 10:(1):4552
    [Crossref] [Google Scholar]
  155. Stephanopoulos G, Aristidou AA, Nielsen J. 1998.. Metabolic Engineering: Principles and Methodologies. Amsterdam:: Elsevier
    [Google Scholar]
  156. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, et al. 2007.. Metabolic modeling of a mutualistic microbial community. . Mol. Syst. Biol. 3::92
    [Crossref] [Google Scholar]
  157. Taffi M, Paoletti N, Angione C, Pucciarelli S, Marini M, Liò P. 2014.. Bioremediation in marine ecosystems: a computational study combining ecological modeling and flux balance analysis. . Front. Genet. 5::319
    [Crossref] [Google Scholar]
  158. Tec-Campos D, Posadas C, Tibocha-Bonilla JD, Thiruppathy D, Glonek N, et al. 2023.. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic, chemoautotrophic, photoheterotrophic, and photoautotrophic growth conditions. . PLOS Comput. Biol. 19:(8):e1011371
    [Crossref] [Google Scholar]
  159. Testa RL, Estrada V, Delpino C, Diaz MS. 2021.. Photosynthetic bioplastics production with cyanobacteria by coupled growth-production mutants. . In 31st European Symposium on Computer Aided Process Engineering, ed. M Türkay, R Gani , pp. 191722. Amsterdam:: Elsevier
    [Google Scholar]
  160. Thiele I, Palsson BØ. 2010.. A protocol for generating a high-quality genome-scale metabolic reconstruction. . Nat. Protoc. 5:(1):93121
    [Crossref] [Google Scholar]
  161. Thommes M, Wang T, Zhao Q, Paschalidis IC, Segrè D. 2019.. Designing metabolic division of labor in microbial communities. . mSystems 4:(2):e00263-18
    [Crossref] [Google Scholar]
  162. UNESCO-IOC (UN Educ. Sci. Cult. Organ.–Intergov. Oceanogr. Comm.). 2021.. The United Nations Decade of Ocean Science for Sustainable Development (2021–2030) implementation plan. Rep. , UNESCO-IOC, Paris:
    [Google Scholar]
  163. Vailionis JL, Zhao W, Zhang K, Rodionov DA, Lipscomb GL, et al. 2023.. Optimizing strategies for bio-based ethanol production using genome-scale metabolic modeling of the hyperthermophilic archaeon, Pyrococcus furiosus. . Appl. Environ. Microbiol. 89:(6):e0056323
    [Crossref] [Google Scholar]
  164. van Hoek MJA, Merks RMH. 2017.. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. . BMC Syst. Biol. 11:(1):56
    [Crossref] [Google Scholar]
  165. van Tol HM, Armbrust EV. 2021.. Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. . PLOS ONE 16:(3):e0241960
    [Crossref] [Google Scholar]
  166. Varma A, Boesch BW, Palsson BO. 1993.. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. . Appl. Environ. Microbiol. 59:(8):246573
    [Crossref] [Google Scholar]
  167. Vartoukian SR, Palmer RM, Wade WG. 2010.. Strategies for culture of “unculturable” bacteria. . FEMS Microbiol. Lett. 309:(1):17
    [Google Scholar]
  168. Vijayakumar S, Rahman PKSM, Angione C. 2020.. A hybrid flux balance analysis and machine learning pipeline elucidates metabolic adaptation in cyanobacteria. . iScience 23:(12):101818
    [Crossref] [Google Scholar]
  169. Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL. 2013.. Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. . Biotechnol. J. 8:(5):61930
    [Crossref] [Google Scholar]
  170. Vu TT, Stolyar SM, Pinchuk GE, Hill EA, Kucek LA, et al. 2012.. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. . PLOS Comput. Biol. 8:(4):e1002460
    [Crossref] [Google Scholar]
  171. Wang H, Marcišauskas S, Sánchez BJ, Domenzain I, Hermansson D, et al. 2018.. RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. . PLOS Comput. Biol. 14:(10):e1006541
    [Crossref] [Google Scholar]
  172. Wang L, Dash S, Ng CY, Maranas CD. 2017.. A review of computational tools for design and reconstruction of metabolic pathways. . Synth. Syst. Biotechnol. 2:(4):24352
    [Crossref] [Google Scholar]
  173. Watson JR, Brennan TCR, Degnan BM, Degnan SM, Krömer JO. 2014.. Analysis of the biomass composition of the demosponge Amphimedon queenslandica on Heron Island Reef, Australia. . Mar. Drugs 12:(6):373353
    [Crossref] [Google Scholar]
  174. Westerhoff HV, Hellingwerf KJ, Van Dam K. 1983.. Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. . PNAS 80:(1):3059
    [Crossref] [Google Scholar]
  175. Wilken SE, Frazão VV, Saadat NP, Ebenhöh O. 2021.. The view of microbes as energy converters illustrates the trade-off between growth rate and yield. . Biochem. Soc. Trans. 49:(4):166374
    [Crossref] [Google Scholar]
  176. Yoshikawa K, Aikawa S, Kojima Y, Toya Y, Furusawa C, et al. 2015.. Construction of a genome-scale metabolic model of Arthrospira platensis NIES-39 and metabolic design for cyanobacterial bioproduction. . PLOS ONE 10:(12):e0144430
    [Crossref] [Google Scholar]
  177. Yoshikawa K, Toya Y, Shimizu H. 2017.. Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis. . Bioprocess Biosyst. Eng. 40:(5):79196
    [Crossref] [Google Scholar]
  178. Zakhartsev M, Rotnes F, Gulla M, Øyås O, van Dam JCJ, et al. 2022.. SALARECON connects the Atlantic salmon genome to growth and feed efficiency. . PLOS Comput. Biol. 18:(6):e1010194
    [Crossref] [Google Scholar]
  179. Zhang J, Petersen SD, Radivojevic T, Ramirez A, Pérez-Manríquez A, et al. 2020.. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. . Nat. Commun. 11:(1):4880
    [Crossref] [Google Scholar]
  180. Zhang S, Bryant DA. 2011.. The tricarboxylic acid cycle in cyanobacteria. . Science 334:(6062):155153
    [Crossref] [Google Scholar]
  181. Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, et al. 2011.. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. . ISME J. 5:(2):30516
    [Crossref] [Google Scholar]
  182. Zomorrodi AR, Maranas CD. 2012.. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. . PLOS Comput. Biol. 8:(2):e1002363
    [Crossref] [Google Scholar]
  183. Zomorrodi AR, Segrè D. 2017.. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. . Nat. Commun. 8:(1):1563
    [Crossref] [Google Scholar]
  184. Zuñiga C, Li T, Guarnieri MT, Jenkins JP, Li C-T, et al. 2020.. Synthetic microbial communities of heterotrophs and phototrophs facilitate sustainable growth. . Nat. Commun. 11:(1):3803
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-032123-033718
Loading
/content/journals/10.1146/annurev-marine-032123-033718
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error